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Abstract—Due to the advanced control and machine learning
techniques, today’s industrial robots are faster and more accurate
than human workers in well-structured repetitive tasks. However,
in case of sudden changes in the operational area, such as
unexpected obstacles or humans, robots have to be continuously
monitored by powerful controllers for swift interventions (i.e.,
send emergency stop signals). As in the case of many verticals
(e.g., transportation, shopping), the proliferation of Software-
Defined Networking (SDN) and Network Function Virtualization
(NFV) has started to captivate industry 4.0 as well in order to
benefit from low infrastructure costs, and flexible management
and resource provisioning. Besides all the advantages of the
centralized approach, however, in critical situations (e.g., possible
collisions, actuator damages or human injuries) the required
ultra-low latency between the robots and the controller becomes
an all-important factor, and one of the main concerns, at the
same time, for industry leaders making the decision towards this
paradigm shift.

In this paper, we argue that by relying on recently emerged
stateful and programmable data planes, it is possible to fill this
gap by offloading latency-critical applications to the network,
thereby bringing some intelligence much closer the robots. We
present the first in-network robotic control application that
is capable to intercept the communication between the robot
and the controller and craft responses immediately if needed.
In particular, we show that we can detect position threshold
violations entirely in the data plane, close to the robot, and deliver
emergency stop commands within no time with full compliance
to the actual TCP session and application states.

Index Terms—P4, Low Latency applications, Robotic control

I. INTRODUCTION

Nowadays, industrial robots with high degree-of-
freedom (DOF) are more intelligent than their predecessors
decades ago. Advanced control and machine learning
techniques have enabled the robots to be faster and more
accurate than human workers in well-structured repetitive
tasks. Robots can calculate their own trajectories between two
instructed positions. Furthermore, by having external sensors
(e.g., camera, motion sensor) robots can observe sudden
changes in the operational area (i.e., in the robotic cell) such
as unexpected obstacles or even humans. In such critical
circumstances, not reacting in time (e.g., sending emergency
stop signals, adjusting movements) can entail a severe impact
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including collision, actuator damages or, more importantly,
human injuries. In order to resolve this, each robot is directly
connected to a powerful controller for continuous monitoring,
and swift and precise interventions (see Fig. 1).

The evolution of Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) have already revolu-
tionized many industries (e.g., IT, transportation, shopping)
resulting in that enterprises increasingly offload their business-
critical workloads to the (public) cloud to benefit from low
infrastructure costs, high availability and flexible resource
management. This booming paradigm shift has recently started
to captivate further verticals, including industry 4.0 [1] and
robotic control enabling each individual robot controller to be
centralized (or even offloaded to the cloud) to significantly
improve operational management (e.g., controller program-
ming, firmware upgrades) and decrease capital expenditures.
However, have to face with the unreliable (i.e., lossy and
congested links, variation in delays) nature of today’s network.

While the proliferation of 5G provides improved network
capacity and ultra-low latency, due to interference, backscat-
tering, or even jamming, wireless signals can still be undeter-
ministic disabling 5G alone to be feasible for latency-critical
applications such as robotic control. Particularly, if a stop
message generated by the centralized controller suffers from
delays or even packet losses, there is going to be an error
between the intended and actual position, potentially causing
serious hazards mentioned above (cf. Fig. 4).

Recently emerged programmable and stateful networks, on
the other hand, have given rise for in-network solutions (e.g.,
[2]–[4]) enabling simple calculations to be offloaded to the
network itself. By enabling some tasks (i.e., requests) to be
resolved entirely in the data plane (inherently, much closer
to the requester) without practically reaching the centralized
controller, we can significantly reduce latency and reaction
time without the need to overcome possible congestion and
delays in the core of the network. However, in order to realize
a fully in-network solution, we have to properly maintain the
underlying TCP session and application states.

