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Abstract—Vehicular networks are critical pieces in support
of advanced intelligent transportation systems (ITS). These net-
works are formed by vehicles that can be connected to one
another as well as to the infrastructure, and are subject to
constant topology changes, disconnections, and data congestion.
Each ITS application could have a different set of communication
requirements, such as delay, bandwidth, and packet delivery
ratio. Meeting these heterogeneous requirements in the complex
dynamic environment of vehicular networks is a challenge.
This paper develops a new framework for application-driven
vehicular networks using 5G network slicing. We present the
architecture of the proposed solution and design algorithms
for heterogeneous traffic in a dynamic vehicular environment.
Our simulations on realistic vehicular scenarios show significant
improvements in network performance compared to the state-of-
the-art approaches.

Index Terms—Vehicular Networks, Network slicing, Software-
defined Networking, Application-driven Networks, Intelligent
Transportation Systems

I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) enclose a
wide range of technologies concerning modern vehicular

services around safety, information and entertainment. These
services include, but are not limited to, advertisements, tourist
information, traffic information, and parking, and are expected
to attract a considerable market in vehicular networks [1].

The related works often use the terms “vehicular applica-
tions” and “ITS applications” as synonyms, and we do the
same in this article. Research on Vehicular Adhoc Networks
(VANETs) has developed advanced wireless communication
schemes to enable vehicular applications. For instance, Dedi-
cated Short-range Communications (DSRC) was defined in the
IEEE 802.11p standard, to improve road safety and transport
efficiency. In the emerging paradigm of Vehicle-to-Everything
(V2X) networks, vehicles can communicate with countless
devices, including roadside infrastructure, altogether shaping
a new scenario for safer, cheaper, intelligent, connected, and
autonomous transportation systems [3], [20].
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On the other hand, the highly dynamic environment of
vehicular networks causes dramatic changes in the spatial
and temporal behavior of the network topology, resulting in
communication quality degradation. At the same time, several
vehicular applications need their communication requirements
to be addressed dynamically in such complex environments.
Traditional mobile communication networks employ a “one-
size-fits-all” approach to provide services to mobile devices,
regardless of the communication requirements of vertical
services [5]. Thus, the evolution of vehicular applications,
and increasing demands and challenges imposed by vehicular
environments, raises reliability concerns on VANETs, since
this fixed resource allocation mode of operation is inadequate
to satisfy the envisioned driving environments [4].

At the crossroads, technological advances of the fifth gen-
eration (5G) cellular networks and their related enabling
technologies, include not only improved radio access networks
but also Software Defined Networks (SDN), Network Func-
tion Virtualization (NFV), and Multi-access Edge Computing
(MEC), among others. To meet the specific service require-
ments of different applications, 5G leverages the concept
of network slicing, where a single network and compute
infrastructure is used to deploy customized service slices that
meet specific requirements. With network slicing, it is possible
to tailor the slices for diverse and complex 5G communication
scenarios [5]. Due to its potential in addressing Internet of
Vehicles (IoV) requirements on ultra-low delay and high
reliability among other specific applications [4], the topic of
network slicing in 5G has become a growing research trend
[6], [7].

Although several works address the problem of how to
meet the requirements of different applications in vehicular
networks, there is a demand of detailed solutions with proper
evaluation work, which takes into account the multifaceted
aspects of vehicular networks and applications. This article
proposes a framework for the deployment of vehicular net-
works that dynamically meet the requirements of different ITS
applications.

Following the principles of 5G network slicing, we have
developed methods for integrating SDN controllers so that
they use the communication requirements of applications
and information related to vehicles’ mobility in each Radio
Access Network (RAN) to meet the needs of ITS applications
dynamically.

The proposal is validated using a realistic emulation ap-
proach with an urban congestion scenario, with vehicular
applications having different data rate requirements. The local
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and global controllers acting to prioritize the application’s
communication flows properly. The results are compared with
an approach that makes use of quality-of-service (QoS) mech-
anisms and another approach from the literature [20], that use
SDN to manage the flows but does not prioritize application
traffics. The main contributions of the proposed Framework
are:

1) An algorithm for SDN controllers based on information
related to different ITS applications requirements, such
as priority, bandwidth, latency, and packet loss, apply
global policies to prioritize the available infrastructure
communication resources to meet applications KPIs. We
also provide an algorithm to integrate this component
with the orchestration features of a Management and
Orchestration (MANO) entity that the existing solutions
can implement.

2) An algorithm that uses the information about topology
changes in the vehicular context obtained through the
local controllers in each RAN to manage the communi-
cation flows locally to contribute to the overall solution
in meeting the application requirements.

3) A proof-of-concept prototype with open source SDN
controllers, switches, and OpenFlow features in an emu-
lated environment, which is used to evaluate our Frame-
work, performing comparisons against an approach that
uses only QoS and a state-of-the-art approach presented
in [20].

The rest of this paper is organized as follows. Section II
provides a summary about the related work. The proposed
framework is described in details in Section III. Section IV
details the settings of the evaluation experiments through a
proof-of-concept prototype. Section V presents the simulation
results. Finally, Section VI concludes the paper.

II. RELATED WORK

The idea of directing network behavior to meet application
demands, with efficient resource utilization, is not new and
has already been considered in the literature related to QoS
provisioning [9]. However, the existing solutions are limited
for adoption in modern environments, mainly in scenarios with
vehicular networks for ITS. The proposal in [19] makes use
of Application-Driven Networks (ADN), which are networks
capable of providing data paths to meet communication re-
quirements of applications dynamically. Although the work
provides an architecture with control algorithms and a proof-
of-concept related to vehicle driver training, the solution does
not consider the specific components of vehicular networks,
such as mobility and RSUs.

Some works, such as [15], [16], and [17] propose solutions
to address the QoS of applications by considering the commu-
nication requirements of different applications in the dynamic
environment of vehicular networks, and making use of SDN
technology. On the other hand, these works do not use 5G
network slicing and do not specify the necessary algorithms
for the components of the proposed solutions to work correctly.
These works also lack a realistic proof-of-concept experiment,
considering both vehicular and network core components.

