
Soft Failure Localization Using Machine Learning
with SDN-based Network-wide Telemetry

Kayol S. Mayer(1,+), Jonathan A. Soares(1), Rossano P. Pinto(2),
Christian E. Rothenberg(2), Dalton S. Arantes(1), and Darli A. A. Mello(1)

(1) DECOM, (2) DCA, University of Campinas, 400 Albert Einstein Ave., Campinas, 13083-852, SP, Brazil.
(+) kayol@decom.fee.unicamp.br

Abstract Targeting soft failure localization, we present a machine learning approach using SDN stream-
ing telemetry of network-wide parameters. The artificial neural network only requires a few training sce-
narios to achieve adequate interpolation performance. The framework implementation is validated using
gNMI telemetry in an emulated NSFNet topology.

Introduction

Machine-learning (ML) techniques are being in-
creasingly investigated to address several prob-
lems in optical networking[1][2]. Among them, fail-
ure management is one of the most promising
targets[3][4]. Recently, tackling soft failures has
become an active research topic. Soft failures
are degradations that cause identifiable variations
on network parameters, but not severe enough to
cause alarms and disrupt the service. Eventually,
soft failures may evolve into hard failures. There-
fore, early detection, identification, and localiza-
tion of soft failures contribute to avoiding service
disruptions and improve faulty device repairs.

Different approaches have been proposed for
soft failure management. Barzegar et al.[5] moni-
tor the performance of established lightpaths, de-
tect anomalous behaviors, and look for correla-
tions to localize the failure. Vela et al.[6] iden-
tify soft failures during commissioning testing and
lightpath operation by monitoring optical spec-
trum analyzers and optical test channels. Lun et
al.[7] propose a two-stage soft failure identification
scheme based on a convolutional neural network
and receiver DSP. Shahkarami et al.[8] identify soft
failures in an experimental link by continuously
monitoring the BER. Varughese et al.[9] identify
the type of soft failure by applying support vec-
tor machines (SVM) to the weights of the DSP
adaptive filter. Shu et al.[10] identify soft failures
by monitoring the digital spectrum of specific con-
nections. Wang et al.[11] and Rafique et al.[12] ex-
ploit time-series to predict soft failures.

Although several works are dedicated to soft
failure detection and identification, few works ad-
dress the problem of localization[13]. A soft fail-
ure (e.g., an amplifier with degrading gain) may
eventually trigger anomalies in several parame-

ters of the network, and localizing the failure is
a network-wide[14] process. Recent data-driven
SDN-based optical networks[12],[15] are able to
collect monitoring parameters generated by a
potentially vast number of network elements,
such as transponders and amplifiers, and pro-
cess large volumes of monitoring data with ML
pipelines[16],[17].

In this paper, we propose an approach to lo-
calize soft failures by means of an artificial neural
network (ANN) applied to network-wide parame-
ters collected by an SDN-based gNMI[18] stream-
ing telemetry architecture. We experimentally val-
idate the proposed framework in a large-scale
emulated network scenario.

Network-wide Soft Failure Localization

Figure 1 presents the proposed framework. The
failure localization workflow starts by creating a
snapshot mirror of the current SDN information
base, including network status, physical topology,
routed lightpaths, and telemetry data (TD). This
information is sent to a failure generation simula-
tor, which produces synthetic TD for all scenar-
ios considering any possible failure in the net-
work as inputs to train the ANN used for failure
localization. This training phase must be carried
out whenever there is a change in the network
lightpath topology. Network elements send TD to
an SDN controller streaming telemetry collector
(STC) using the gNMI protocol, a gRPC based
service. The STC processes and stores the col-
lected data into an InfluxDB time-series database.
The ANN module is continuously fed with the TD
from InfluxDB to localize potential network fail-
ures effectively and timely. Standardized Open-
Config/YANG models are used to exchange mes-
sages and maintain the SDN information base.
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Fig. 1: Proposed network-wide soft failure localization framework.

Evaluation Setup
Topology and Traffic Generation. We evaluate the
proposed soft failure localization mechanisms on
the 14-node NSFNet[19], assuming a static traffic
scenario. We assume a 4.8-THz optical link spec-
trum, corresponding to 96 50-GHz frequency slots
(FS). We generate 1, 000 demands with uniformly
distributed source-destination pairs and band-
width uniformly distributed between 1 to 4 FSs.
The Dijkstra’s algorithm[20] performs routing, and
wavelength assignment follows the first-fit algo-
rithm[21]. From the 1, 000 demands, a total of 386
demands are accepted. We assume 80-km spans
with 0.2 dB/km attenuation, except for the last
one, which can be shorter to yield the desired to-
tal span length. The final topology has 580 unidi-
rectional fiber spans, with 536 in-line amplifiers, 44
pre-amplifiers, and 44 booster amplifiers. We as-
sume broadcast and select (B&S) reconfigurable
add-drop multiplexers (ROADMs) equipped with a
per-channel power control loop implemented with
optical channel monitors (OCMs) and wavelength
selective switches (WSSs). The control loop en-
sures a launch power of −1 dBm per channel.
The accepted 386 demands are supported by 772