In this paper, we take the first steps towards this direction
and investigate whether the industrial robot controllers can
benefit from the revolutionary network paradigm shift by
overcoming the possible pitfalls via an in-network solution.
In particular, we present the first in-network robotic control978-1-7281-5684-2/20/$31.00 ©2020 IEEE



application (i.e., offloaded to the programmable data planes)
that is capable to react (i.e., respond to the robot) on sudden
changes in the robotic cells. To reach this end, we leverage the
key capabilities of network programmability, and we design
and implement custom functions to parse and analyze the
TCP communication between the robot and the controller, and
perform basic calculations (e.g., distance, average filtering) in-
network1. Particularly, when we detect a position threshold
violation in the data plane (by intercepting the continuous
status messages sent by the robots to the controller), a custom
reply packet is crafted at the first hop in the network to deliver
an emergency stop command to the robot arm within no time.

To simulate the robot arm, we use Universal Robots Simula-
tion (URSim)2, a widely used simulator tool for programming
and manually controlling the movement of high DOF robotic
arms. To intercept, analyze and manipulate the unencrypted
TCP communication between URSim and a controller in the
data plane, we prototype our solution in P4 [6]. We show that
our publicly available application3 can efficiently manipulate
the packets within a TCP session in fully compliance to the
actual TCP session and application state.

II. BACKGROUND AND RELATED WORK

A. Programmable Data Planes

Lately, many solutions have been proposed to make the
network programmable and stateful. Among them, P4 [6] be-
came the most attractive solution. By being a domain-specific
language with features that helps to disaggregate the network
stack, P4 provides a high level of networking abstraction and
supports target-independent implementations. The P4 pipeline
includes a parser, match+action tables, and a deparser; packet
headers are parsed upon arrival, then processed in a multi-
table pipeline, and deparsed to be finally forwarded. The main
advantage of P4 is that due to its constraints and limited
instructions set, all P4 application is guaranteed to run in
wire-speed irrespective to the underlying P4-enabled hardware.
With the use of table lookups, different hardware-independent
packet processing algorithms can be implemented. It is possi-
ble, furthermore, to create custom matches to perform various
actions, such as modifying the packet fields or generate
new messages. Moreover, the processing algorithms can be
optimized by means of resource mapping and management
capabilities (e.g., allocation and scheduling).

B. Universal Robots Simulator

Universal Robots (UR) provides a free simulator called
URSim to explore different robot arm configurations in an
open environment. URSim is a virtual representation of a real
robot arm and the simulator can work as a client device to
establish a communication that allows a robot to interact with
external devices (e.g., a controller) using TCP sockets4.

1The main idea and proof of concept were first introduced in [5]
2https://www.universal-robots.com
3https://github.com/ecwolf/p4 robot.git
4https://shar.es/a3Z9MR

C. Robot Arm

The UR robot arm has six joints that can rotate 360 degrees.
URSim defines three types of movements: joint space, linear,
and circular blends (i.e., movej, movel, movep)5. Each
movement command has a specific structure. Listing 1 presents
the movej message, including the message sent to the robot.

1 movej ( [ Base , Shou lde r , Elbow , Wris t1 , Wris t2 ,
2 Wr i s t 3 ] , a= a c c e l e r a t i o n , v= speed )
3 movej ( [ 1 . 5 4 5 , −2.35 , −1.31 , −2.27 , 3 . 3 5 8 ,
4 −1.22] , a =4 , v =5)
5 p [ 1 . 5 4 5 , −2.35 , −1.31 , −2.27 , 3 . 3 5 8 ,
6 −1.22 , 4 , 5 ]

Listing 1: URSim movej message.

D. Robot Controller

The robot controller can be a physical device or a pro-
grammed script. After establishing the connection with the
robot, the controller can send commands to the arm, e.g.,
setting positions and actions. At the same time, the robot is
constantly sharing its actual position through the bidirectional
TCP channel.

E. Related Work

Recent research in the literature aims at providing in-
network action developments [7]. Some authors have driven
the development of offloading cloud actions to local networks.
Jan Rüth et al. [8] offload from the cloud to a local network
box, tasks of control and communication deploying in P4.
Angelo Lapolli et al. [4] implement a sophisticated security
logic on the data plane device. René Glebke et al. [9] bring
computer vision tasks to the network by deploying a P4-
based system capable of identifying patterns in images and
performing actions accordingly. B. G. Nagy et al [10] evaluate
an environment with robot arms and a human collaboration
using a Virtual/Augmented Reality (VR/AR) application. They
planted a solution using cloud-native programs and CPU
core allocation demonstrating the impact of delays during the
deployment.