In [20], the authors analyzed the potential of Software-
Defined Vehicle Networks, emphasizing the need for rethink-
ing the traditional SDN approach from a theoretical and
practical perspective, to manage communication and network-
ing resources in the vehicular environment. Similarly, [21]
considers both 5G network slicing and the dynamics of the
vehicular environment, making use of a realistic proof-of-
concept experiment that uses SDN in the core of the network
and considers the aspects of the vehicular environment. A
framework that also uses SDN to adjust network conditions to
meet ITS application requirements dynamically is proposed in
[18]. The problem with these works is that they do not specify
the algorithms of the components of the proposed solution
and do not propose a clear way to meet the communication
requirements of different ITS applications dynamically.

In [13], the authors propose a solution with fog computing
and simulate a proof-of-concept experiment to produce results
based on traffic conditions generated by SUMO [26] and
OpenStreetMap [27] to support some vehicular applications.
However, the proposed solution does not deal with meeting
specific requirements of vehicular applications. The authors
in [22] also make use of fog computing, but also consider
the need of applications. Similarly, [14] proposes a platform
to provide vehicular cloud services. Nonetheless these works
do not provide the algorithms for the solution of a realistic
proof-of-concept experiment.

5G network slicing in a mobile SDN core network has
been used in [23] to meet the requirements of the use case
of autonomous vehicles application. The authors consider the
dynamic of the vehicular environment and present a manage-
ment algorithm for slicing autonomous driving resources. The
proof of concept experiment uses realistic SDN and mobil-
ity components. As their focus is on autonomous vehicles,
the proposal does not consider meeting the communication
requirements of different applications dynamically.

Since our proposal deals with SDN to dynamically configure
the network to meet different ITS applications’ requirements,
there is room to make the infrastructure even more efficient
by using the Vehicular Service Cloud (VSC) technology. The
proposal in [24] uses a solution that forms nearby low-latency
VSC dynamically as per the needs of vehicular users.

In the same way that the ’non-radio’ aspect of 5G commu-
nication (e.g., SDN and NFV) has become more important, in
6G, the learning and intelligence aspects will become crucial.
They must be integrated with the communication networks
[25]. This way, the emerging solutions have Artificial Intel-
ligence (AI) approaches to deal with the ITS environment’s
inherent complexity. Since our proposal uses SDN and defines
the integration with the different components using the archi-
tecture and algorithms proposed, future research of approaches
can provide the integration with AI solutions running in the
SDN controllers using the proposed Framework. A novel
general AI solution that can be adapted to autonomously
dealing with the selection of the most appropriate algorithm
and the necessary parameter fine-tunings is proposed in [25].

Based on the above studies, we propose that a complete
solution that satisfies the requirements of ITS applications
must take into account the following items:
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• Scenarios with different applications and require-
ments: this is important because there is a slew of appli-
cations designed with different QoS needs for several use
cases, and a preferred solution must be prepared to man-
age the network resources considering this reality. Exam-
ples of these use cases are cooperative collision avoidance
system, augmented reality, intelligent navigation system
based on real-time road conditions, autonomous driving,
platooning, and 4K live video, among others [3], [16].

• Dynamics of the vehicular environment: since the
content delivery in vehicular networks is challenging due
to node movements [28], the solution must consider the
mobility of the vehicles. This mobility could result in
different network topologies and resource consumption
affecting the applications. Thus, it is necessary to config-
ure the network dynamically to keep meeting application
requirements properly.

• Algorithms: The design of dynamic resource allocation
algorithms is crucial for increasing the efficiency of
future sliced networks, and intelligent algorithms able to
forecast mobile service demands and anticipate resource
reconfiguration are required [29]. Thus, the solutions
must provide the necessary algorithms in order to provide
the functionalities required by the applications.

• 5G network slicing and SDN: The emerging 5G technol-
ogy is foreseen as the promising solution for improving
network performance and management while ensuring a
high data rate and enhanced QoS [23]. Hence, the novel
solutions must consider 5G network slicing and its key
technologies, such as SDN.

• Realistic proof-of-concept experiment: Critical issues
emerge when trying to put software-defined vehicular
networks into practice. These include full-featured Open-
Flow protocol stacks and a realistic experimental eval-
uation considering real/deployable code, network condi-
tions, mobility, and overall reproducibility [20]. This way,
a realistic proof-of-concept experiment considering the
network core elements and the dynamics of the vehicular
environment must be conducted to prove that the pro-
posed solutions are suitable and behave appropriately in
practice.

From the review of the related literature, it is apparent
that several open problems require further exploration. In the
present work, we aim to fill the exposed gaps by providing a
detailed solution to meet different ITS applications’ commu-
nication requirements dynamically. To the best of our knowl-
edge, this paper is the first to consider both the requirements of
applications and the dynamics of the vehicular networks, with
proper validation, using realistic SDVN emulation, providing
an experimental comparison with an approach that uses QoS
and another from the literature which uses SDN without QoS.
A comparison of our proposal with related work is presented
in Table I.

III. A FRAMEWORK FOR APPLICATION-DRIVEN
VEHICULAR NETWORKS

Vehicular communication networks typically consist of ve-
hicles with OBUs and RSUs. RSUs provide communication

TABLE I
OUR PROPOSAL COMPARED TO THE LITERATURE

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] Our
proposal

Realistic prof of
concept experiment X X X X X X

Different
applications
and requirements.

X X X X X X X X X

Dynamic of
the vehicular
environment

X X X X X X X X X X X X X

5G network
slicing X X X X X

Algorithms X X X
Software-defined
Networks X X X X X X X X X X X

Fig. 1. Architecture of the proposed framework.

between the vehicles and the infrastructure of the city through
cellular base stations, and we use in this paper the terms RSU
and base station with the same meaning. Figure 1 depicts the
components of the considered architecture in this paper, and
how they are interconnected. The elements of this architecture
work together with some key technologies used in 5G, namely
network slicing.