transponders, implementing bidirectional connec-
tivity. The simulated system parameters are sum-
marized in Fig. 1, in which N is the node degree,
and l is the fiber length per span.
Monitoring Data. The simulated traffic generation
scenario features 3, 564 monitoring parameters.
In amplifiers, we monitor 1, 248 input and out-
put power values. In transponders, we monitor
2, 316 parameters of the optical signal to noise ra-
tio (OSNR), input power, and output power. We
assume that OSNRs can be estimated from the
pre- forward error correction (FEC) bit error rate
(BER). We consider 1, 978 devices that may fail,
including 772 transponders, 624 amplifiers (pre-,
booster, and in-line amplifiers), and 580 unidirec-
tional fiber spans.
Telemetry Setup. We assume that the down-

stream network node collects TD from ampli-
fiers via an optical supervisory channel. Thus,
transponder and amplifier monitoring data are
streamed by a single telemetry server per node.
Acting as gNMI servers, each of the 14 emulated
NSFNet nodes streams every second the TD to
the STC which updates the SDN information base
embodied in InfluxDB. Finally, the ANN module
processes the updated TD to eventually localize
a faulty device.

Failure Localization Results
ANN Design and Training. Failure localization is
carried out by a shallow ANN composed of three
layers[22]. The first layer has 3, 564 inputs (cor-
responding to all collected TD), the hidden-layer
has 1, 000 linear neurons, and the output-layer
has 1, 978 nonlinear neurons with the softmax ac-
tivation function, corresponding to all network el-
ements that may fail. Z-score normalization[23] is
applied at the input to accelerate the training pro-
cess and improve numerical stability. The outputs
add to one, representing a probability level that
the corresponding element has failed. We use a
categorical cross-entropy loss function to address
the ANN output error. The adaptive moment es-
timation of infinite order (Adamax)[24] is applied
to the backpropagation process. A network ele-
ment is identified as faulty if its output exceeds
0.5. Training is performed in an x86 server (In-
tel(R) Xeon(R) Silver 411 CPU at 2.20 GHz, 46-GB
RAM and 10 physical cores).
Hard failure training. We first train the ANN al-
gorithm only considering hard failures, i.e., a
transponder power equals 0 W, the attenuation of
a fiber link goes to infinity, or an amplifier gain
equals 0 dB. After 120 training epochs (30-min
dataset generation and 2-min ANN training time),
the ANN algorithm reaches a categorical accu-
racy of 99.75%. After the training phase, we test
the ability of the ANN to localize soft failures. The
results are presented in Figs. 2a, 2b, and 2c. The
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Fig. 2: Soft failure localization ANN performance (accuracy %) in amplifiers (A), fiber links (F) and transponders (T). In (a), (b),
and (c), the ANN is trained only for hard failures (HF), and tested with soft failures, whereas in (d), (e), and (f), the ANN is also

trained with soft failure scenarios (parameter degradation of 3 dB and 10 dB).

figures show three curves each, corresponding to
the cases where the correct device is identified as
faulty, the incorrect device is identified as faulty,
and no failure is identified. Fig. 2a shows that,
if the gain of the amplifier is degraded by more
than 5 dB, the ANN is able to correctly recognize
the faulty amplifier with a probability higher than
90%. The probability of incorrect device detection
remains zero. Fig. 2b indicates that, upon a fiber
link soft failure (e.g., additional 6 dB loss), failure
in the wrong device is identified with high prob-
ability. Fig. 2c shows the results for a soft fail-
ure that reduces the output power of a transpon-
der. Clearly, the ANN is only able to localize soft
failures corresponding to high losses. Figs. 2b
and 2c show that training an ANN to localize hard
failures is not sufficient to localize soft failures.
Hard and soft failure training. To circumvent the
observed limitations, we now train the ANN to
localize some soft failure scenarios: (i) amplifier
gain degradation of 3 dB and 10 dB, (ii) transpon-
der power degradation of 3 dB, and (iii) fiber ad-
ditional loss of 3 dB and 10 dB. Similarly, af-
ter 120 training epochs (80-min dataset genera-
tion and 6-min ANN training time), the ANN algo-
rithm reaches a categorical accuracy of 99.59%.
Figs. 2d, 2e, and 2f show the performance of
the ANN trained for these soft failure scenarios.
Fig. 2d shows that the ANN correctly localizes
all soft failures in amplifier gains for degradations
greater than 3 dB. Fig. 2e shows that it also local-
izes all soft failures in fiber links causing losses
greater than 3 dB. Likewise, Fig. 2f shows that all
transponders were correctly localized when their
power reduction is greater than 2 dB.
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Fig. 3: Emulation results of a failure in Amp 1 2 5.

Emulation results. Fig. 3 presents the results from
the complete soft failure localization framework
implementation in the emulated environment. We
emulate a gain degradation in the 5th transponder
in the link interconnecting NSFNet nodes 1 and
2 (Amp 1 2 5) with nominal value of 16 dB and
neglecting propagation latency. The green curve
with crosses shows the relative time in which the
TD in Amp 1 2 5 gain degradation is generated
at all NSFNet nodes. The orange line with cir-
cles shows the output of the ANN, after stream-
ing telemetry and database processing. The ANN
failure localization is triggered when the ampli-
fier gain reaches 14 dB. The entire process of
streaming telemetry, database processing, and
ANN processing takes less than 1.4 seconds.
Conclusions. The obtained results demonstrate a
suitable performance in soft failure localization af-
ter training an ANN with few hard and soft failure
scenarios. Performance insights from the emu-
lated environments indicate appropriate real-time
performance.
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