
Intent-based Control Loop for DASH Video Service
Assurance using ML-based Edge QoE Estimation
Christian Esteve Rothenberg∗, Danny A. Lachos Perez∗, Nathan F. Saraiva de Sousa∗, Raphael V. Rosa∗,

Raza Ul Mustafa∗, Md Tariqul Islam∗, and Pedro Henrique Gomes†
∗University of Campinas (Unicamp): {chesteve, dlachosp, nsaraiva, rvrosa, razaul, tariqsaj}@dca.fee.unicamp.br

†Ericsson Research: {pedro.henrique.gomes}@ericsson.com

Abstract—Intent-Based Networking (IBN) proposals are based
on autonomous closed-loop orchestration architectures that mon-
itor and tune network performance. To this end, IBN defines
high-level policies and actions implemented by a closed-loop
system. This work demonstrates a Closed Control Loop (CCL)
architecture for video service assurance using Machine Learning
(ML) based Quality of Experience (QoE) estimation at edge
nodes. As part of the solution, network-level Quality of Service
(QoS) metrics patterns (e.g., RTT, Throughput) collected through
flow-level monitoring are used to build a QoS-to-QoE correlation
model tailored to specific target network regions, user groups,
and services, in our case DASH video streaming. The demo
will showcase the CCL workflow triggering the Orchestrator
to take appropriate network-level actions to overcome network
QoS degradations and restore the QoE target based on the intent
associated with the video service.

I. INTRODUCTION

Novel means for end-to-end network programmability and
flexibility through software-defined networking (SDN) and
network function virtualization (NFV) require companion ap-
proaches of service assurance. However, traditional networks
still rely on low-level parameters manually configured by
humans as input to specific execution commands [6]. Highly
softwarized future networks demand configuration, manage-
ment, and optimization in an automated manner over the full
life-cycle of a service [1].

Driven by demand and technology, the concept of intent-
based networking (IBN) is (re)emerging to support efficient
and faster service delivery through a high level of automation
that simplifies the management with minimum intervention
from human operators [8]. In other words, operators only
indicate high-level abstracted service requirements (i.e., their
“intents”), and the automated system resolves how the intent-
based services are executed and validates their compliance.

Service assurance deals with different functions (monitor-
ing, analysis, planning, and execution) that are necessary to
ensure that the network complies with the desired intent-based
service. More recently, the implementation of such functions
has followed the principles of autonomous Closed Control
Loops (CCLs) [3]. CCLs establish constant monitoring (a.k.a.,
data collection / “observe”) and SLA verification (a.k.a.,
analytics) over the entire life-cycle of an intent-based service
to assure that it is operating correctly and, if not, to set
actions to return to the desired intent. In this context, efforts

are being devoted to the applicability of Machine Learning
(ML) and Artificial Intelligence (AI) to CCL network and
service operations [5]. Scalable and flexible feature monitoring
and analytics platforms are required so that adequate ML/AI
algorithms can contribute to orchestration functions on the
network elements to assure the service in terms of end-to-end
quality, fundamentally as perceived by end-users (i.e., QoE).

To contribute towards the realization of CCL architectures,
we design an intent-based control loop system platform for
service assurance through ML-based QoE estimation from
network-level monitoring and/or telemetry information (i.e.,
QoS metrics). Such metrics are collected and processed at
network edge facilities (e.g., as defined by ETSI Multi-access
Edge Computing - MEC) strategically located close to the
target end-user(s). For validation purposes, this demonstration
focus on a DASH video streaming service assurance use
case1. This demo exercises the loop design principles by
implementing all the key components in our proposed archi-
tecture (see Fig. 1): (i) collector (realizes QoS measurements),
(ii) QoE estimator (executes ML algorithms), (iii) policy-
driven orchestrator (enables service life cycle workflows), and
(iv) actuator (acts on the network).