Network slicing and SDN are technologies in 5G that bring
significant improvements to both the radio access networks
(RAN) and the core networks of mobile communications. With
the concept of network slicing, 5G aims to meet diversified
service requirements under the background of existing tech-
nologies [5]. Whereas the technology needed to support the
different types of slices is well understood, the implications
of network slicing in terms of efficiency of network resource
utilization are still not well understood [29]. Although it is
difficult to determine when procedures to meet specific vehicle
communications requirements will be standardized in 5G, the
lack of alternatives has motivated the interest in using 5G for
vehicular communications [2].

As defined by the Open Networking Foundation [30], a
SDN architecture is composed of the application plane, the
control plane, and the data plane. The data plane devices,
which handle packet switching and traffic flow, are separated
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from the control plane devices, which define how the data
plane should operate. The application plane is populated by
application instances that represent client entities that can re-
quest some service from a SDN controller server [16], making
the network management more flexible since it is possible to
dynamically reconfigure the network to meet the requirements
of the applications. Following a SDN-like organization, our
proposed framework’s architecture is detailed in sub-sections
III-A, III-B, and III-C.

A. Application plane

In a SDN there exist two types of applications, namely
the end applications that are supported by the infrastructure,
and the control applications that define the network behavior.
In this way, these two types of applications, which will be
refereed to as the “vehicular” and “control” applications, re-
spectively, will constitute the application layer in the proposed
solution.

In some related works, vehicular applications interact di-
rectly with network controllers to have their communication
demands met. This is typically not the best approach in a
large and complex network supported by several operators,
and maybe having different controllers with their APIs. In
our approach, the controller devices and vehicular applications
share the relevant information through a shared database,
using a standard Data Manipulation Language (DML) such
as Structured Query Language (SQL). So, the control level
becomes transparent to vehicular applications, which can thus
be indifferent to control functions and focused on providing
their services.

Given the above model, each vehicular application in a
smart city will have its separate algorithms to accomplish its
role, and another set of common algorithms to update relevant
information to all applications, such as its service subscribers
and application requirements, in the shared database. In our
framework, the service subscribers are the vehicles that employ
the framework’s vehicular applications.

As illustrated in Algorithm 1, the generic application
algorithm receives new vehicle subscriptions, vehicle un-
subscriptions, or updates of key performance indicators (KPIs).
Subsequently, the relevant state is updated in the shared
database and the Management and Orchestration (MANO) is
notified about the application identifier (app id) and modify
flag (MF ) changes.

Regarding the control applications, we consider three types:
Global Network Control App, Local Network Control App,
and MANO App. Being the applications related to the control
plane, their algorithms will be detailed in Section III-C.

Algorithm 1 Generic Application Algorithm
Input: vehicle subscriptions, vehicle unsubscriptions, KPI
Output: Database Update, MANO notifications
1: Begin
2: Update in the shared database new vehicle subscriptions,

vehicle unsubscriptions, and KPI changes
3: Set MF ← 1
4: Notify MANO about the changes, sending modify flag (MF ) and the application

ID (app id)
5: End

Fig. 2. Flow chart of the framework in function of changes in topology,
applications or infrastructure resources.

B. Data plane

In our framework, the data plane consists of the SDN
switches that exist both in the network core and in the
vehicles. They receive switching rules from the controllers
of the control plane to both forward packets and prioritize
vehicular applications data accordingly.

C. Control Plane

Since the objective of the proposed framework is to meet
applications’ requirements in a dynamic environment, it is
necessary to define when the network leaves a stable state;
that is when the infrastructure is not attending to applications’
requirements (through KPIs). It is also crucial to determine
the components to implement regain stability. As illustrated
in Figure 2, the network can leave the stable state due to one
or more of five reasons, all resulting in a transitory group
of actions executed by the control components to bring the
network to steady state again.

When there is the deployment of new base stations in the
city, the implementation of a new vehicular application, or
applications update, it is necessary that MANO verifies the
current available infrastructure to analyze if a resource re-
optimization is necessary. The above also applies when there
are modifications of the topology at the level of regions,
such as vehicles moving to another city. A generally more
frequent scenario is that of vehicles moving between the
coverage ranges of different base stations, modifying the
network topology at the level of RANs, and in some cases
resulting in high utilization of resources. As mentioned earlier,
the network control algorithms must take necessary actions in
all these scenarios for the network to go back to stability. The
next sub-sections will illustrate our proposed algorithms to do
so.

1) MANO (Management and Orchestration): MANO pro-
vides management and orchestration of physical and virtual
resources in both MEC and remote clouds. As a result,
dynamically it instantiates or migrates infrastructure resources,
including application servers and virtual network functions, for
each vehicular application, as can be seen in Algorithm 2.

The MANO algorithm uses the MF control variable to
differentiate if the parameters received as input are related
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Algorithm 2 Management and Orchestration Algorithm
Input: app id, AIR, ICI , V SI , KPI , MF
Output: Central controller notifications, Infrastructure orchestration, Database queries

and updates
1: Begin
2: if MF = 0 then
3: Query the shared database and Update DS variable
4: Compute the resources for the new application, using

AIR,DS, ICI, V SI,KPI , and store the result in RTI
5: Deploy the infrastructure defined in RTI
6: Update in the shared database the information of the infrastructure associated

with the new application
7: Notify the Central Controller, sending MF and the identifier of the new

application (app id)
8: Update the DS variable with information updated from the shared database
9: else

10: Query the shared database and Update NDS variable
11: Compute changes, based on NDS and DS, and store the result in DC
12: Compute the resources for the new scenario, based on DC, and stores the result

in RTI
13: Deploy the infrastructure defined in RTI
14: Update in the shared database the information of the infrastructure associated

with the application
15: Update the DS variable with information updated from the shared database
16: Set MF = 1
17: Notify the Central Controller sending MF and app id

18: End

to a new application (MF = 0) or not (MF 6= 0). When
deploying a new application, the stakeholders of the city that
offers services need to submit to MANO some fundamental
information, besides MF = 0, which are:
• Application Infrastructure Resources (AIR), which con-

tains information about demands of network resources
(e.g., network interfaces, DNS registers, NTP definition),
and servers (e.g., container, HTTP, FTP).