A similar approach came from the Mobile Edge Computing
(MEC) architectures bringing cloud-computing capabilities to
the network edge [11]. Arising from a MEC approach [12],
if the robot actions are programmed in the P4 switch, we can
reduce the processing of sending information to the MEC, and
having a direct response from the edge device (P4 switch).

III. SYSTEM OVERVIEW

As mentioned in Sec. I, the main goal of our in-network
robot arm control is to investigate the potential of a pro-
grammable data plane (e.g., P4-based device) deployed close
to the target robot components (e.g., arm, sensor) in a central-
ized network with undeterministic connections. Particularly,
we explore how to reduce the latency of critical actions (e.g.,
emergency stop, alarm notification, synchronization) when
needed.

5https://www.zacobria.com/
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Fig. 2: System overview.

Accordingly, the system being investigated encloses a robot
and a controller, where the robot arm is programmed to do the
well-structured repetitive tasks. In contrast, the controller role
encloses activities of verification, failure response, synchro-
nization process, etc. Figure 2 presents a high-level overview
of the system architecture and the experimental setup. On
the left-hand side, the robot (URSim) executes the commands
received from the controller, and sends its current position
and further status messages back to the controller. The robot
is configured with a start position, velocity, acceleration, and
step size for its movements (Listing 2).

On the right-hand side, the controller (which we imple-
mented in Python) establishes a TCP communication to the
robot and analyzes all incoming messages afterward. The con-
troller is configured to send a stop message to the robot when
it violates a threshold position. Between the controller and the
robot, a P4 device is used to forward the corresponding traffic
in both directions and to analyze (parses + table matches)
certain parts of the payload to obtain the necessary information
(i.e., actual position).

1 Loop var 1 ?
=F a l s e

2 va r 1 ?
= s o c k e t o p e n ( ” 1 0 . 1 . 1 . 2 7 ” ,30000)

3 movej ( [ 1 . 5 4 5 , −2.35 , −1.31 , −2.27 , 3 . 3 5 8 ,
−1.22] , a = 1 . 4 , v =1)

4 va r 6 ?
=1 .545

5 Loop va r 8 6=0
6 movej ( [ var 6 , −2.35 , −1.31 , −2.27 , 3 . 3 5 8 ,

−1.22] , a =4 , v =5)

7 j o i n t p o s i t i o n ?
= g e t a c t u a l j o i n t p o s i t i o n s ( )

8 s o c k e t s e n d s t r i n g ( j o i n t p o s i t i o n )

9 va r 7 ?
= s o c k e t r e a d a s c i i f l o a t ( 1 , t = 0 . 0 0 3 )

10 va r 6 ?
=var 6 +0 .01

11 I f va r 7 [ 0 ] ?
=0

12 var 8 ?
=1

13 E l s e va r 8 ?
=var 7 [ 1 ]

Listing 2: Robot Script.

tcp_match.payload Action Data

2.063 (0)tcp_payload_match

Fig. 3: P4 table match parameter

To realize the offloaded in-network control application in
P4, we define a custom header to identify the messages from
the robot (Listing 3) following the movej data structure
(Listing 1).

1 h e a d e r t cp ma tch {
2 b i t <8> robot msg ;
3 b i t <40> p a y l o a d ;
4 b i t <240> pay load end ; }

Listing 3: Robot Header.

After parsing the message and extracting the payload
content, the match+action pipeline starts. One of the tables
(Listing 4 and Fig. 3) is defined to match a specific value
(tcp_match.payload) and take the corresponding actions
(Listing 5). For instance, we can use the detection of a specific
robot position as a trigger to craft a new packet and send it
back to the robot with a new payload containing a “magic
word” command to stop the robot movement immediately.