II. ARCHITECTURAL OVERVIEW

In our recent work [7], we proposed an architecture that
presents different key characteristics towards providing a flex-
ible and efficient intent-based CCL operation: (i) modularity,
use of APIs to allow add/remove components, (ii) adaptive
policy, change the policy conditions in runtime, (iii) multi-
level intent, define levels of intents in a bottom-up approach,
(iv) topology abstraction, abstraction of the network topology,
and (v) smart control loop, management using machine in-
telligence techniques to obtain more knowledge of network
service. Figure 1 shows a high-level view of the CCL archi-
tectural design. Details of each component are given below.
Collector: Awareness of network status is indispensable to
adjust and control network configurations to satisfy the intent-
based service. This component implements a non-invasive
network-level measurement method based on traffic mirror-
ing processed by QoS probes running at the mobile edge
computing facilities (e.g., MEC). This method has a two-fold

1However, our proposed solution (i.e., leverage custom QoE probes at
MEC) can be applied to other services beyond video, such as voice, augmented
reality, and virtual reality.978-1-7281-5684-2/20/$31.00 c©2020 IEEE

Video
Source

Network
Elements Edge

Collector

Actuators

Configure, modify,...

3rd Party (Netflix, Youtube)
Operator IPTV

Network
Elements

Element

QoE
Estimator

E.g., RTT

E.g., reroute, change
the priority

Class 1 (Poor) : MOS 0 to 2

Class 2 (Average): MOS 2 to 3

Class 3 (Good) : MOS 3 to 5

IN
T

IN
T

Network
Service

Policy-driven
Orchestrator

MEC QoE Probe

Class

ML
Model

3

Fig. 1: Architectural Overview.

advantage. First, it does not require endpoints modification
or awareness. Second, it does not require on-path middlebox
processing. Finally, network-level QoS metrics (e.g., band-
width, packet loss, delay, etc.) can be tracked in different
ways, for instance by using flow-level monitoring/parsing (e.g.,
PyShark2, sFlow3), or by using telemetry information as P4
INT [4].
QoE Estimator: The applicability of ML methods to output
the parameters used by the closed-loop system to continuously
adjust the network configuration. The QoE Estimator compo-
nent performs inferences of Video QoE Mean Opinion Score
(MOS) / Key Performance Indicators (KPIs) from network-
level QoS metrics received from the Collector component.
This QoE estimation can be used for reactive performance
diagnosis, run-time network optimization, or even proactive
pattern-based network planning. More specifically, this com-
ponent is based on supervised ML with a multi-variable
method used on network QoS metrics. Besides, the QoE
estimation is customized to very specific contexts of a target
network condition (e.g., congestion in specific backhaul links),
topologies, region (e.g., edge, access, core, etc.), a user (e.g.,
individual user or group), and service (e.g., video streaming).
Policy-driven Orchestrator: This component is based on
adaptive policies in a control loop approach that automatically
manages a set of orchestrated actions to assure the end-to-
end network service quality, fundamentally as perceived by
the end-user. The intent-based service is mapped into high-
level policies. After that, they are translated into one or more
primitive policies that define the metrics to be monitored,
thresholds to be evaluated, and control loop operations. The
orchestrator abstracts internal configurations (i.e., it is unaware
of service details and only knows the service Intent and its
status). All the actions and conditions defined by it can be
updated at run-time and triggered by any event (e.g., according
to the analysis of monitoring network data from the QoE
Estimator component). The actions are sent to the actuator
component.

2https://github.com/KimiNewt/pyshark
3https://sflow.org

Actuator: The Actuator component closes the smart control
loop by translating the high-level actions sent by Orchestrator
to low-level actions, such as network device commands (e.g.,
API, CLI) of the underlying infrastructure or operations on
cloud elements (e.g., VNF, VL). Actuators can perform ac-
tions in different scopes, including SDN, NFV, and Legacy
networks. Thus SDN controllers (e.g., ONOS, Ryu) or NFV
orchestrators can become embodiments of an Actuator.

Functional responsibilities of the Actuator include to inform
the Orchestrator, Collector, and QoE Estimator about the
performed actions status, i.e., if the action was executed
correctly or not. Status information allows the orchestrator to
select another action in case of failure.

III. DEMO DESCRIPTION

This demo proposal targets DASH video streaming service
assurance following a CCL architecture triggered by a QoE
inference component based on real-time traffic measurements
collected from probes at MEC nodes.

A. Demonstration setup

Figure 2 illustrates the networking scenario under consid-
eration, composed of a video server, which could be located
anywhere on the Internet or in the network operator premises,
a video client, and the packet flows from/to the video server
passing through the Internet, operator network, and access
network. Besides, in Figure 2, a candidate MEC server used to
run a monitoring agent. Eventually, the video client can also
run a monitoring agent.