• Infrastructure Configuration Information (ICI), which
contains information such as container image ULR and
IP address allocation.

• Vehicles Subscription Info (V SI), which is composed of
the identification codes for each vehicle, the applications
associated with them, and the geographical regions to
which they belong.

• Application Identifier Code (app id), which is unique for
each application.

• Key Performance Indicators (KPI) for the applications’
requirements, such as E&E Latency, Reliability, and Data
Rate.

MANO also needs to verify the current status of the
elements in the infrastructure under its domain. It thus queries
the shared database, store the result in the DS (Database
Status) variable and then uses it in conjunction with AIR,
ICI , V SI , and KPI to compute the necessary resources to
meet the applications’ KPIs. MEC solutions (e.g., instantiating
a Docker container) could be used to meet the requirements
of delay sensitive applications, if the KPI of latency is lower
than a specific threshold.

After the resources are computed, MANO proceeds to de-
ploying the necessary actions at the infrastructure. Afterwards,
it updates the information related to the new application,
KPI, vehicles, and infrastructure in the shared database. Next,
MANO notifies the central controller by sending the value of
MF and the identifier of the deployed App (app id), so that
the controller proceeds as described in Subsection III-C2 to
implement the necessary global network policies. Once the

Algorithm 3 General Policies Algorithm
Input: MF, app id
Output: Database Queries, General network policies deployment, Local controllers

notification
1: Begin
2: if MF = 0 then
3: Query the shared database and update the DS variable
4: Create ARL,AV L,BSI, IAL lists, based on the DS variable
5: for each application in ARL do
6: Create a slice for the application and store in SDL(app id), based in

app id, AV L, IAL, and BSI
7: Compute the global network policies to meet application requirements and

store in GP , based on SDL(app id) and ARL
8: Configure the global policies in the elements of the application slice, based

on GP and SDL(app id)
9: Notify the local controllers in each RAN, sending GP

10: else
11: Query the shared database and update NDS variable
12: Compute the changes and store in DC, based on NDS and DS
13: Update ARL, AV L, BSI , and IAL, based on DC
14: for each application in ARL do
15: Update SDL(app id) based on ARL, AV L, BSI , and IAL
16: Compute the global policies to meet application requirements and store in

GP , based on SDL(app id) and ARL
17: Configure the global policies in the elements of the application slice, based

on GP and SDL(app id)
18: Notify the local controllers in each RAN, sending GP

19: End

deployment is done, MANO queries about the more updated
data in all tables in the shared database and stores them locally
in DS variable for use in future cases where MF 6= 0.

If MANO receives MF 6= 0, this is the case of an
update that can be triggered by an application that (1) updates
its information in the shared database; or (2) defects some
modifications at infrastructure level. In these cases, MANO
defines a variable named NDS (New Database Status) to store
new data values, and other variable DC to save the changes.
Next, MANO computes the changes and stores them in DC.
With previous and difference data, MANO computes resources
to the new scenario and deploys them. Once the resources
are deployed/optimized, MANO updates this information at
the shared database, updates the DS variable with the most
updated data, and notifies the central controller with MF = 1
and the app id of the application related to the updates.

In summary, the process of management and orchestration
conducted by MANO consist of virtual resource instantiation
and VNF placement considering the application’s requirements
(KPIs). This management and orchestration process can be
performed in several ways, as defined by the MANO Frame-
work [10]. In [11] is presented some technologies currently
used. A robust solution that can be used to orchestrate het-
erogeneous virtual infrastructures (with networking and com-
puting components) is the OpenBaton [12], which provides an
engine that can be used to ensure QoS for network slices and
also manage mobile edge computing using container servers
deployment tools. Our framework integrates this process of
resource allocation executed by the MANO with the central
and local network controllers, responsible for defining the
actions to be performed by the SDN components when dealing
with the ITS applications’ communication flows. The gain
of this integration is that the controllers could configure the
network components considering the infrastructure deployed
by the MANO, considering the applications requirements and
vehicles’ mobility.
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2) Central Network Controller: The central network con-
troller is the entity that determines the general network policies
for the data plane and its algorithm (Algorithm 3) has as
input MF , and app id. The outputs of the algorithm are the
Database Queries, local controllers notifications, and General
network policies deployment, which result in rules for con-
figurations such as communication flow redirection and QoS.
The last output is the notification to local controllers in each
RAN, sending the global policies configured in the network.

When MF = 0, i.e., MANO finished the deployment of
a new application, the central controller needs to optimize
networks resources by applying the necessary policies meeting
applications requirements. So, the central controller query
the shared database, store the result in DS, and use it to
create the variable lists of (1) applications’ KPIs (ARL), (2)
vehicles associated to each application (AV L), (3) IP or URL
addresses and the region associated to local controllers in each
RAN (BSI), (4) the infrastructure deployed by MANO per
application (IAL).

For each application in ARL, the central controller defines
a new network slice considering all AV L, BSI , and IAL
data. In this way, each slice will include the elements, such as
vehicles, servers and RSUs, related to each application. The
same device could be associated with more than one slice
(e.g., a vehicle subscribing to more than one application).
After slice creation, the central controller computes the general
policies for each slice, so as to meet the applications’ KPIs,
and applies them to the network (e.g., using the Openflow
protocol). Examples of network policies are redirection rules
and QoS queues defined by the application algorithms in
the controllers. The resulting actions can be implemented
with the OpenFlow protocol to set the flow entries between
vehicles and application servers to meet the ITS application
requirements. In the experiment, we used the information from
the application servers (IP address and network connections),
the information of which vehicle was associated with which
application, and the application requirements (BW and prior-
ity) to define and configure, using the Ryu SDN controller with
OpenFlow , the QoS queues to meet application requirements.
This definition of which QoS queues and rules to configure and
on which SDN switch to apply them is an example of how the
solution computes the necessary resources. Afterwards, local
controllers could be notified about the policies created.