1 t a b l e t c p e x a c t {
2 key = { hdr . t cp ma tch . p a y l o a d : e x a c t ; }
3 a c t i o n s = { t c p p a y l o a d m a t c h ; NoAction ; }}

Listing 4: Robot TCP match table.

1 a c t i o n t c p p a y l o a d m a t c h ( b i t <8> robot msg , b i t
<40> payload match , b i t <9> p o r t ) {

2 hdr . t cp ma tch . robot msg = robot msg ; / / (
3 hdr . t cp ma tch . p a y l o a d = pay load match ; / / 0 )
4 meta . m o d i f i e d = 0x1 ;
5 s t a n d a r d m e t a d a t a . e g r e s s s p e c = p o r t ; }

Listing 5: Robot Action.

A. Avoiding the link to the controller

Since the connection to the controller can suffer from
external factors (e.g., delay, packet loss), they can affect
the correct behavior of an application with ultra-low latency
(ULL) requirements.

Figure 4 presents a traditional scenario where the robot
controller handles the robot actions in the traditional way. In
this scenario, the network has different unreliable properties
(e.g., delay, packet loss) that affect all messages with ULL
actions (e.g., emergency stop, synchronization). The robot
will send its current position 1 to the controller. If this
position value reaches a defined threshold (in the controller),
the controller generates a stop message 2 . When the stop
message passes through, it suffers from a delay that highly
affects the time of the instruction (i.e., the stop message). This
results in errors measured as the difference from the threshold
to the actual stop position, potentially causing a collision or
further hazards.



Fig. 4: Traditional scenario without in-network control.

Fig. 5: In-network P4-based implementation.

B. Switch-in-the-middle TCP handling

One challenge of in-network solutions arises from messing
up the TCP session. If we manipulate or create any message
by the P4 device, we need to sync all the acknowledgment
(ACK) and sequence (SEQ) numbers adequately to keep all
TCP parameters valid for both end-points.

When the robot sends a message with its current position
(Fig. 5) 1 and it matches with a defined threshold, the P4
router generates an automatic replay with a calculated ACK
and SEQ numbers to the robot 3 , without any interaction of
the controller. If the robot controller is not informed about this
interaction, the synchronization with the robot will fail. The
ACK and SEQ numbers are not going to be in line with the
robot and the controller, causing a TCP disconnection.

To handle the TCP synchronization problem, alternative
strategies can be taken in the P4 program. One option is to
update and synchronize the ACK and SEQ numbers of future
packets from the controller. To this end, it is necessary to
maintain registers in P4 to update these values in the future.
Keeping a correct value in the registers can be a complicated
process and eventually can fail.

In our implementation (Fig. 5), we use an approach similar
to TCP veto [13] (see Fig. 6). If the robot sends a position
message 1 that matches with the predefined threshold, the P4
device will forward the message to the robot controller and, at
the same time, it will create a new message to the robot with
valid ACK and SEQ numbers 3 . Thereby, when the controller
sends the stop message 2 , it will be discarded by the router
as duplicates, with synced ACK and SEQ numbers.

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental results of the
scenario described in Fig. 5. The main objective beyond
functional validation is to evaluate the error in the position
when the stop message to the robot is generated in the network
(delay near to 0) compared to a traditional controller approach
subjected to longer and/or variable delays (i.e., 5 ms to 100
ms). Note, the delay components include the propagation
(around 5 ns per meter) plus the transmission, queuing, and
processing along the path and the controller SW/HW.

Robot Controller

SEQ w  ACK x  LEN y

SEQ w+y  ACK x LEN z

SEQ x  ACK w+y  LEN 0

SEQ x  ACK w+y+z  LEN a

[2.063,0.93....

[1.963,0.93....

SEQ w+y+z  ACK x+a  LEN 0

Match

STOP
[2.063,0.93....

SEQ x  ACK w+y+z  LEN a

...

Connection continues 

normally

xMatch

Fig. 6: TCP session approach.

Fig. 7: In-network robot control collision control use case.