If the central controller receives MF 6= 0, it needs to query
the database to identify the changes using the CC(NDS,DS)
function. With these changes, it update the ARL, AV L, BSI ,
and IAL lists and the slices, compute the new necessary
policies, and notify the local controllers.

3) Local Network Controller: The local controllers work
to dynamically meet the application requirements in each
RAN, following the central controller’s global policies and
considering the requirements of the applications in the vehicles
that belong to its own RAN. The algorithm that runs in
each local controller (Algorithm 4) has as input the global
policies implemented by the central controller (GP ), the
information about KPIs that the neighboring controllers can
meet (NAKPI), the maximum total KPI that the current
RSU of the controller can meet by default (TKC), and the

Algorithm 4 Local Controllers Algorithm
Input: GP , NAKPI , TKC, IV
Output: Local network control policies configurations, Available balance notifications

to neighbors, Database queries and updates
1: Begin
2: TKNA = 0
3: Identify all vehicles in RAN and save its information in RV
4: Query the shared database and update AV
5: for each NAKPI message received from neighbors do
6: Store in the local file NAKPI.file the resource balances received from the

RSU neighbor
7: for each vehicle V i in RV do
8: Query from the shared database the total sum of KPIs from the applications

which V i is subscriber and store the result in D(V i) and add to TKNA

9: Calculate the local RSU balance (TKC − TKNA+AV ) and store the result in
AKPI

10: if AKPI < 0 then
11: Query priority information of applications from the shared database and store

in AI
12: Define API Max level of priority class and store in MAPI , based on AI
13: Set API = 1 to initiate with less priority applications
14: while API < MAPI do
15: Set BS Id = NULL
16: Verify in NAKPI.file if there is some neighbor that can meet the KPI

of the class API Application and store the result in BS Id
17: if thenBS id 6= null
18: Compute the policies to redirect flows of class API application to

neighbor with the ID equal to BS Id and store in LPR
19: Configure LPR in the network
20: Update the shared database, based on LPR
21: Set API = API + 1
22: else
23: Compute the policies to limit the traffic of class API application

according to GP and save in LQP
24: Configure LQP in the network
25: Update the shared database, based on LQP

26: else
27: If there are left over resources, store the value in AKPI and send it to neighbors
28: Wait IV time to a new verification
29: Back to Begin

verification time interval (IV ) for local controllers to identify
the vehicles in its RANs. The value of IV can be determined
using heuristics that consider several variables of the city’s
transportation system (e.g., holidays, accidents), even using
AI approaches. TKC variable can be defined when the RSU
is deployed and updated later if necessary.

Each Local controller uses TKNA (”Total KPI Necessary”)
variable to save the resources requirements in its RAN in a
given time-frame, while AV (”Availability”) is used to store
the available resources in the RAN.

First, the controller clears TKNA (”Total KPI Necessary”)
variable, identifies vehicles in its RAN, saves the result in RV
(”RAN Vehicles”). For each vehicle in RAN, the controller
query the shared database and calculates the total sum of KPIs
of the applications that the vehicle is a subscriber and store
the result in D(V i). The sum of requirements for all vehicles
in RAN is saved in TKNA. The controller also queries
the shared database to update AV , which is the balance of
resources redirected from or to the local RSU by its neighbors.
To get its total balance of resources, the RSU controller
calculates AKPI = TKC − TKNA+AV .

When AKPI > 0, the local controller send AKPI to
inform its neighbors, via an east-west communication API, that
it has idleness of resources that could be used (e.g., available
bandwidth in the links that connect it with the network
backbone), and waits IV seconds to recheck the RAN status.
Each message with AKPI that the controller receives stores
the reported information locally in a file (NAKPI.file).
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If AKPI < 0, it means that the local RSU cannot
accomplish the KPIs and, this way, it uses the information
of the priority of the applications in the shared database to
create prioritization indexes (API and MPAI) to manipulate
the flows properly. Next, it uses the NKPI.file to verify
if the neighboring RSUs can handle part of the demand. If
the result is positive, the neighboring unit’s identifier that can
attend is saved in BS id. So, the local controller configures
the policies to redirect the applications’ traffic (LPR) and
updates the information of redirection in the shared database.
If no one neighboring unit can attend the additional demand,
the local controller deploys the policies to limit the traffic of
the application (LQP ) based on the QoS determined by the
Global Policies. In this case, the database is updated with the
traffic-limit information since it will be necessary to correctly
calculate the balance of resources.

IV. PERFORMANCE EVALUATION

We now turn our attention to the practical realization1 and
performance evaluation of the proposed framework based on
the Mininet-WiFi wireless network emulator [31], a fork of
the well-known Mininet emulator [32]. Our implementation
considers four classes of application priority: classes A, B, C,
and G. Class A is reserved to applications that have ultra-low
latency requirements and must use a MEC solution, whereas
classes B and C are more delay tolerant. In the case of
limited resources in the communication with remote servers,
Class B application has more priority than C. Lastly, class
G represents common applications which have no priority nor
specific requirements.

The role of central controller in the network is implemented
using the Ryu SDN controller2, which is a top-rated software
that supports the latest versions of the OpenFlow protocol and
has a very active community [33]. The SDN controller uses the
information of vehicles, RSUs, and applications requirements
stored in the shared database, which was developed using
MySQL, to configure global QoS policies in the SDN switches
of the network.

Periodically, the local controller identifies the vehicles in
the RAN of each RSU, queries the shared database to de-
termine the applications associated with these vehicles, and
queries the shared database to obtain the information about
the applications’ requirements. After that, these requirements
are summed to obtain the accumulated requirements for each
vehicle in the RAN. By adding the calculated demands for
each vehicle in the RAN, the local controller can compute the
total requirements that the RSU needs at a given time.

The implementation considers the need to prioritize the ap-
plication data rate KPI appropriately. Thus, the local controller
queries the shared database to check for information about
traffic redirected by the RSU or to it. If the RSU has redirected
or limited some data traffic in the past, the related data rate’s
value needs to be added to the final balance. On the other

1Source code, data, configuration information and supporting documenta-
tion enabling experiment reproducibility are available at the public project
repository: https://github.com/saraivacode/framework its sdn

2https://osrg.github.io/ryu/

hand, if it receives some traffic redirected, the value must be
subtracted from its balance.

When the RSU is congested, the local controller triggers
some actions to prioritize the applications of Class B as
opposed to those of Class C having lower priority. That said,
local controllers verify whether their local list of vehicles with
Class C applications is not empty and some neighboring unit
has a balance to deal with the related data rate appropriately.
If both verifications return true, these vehicles’ flows are redi-
rected (one at a time, as long as necessary) to the neighboring
RSU unit. The information about the redirection is updated by
the local controller in the shared database. These registers are
eliminated when the vehicles are no longer connected to the
RAN, avoiding distortions in balance results.

If the RSU is congested and cannot redirect Class C flows,
the controller tries to redirect Class B application flows. If this
is not possible, it limits Class C’s application flows locally by
associating them to a default queue of non-priority traffic. If
this non-priority queue already contains traffic from other non-
priority applications (i.e., Class G), the local controller also
blocks this traffic to not compete with the limited Class C
priority traffic.

In the evaluation environment, when a vehicle leaves the
coverage area of an RSU, the association timeout is about
20 seconds. Thus, the local controller has to wait at least 20
seconds to confirm a possible traffic congestion before act to
prioritize the applications. As will be shown in the analysis of
the results, this have some impact on the results.

A. Evaluation Scenario

Representing an ordinary situation that occurs in the traffic
of most cities around the world, the evaluation scenario con-
sists of a traffic jam, where there is a time-increasing density
(i.e., vehicles per m2). As illustrated in Figure 3, during the
whole 450 seconds of evaluation time, 158 vehicles move in
the 650 m of an urban road at Manhattan (NYC), as defined by
the SUMO urban mobility simulator [26], resulting in different
levels of congestion over time. This configuration was based
on works like [16] and [34], which simulated the performance
of their proposals using different levels of vehicles density.

The mobility was implemented using the integration be-
tween the Mininet-WiFi emulator and the SUMO simulator.
Therefore, the SUMO simulator was configured with the map
of Manhattan roads to generate 158 vehicles’ mobility, which
was enough to fill the segment of road in the communication
range of the RSUs. We configured three RSUs in a segment
of 650 m, with the signal coverage area corresponding to 250
m in each RSU based on [35].

To observe the impact of interference caused by the vehi-
cle’s transmissions in our metrics, from the 158 vehicles, the
maximum of 50 vehicles generate traffic related to different
applications simultaneously, being 15 vehicles generating data
of priority applications. With this scenario, it is possible to
evaluate how the different approaches used can deal with
topology changes, resulting in different levels of network
resources consumption in a densely crowded environment,
impacting the data rate KPI of the priority ITS applications.
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Fig. 3. Evaluation scenario representing a traffic jam in a dense urban road.

TABLE II
SUMMARY OF THE PARAMETERS USED IN THE PERFORMANCE

EVALUATION SCENARIO

Parameter Value
Number of vehicles 158
Number of RSUs 3
RSUs range 250m
Backbone SDN switches 5
Application servers 6
Propagation Model Log Distance
RAN MAC layer IEEE 802.11g
Data rate per vehicle associated with priority applications 2 Mbps
Number of applications 4
RSUs Upload link BW 5 Mbps
Emulation time 450 seconds

The parameters used in the performance evaluation scenario
are summarized in Table II.

We have divided the vehicles’ roles in a way that we have
15 vehicles that are subscribers of four hypothetical vehicular
applications that are configured as described in Table III.

The application named S represents a Class A application
of vehicular safety. These types of applications are regarded
as vital steps towards enhancing road safety by preventing
accidents from occurring [36], and is thus most critical to
delays and losses. The S application has a data rate KPI of 500
Kbps, and its servers (S1, S2, and S3) are connected directly
to the RAN of each RSU, following a MEC approach.

Applications E describe a Class B application of efficiency
that has a data rate KPI of 500 Kbps. ITS applications for effi-
ciency can deal with several aspects of vehicular environment
(e.g., the energy efficiency of fully electric vehicles [37]). The
E2 represents a Class C application of entertainment (e.g., a
specific application of video streams), and consumes a higher
bandwidth, having a data rate KPI of 1Mbps. In the evaluation
scenario these applications are not delay-sensitive, and their
traffic go to their remote servers through the backbone link
of the RSUs. G application represents a generic traffic of 500
Kbps that has no priority, such as a generic internet browser
traffic.

Each of the 15 vehicles subscriber of all applications
generate the total data rate of 2 Mbps. Since the RSU backbone
links are configured with a limit of 5 Mbps, these links will
be congested in some periods during evaluation time, and thus
the applications must be prioritized properly. The five SDN

TABLE III
APPLICATIONS CHARACTERISTICS

Applications Use Data rate KPI Protocol Port Priority class
S Safety 500 Kbps UDP 5002 A
E Efficiency 500 Kbps UDP 5003 B

E2 Entertainment 1 Mbps UDP 5004 C
G Generic 500 Kbps UDP 5005 G

backbone switches (SW1 to SW5) interconnect the RSUs
with the cloud servers of the E, E2 and G applications. It is
worth noting that there is also an internal switch in each RSU
that interconnects the RSUs with their neighboring units, the
respective MEC servers, and the backbone switches.

The Mininet-WiFi does not implement 5G wireless net-
works. However, 5G is not about only radio access technology
and encompasses several technologies in its core network [38].
Thus, we use this emulator configured with IEEE 802.11g
the radio access connectivity due to its capabilities to provide
realistic SDN wireless networks that are enough to deploy
(in conjunction with other tools) evaluation scenarios with 5G
network slicing and future ITS applications.