The testbed includes three servers with Intel Xeon E5-
2620v2, dual-port 10G Intel X540-AT2 NIC, and 64GB of
memory running Ubuntu 16.04. The first server (Robot) is
running URSim v3.12.0 with a basic script (Listing 2) to
send the position in real-time. The second server acts as a
Router and runs the P4 program using BMv2. The third server
(Controller) executes a python based script to establish the
TCP session and process the information from the robot. For
the link between the Router and the Controller, we use Linux
Traffic control (tc)6 to set different delays for the experiments.

We define different delays (5 ms to 100 ms) to evaluate the
performance in terms of error (mm) from the target threshold
position to the actual stop position. We also explore the impact
of the movement length (step of 0.001 mm to 10 mm). We
compare the results with the P4 router (0 ms for illustration
purposes) carrying out the in-network actions.

Figure 8 presents the results of the experiments. As ex-
pected, the delay, and step size affect the error to stop the
robot. The color scale used in Fig. 8 correlates darker green
with higher errors. In order to minimize the error, the link
delay needs to be reduced as much as possible.

The results from the in-network approach (Fig. 5) corre-
spond to the top entries for delay values of 0 ms (red label),
since the propagation latency (5 ns every 10 meters) between
the robot and the P4 device is negligible compared to the ms

6http://man7.org/linux/man-pages/man8/tc.8.html
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Fig. 8: Stop position error without in-network actions. Accel-
eration of (30◦/s2).

orders of magnitude. Likewise, the line-rate processing time of
an actual hardware P4 pipeline would be even more negligible.

Altogether, our experimental findings suggest that an in-
network approach can play a critical role in ULL applications.
The proof of concept evaluation using a P4 router to send rapid
actions to the arm demonstrates that programmable devices
could unlock new ways to offload robot controller actions to
the network. We also confirm that with P4, we can effectively
match payload information from the robot and use it to craft
valid in-network packets acting as fast controller actions.

V. CONCLUSIONS AND FUTURE WORK

In industry 4.0 applications, it is common to have more than
one device working in synchronization, and their information
must be shared. We believe that apart from looking for use
cases with one robot, future research should look for a scenario
where two or more robots are working nearby in a shared
space. If one of the robots is in a collision course with
others (including objects or humans detected by collaborative
sensors), it is necessary to act rapidly. Programmable network
devices may react to such events and send a message of a
new course or even a stop action. These activities are required
within a short time to effectively prevent possible accidents.

Considering the scenario described in Fig. 7, with two
robots working closely. Robot 1 is sending its current posi-
tion 1 to the network, as well as Robot 2 3 . The P4 switch
can be programmed to perform actions to synchronize the
robots or to prevent any collision (without the intervention of
the robot controller). If it is necessary to send any message to
one of the robots, the P4 switch can craft them (2 or 4 ) and
synchronize with the controller. In such cases, it is important to
consider that the P4 switch needs to perform some calculations
(e.g, distance, area), thus we have to be aware of the limitations
of the underlying hardware that may require the use of external
functions.

Overall, we presented the design a P4 implementation of in-
network actions to control a robotic arm by offloading some

controller functions to a programmable edge network device it-
self. We described scenarios where the use of a programmable
device makes the difference in terms of ultra-low latency re-
sponse. We showed how to effectively manipulate the content
of the messages to craft new replies within an established TCP
session. Our experimental evaluation demonstrated the impact
of the delay in the connection to an accuracy stop position.
The kinematic configuration of the robot (i.e., acceleration,
step size) also affects the error (stop position difference) to
apply an action.

Programmable data planes in delay critical scenarios open
up new opportunities for a different range of applications (e.g.,
sensors monitoring, data filtering, thresholds matching).

The realization of network actions of the multiple robot
synchronization is still in progress. Currently, we are imple-
menting a testbed using a hardware P4 device and a real
robotic arm. We are also investigating how to parse messages
of URSim using nested package structures as well as additional
robot control protocols and real-time UDP sockets.

All in all, our P4-based robotic arm control experience
suggests intriguing opportunities that are not limited to robots
only but are applicable to a wide range of applications (e.g.,
industry 4.0, automation, real-time control, synchronization)
where low and deterministic latency is paramount.
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