Based on [39], which considers as evaluation schemes the
Baseline (No QoS) and Static QoS, we compare our proposed
framework to two other approaches to evaluating it. One of
the approaches is the same consideration is based on another
work from literature [20], where it is used SDN to manage the
resources in the vehicular network considering the position of
the nodes. The last approach considered deals only with the
use of QoS in the Network.

These two approaches are namely the “QoS only” and
“RMSDVN”, as follows:
• “QoS only”: The network sets QoS policy to meet the

data rate KPIs for the applications. It configures QoS
rules and queues, as the central SDN controller in our
solution also does, but there are not local controller
features, such as traffic redirection. Thus, this approach
does not update the QoS according to changes in the
vehicular environment.

• ‘RMSDVN”: The approach is implemented in [20] and
uses SDN to manage the resources in the vehicular
network considering the position of the nodes but does
not implement traffic prioritization at all.

Finally, three metrics will be employed to evaluate the
impact of the above three approaches. As [40], that use
throughput to evaluate its proposal in a SDN Enabled 5G-
VANET, we also use the throughput of data between vehicles
and application servers. Since in our evaluated scenario the
KPI of prioritized applications was the data rate, we collected
the throughput over the time to verify if the application
servers received the data rate expected according to vehicles
transmission. The other metrics are the round trip time (RTT),
and packet delivery ratio (PDR). The RTT can be defined as
the time taken by an application starting from the initiator node
(source vehicle) sending a message until receiving a response
from the core network [41]. Knowing the value of RTT is
important because it is proportional to congestion [42], and
it is also possible to verify the impact in the communication
flows of the S application. With PDR it is possible to evaluate
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the level of data loss in function of each approach used since
it represents the average ratio of the number of successfully
received data packets at the destination to the number of
data packets sent. This metric is widely used to evaluate the
performance of vehicular networks, including scenarios with
multiple QoS constraints [43].

The values of RTT calculated by the ”PING” ICMP mes-
sages in log files were summed each second for all vehicles
and divided by the number of cars transmitting. In (1) is
calculated the value of average RTT every second, where
RTTVi are the n− th values received of RTT in the second
s and NC is the number of vehicles that transmitted in the
congestion period to which the second s is part.

RTT (s) =
1

NC

n∑
i=1

RTTVi (1)

The PDR was calculated through the ratio between the sum
of packages received by servers and the number of packages
sent by vehicles, as showed in (2), where PSr is the sum of
packets received by the servers and PSt is the sum of packets
sent by the cars.

PDR =
PSr

PSt
(2)

To compute the throughput, since the data with the size of
the packets sent by vehicles and received by servers collected
was is in bytes, they were summed in each second and
multiplied by 8 to obtain the result in bits per second (bps).
The values obtained were divided by the number of vehicles
that were effectively transmitting in each second, as shown
in (3) and (4). TTC(s) and TRS(s) are, respectively, the
throughput of packets sent by vehicles and received by the
application servers in the second s, while PSi and PRi are,
respectively, the n packages sent by the NC vehicles and
received by the servers in the second s. NC is increasing
over time when more vehicles join to the traffic jam.

TTC(s) =
1

NC
(

n∑
i=0

PSi) ∗ 8 (3)

TRS(s) =
1

NC
(

n∑
i=0

PRi) ∗ 8 (4)

V. RESULTS

A. Throughput and RTT over time

Figures 4 (a), (b), and (c) illustrate the results of throughput
and RTT related to E application, using the “Framework”,
“QoS only” and “RMSDVN” approaches, respectively. This
application is the most critical among those that are prioritized
in backbone links.

Figures 4 shows the results of throughput and RTT during
the evaluation time for the E, E2, G, and S applications,
using the different approaches evaluated. With all approaches,
the throughput that reaches the E application server is com-
promised at the beginning of the evaluation time, and while
each vehicle generates a throughput of around 500 Kbps for
this application, in the server reaches only around 300 Kbps.

This occurs because there are until 48 vehicles reaching RSU3,
17 generating several data rates, with being 5 subscribers of
the applications E and E2 among them. Since each one of
these 5 vehicles generate 2 Mbps throughput to backbone,
being 1 Mbps for E2 server, 500 Kbps for E server, and
500 Kbps for G server, totalizing 10 Mbps requirement for
the 5 Mbps uplink of the RSU. There are also 500 Kbps to
S application in local MEC server but this is not considered
by the controller, since these flows do not use the uplink of
the RAN. With our proposal, the local controller redirected 3
Mbps related to communication flows of E2 application from
three vehicles, and the QoS limited the G application. Thus,
it is possible to observe that after a convergence time, there
is almost no difference between the throughput generated by
vehicle and received by servers until around 200s. Around
this time, there are 34 vehicles generating data in RSU1 and
RSU2, with 138 vehicles in the traffic jam. The density of
vehicles increases in order that during the last 100s there is
the maximum level of traffic jam in the experiments, where
there are 158 vehicles, with 50 generating data in the RANs,
being 15 of these vehicles subscribers of priority application.

In summary, with the proposed framework were obtained
the best results regarding data rate overtime to E application.
Even with the impact observed in the results related to RTT,
because of the QoS, our approach presented better results for
this metric than using “QoS only” approach. Related to the E2
application, the results obtained with the proposed framework
were similar to that using “QoS only” approach, with the
worst results in the last 100s, as expected, since the solution
prioritized the E application. RTT values were proportional
to the congestion level and naturally worst when the traffic
was limited. Since “RMSDVN” does not inspect the traffic
to provide some prioritization, its RTT values are lower. In
any case, some high RTT values are not a problem in the
evaluated scenarios since the KPI used as a reference was the
data rate. In respect of G application, it is possible to observe
the best results with the “RMSDVN” approach, and this was
expected since both the proposed framework and the “QoS
only” approaches limit the communication of this application
to prioritize the others.

Figures 4 (j), (k), and (l) show the RTT results, transmission
and reception throughput rates collected over time for the S
application. Since the data of these applications do not pass
through the network backbone, the expected result is that it
be independent of the approach used. The results are very
similar, which are consistent with the theory, except for some
outliers. It is also observed that, although congestion in the
backbone does not impact the traffic of these applications, it
is not the immune to the high interference of the 50 vehicles
generating different data rates in the RANs. Therefore, it is
possible to observe a decrease in reception rate during the
last 100s of evaluation time in all figures, in function of high
density of vehicles transmitting. The RTT values were shallow,
as expected in function of the use of MEC severs.

B. Packet Delivery Ratio
In this section we analyze the PDR values obtained ac-

cording to the use of the evaluated approaches. Figure 5 (a),
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(a) E app - “Framework”
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(b) E app - “QoS only”
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(c) E app - “RMSDVN”
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(d) E2 app - “Framework”
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(e) E2 app - “QoS only”
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(f) E2 app - “RMSDVN”
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(g) G app - “Framework”
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(h) G app - “QoS only”
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(i) G app - “RMSDVN”
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(j) S app - “Framework”
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(k) S app - “QoS only”
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(l) S app - “RMSDVN”

Fig. 4. Results of throughput and RTT during the evaluation time for the E, E2, G, and S applications, using the different approaches evaluated.

(b), (c), and (d) show the violin plot with the PDR calculated
during the experiments using the evaluated approaches for the
E, E2, G, and S applications, respectively.

Violin plots with the PDR values observed during the
experiments with the evaluated approaches for the different
applications are shown in Figure 5. It is possible to observe
that the values using “RMSDVN” approach mainly focus
around 40 and 60% for E, E2, and G applications since there
is no prioritization in backbone when using this approach.
With “QoS only” the results are similar for the priority
applications E and E2, since, with the QoS rules and queues,

it is possible to allocate some network bandwidth. Despite
that, there is no traffic redirection in this approach. With
the packet losses, the PDR values with “QoS only” were
focused around 60%, except for the G application, which was
penalized, once there is no priority. Our solution obtained the
best PDR values for E and E2 applications, which occurs
because our framework considers the application requirements
and mobility in each RAN. Even for the G application, which
is penalized, our proposal presented better results than with
“QoS only” approach.

In summary, considering all the evaluation time, the mean
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Fig. 5. Packet delivery ratio for the different applications on the evaluated
approaches.

PDR with our proposal was about 85.1% for E application
against respectively 50.1% and 60.8% with “RMSDVN” and
“QoS only”. With E2 application the mean PDR was 76.9%
with our proposal, against respectively 51.1% and 61.1% with
“RMSDVN” and “QoS only”. These results make clear the
improved performance of our proposal when considering the
PDR metric to evaluate the operation related to the priority
applications.

Considering the values of all emulation time, the mean
PDR with all approaches in S application is around 90%,
which confirms the benefits of use MEC solution and the
independence of this from the approach used. These results are
practically equal since the data from the S application does not
go through the network core and, therefore, is not manipulated
by the implemented approaches. On the other hand, the
observations of PDR lower than 90% are more evidence of
the impact of the interference generated by vehicles in each
RAN during the periods with a higher density of vehicles.

C. Round Trip Time

The results of RTT through empirical cumulative density
functions (ECDFs) for E, E2, G, and S applications are
illustrated in Figures 6 (a), (b), (c), and (d), respectively.

The ECDF of E application shows that more than 90%
of the values are less than 1750 ms with the “RMSDVN”
approach, while with the our solution and “QoS only” are
less than around 5000 ms. As the use of QoS affects the
RTT, the best results are with the “RMSDVN” approach when
considering the applications that use the uplinks in the RANs.

It was possible to observe that, once our framework use
QoS applied by the central controller, the RTT values were
high than with “RMSDVN”. But, this is not a problem in this
scenario, since, as mentioned before, this was not the KPI
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Fig. 6. ECDFs of the RTT results for the different applications using the
evaluated approaches.

considered by the control algorithms. The S application is
that with lower RTT values.

For the S application, the RTT measurements in the data
communications between the vehicles and the MEC servers
show excellent and very similar results of low RTT with
the evaluated approaches, with a mean of around 20 ms,
independent of the used approach. This shows the benefits of
MEC servers concerning this metric. Other conclusion based
on these results is that the high interference does not impact
the RTT in the same level of the PDR metric.

D. Discussion

The results showed that with the use of the proposed
framework it is possible to orchestrate the network resources
to respond to the dynamics of the vehicular environment to
meet the ITS applications’ priorities and its KPIs. Compared
with the other approaches, it was possible to obtain promising
results of reception data rate in application servers, and PDR,
in extreme conditions of data congestion and interference in a
vehicular scenario with varying network topology over time.

It was observed in the results that the use of QoS policies
could increase the RTT. Since the applications sensitive to time
constraints could use a MEC approach, and in the scenario
of our proof-of-concept, the KPI used by the controllers to
manage the applications in conjunction with its priority was
the data rate.

The proposed solution presented for the E application a
PDR result of 39.96% above that achieved with “QoS only”
approach and 69.86% above that achieved with “RMSDVN”
approach. It is noteworthy that all results could be even
better if there was not the limitation in the local controller
implementation, where, it was necessary to wait at least 20
seconds to act after detecting the need to intervene to meet
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the applications’ KPIs, which is a significant period of time,
considering the total evaluation time of 450 seconds.

VI. CONCLUSIONS

This work addressed the problem of how to deploy a mobile
infrastructure with a vehicular network that can dynamically
meet the communication requirements of different ITS appli-
cations. The proposed approach consists of a framework using
5G network slicing concepts in a software-defined vehicular
network with algorithms that consider the requirements of
the different applications, its infrastructure, and the vehicles’
mobility, to meet applications requirements.

Throughout the realistic experimental evaluation, we were
able to validate the approach and show how the data rate
received by application servers over time, RTT, and PDR of
the communication flows were used as performance metrics.
The obtained results were outperforms alternative approaches
such as “QoS only” and “RMSDVN” in scenarios of dynamic
traffic jam with vehicles associated to four applications with
different data rate requirements and priorities.
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