Our prototype implementation and experimental platform4

is based on (i) Containernet emulated network infrastructure,
(ii) ElasticSearch to store/access network data, (iii) Neo4j
graph-based database embodying the annotated topology,
(iv) Kibana to generate statistical graphs, (v) Ryu controller as
the Actuator component, (vi) Supervised ML model for QoS-
QoE correlation in the QoE Estimator component, and (vii) ba-
sic Python implementations of the Collector and Policy-driven
Orchestrator (CCL workflow engine) components.

B. Demonstration Workflow

The demo is based on a set of pre-demo and live-demo
steps, as presented in Figure 3.
Pre-Demo Steps
• QoE Intent Service Descriptor: The service descriptor data

model (e.g., ETSI NSD/VNFD [2]) is extended to include
a target QoE Intent. For the case of video service, three
categories are used to quantify the QoE intent: (1) poor, (2)
average, and (3) good.

• ML-based QoE Model building: In this step, we build an
ML model using a Random Forest (RF) classifier with
multiple variables for the prediction of QoE metrics. More
specifically, we use the MOS values (an objective parametric
model) ranging between 0 and 5 as a QoE target according
to ITU-T P.12035. We train the model with DASH based

4https://github.com/intrig-unicamp/ccl-demo
5https://github.com/itu-p1203/itu-p1203

Video
Server

Video
Client

Operator
Network

Edge
MEC /

BS
P3

P1

P2

TC

packet
re-ordigng,
loss, delay

SDN
Ctrl

MON
Collect

Model

trigger

Intent QoE
API

flow-mod
(out_port = P2)

features: {RTT_avg, Throughput, number of packets,
 PL%, Radio Link Parameters}

query (KPIs) / reply {class}

Demo Python component

Ryu

Internet

Orch

action

Fig. 2: Demonstration Setup.

per-segment streaming traffic for specific users, network
conditions, and network topology. In the end, per video
segment based network-level QoS metrics (e.g., uplink RTT,
downlink throughput and packets) are used as indicators to
estimate with three reasonable precision (e.g., MOS ranging
[0, 2] as poor, [2, 3] as average, and [3, 5] as good)
end-users’ QoE for DASH video service at specific access
networks.

Live-Demo Steps

• QoS Monitoring: We consider a flow-level monitoring and
parsing tool (PyShark) to collect real-time statistics. The
tool continuously collects and parses data from the last
edge component, i.e., at the network device (Open vSwitch)
closest to the video client. Afterward, the ML model uses
this data to figure out the video stream QoE.

• QoE Intent alarm: The Policy-driven Orchestrator interacts
with the Monitoring component to detect per video segment
based QoE variations as derived from the QoE estimation
model. If the QoE estimated from the QoS metrics (e.g.,
uplink RTT, downlink throughput, and packets) is not within
the QoE intent agreed for that user and service, network
control actions are executed (e.g., change the route) through
SDN controller. To force video quality degradation (e.g.,
DASH resolution shifting down, and stalls), we introduce
network performance issues by modifying link parameters in
path P1 through Linux Traffic Control (TC) scripts. Changes
in the link bandwidth, packet re-ordering, packet loss and/or
network delay cause variations on the network-level QoS
KPI. The CCL system identifies the QoE intent violation
and triggers a QoE service restoration request.

• SDN-based QoE-driven re-routing: A high-level QoE
restoration action is translated to network forwarding intents
supported by the SDN Actuator (Ryu controller), which, in
turn, performs the state changes to adequately reroute the
video streaming to path P2.

• Video Service Assured: The video perceived by the end-user
returns to the target QoE intent (i.e., QoE category), thus
assuring the video service quality.

QoE Intent
Service

Descriptor

ML-based
QoE Model

building
QoS (rtt)

monitoring
QoE
intent
Alarm

SDN
QoE

re-routing

Video
Service
Assured

TC on P1 {BW, packet re-ordering, loss, delay}

Pre-Demo steps Live Demo steps

Fig. 3: Demo Storyline

(a)

3
QoE Class

(b)

3840x2160

1920x1080

1280x720

640x480

(c)

Fig. 4: Demo Dashboards

C. Demo Experience

All the visible dashboards of the demo are shown in
Figure 4: (i) a dashboard showing the per video segment live
QoS KPIs capture statistics used as input for the ML model
(Fig. 4a), (ii) estimated QoE class (poor, average, and good
category) from the QoS-QoE correlation ML trained model
(Fig. 4b), and (iii) DASH video resolution changes (Fig. 4c).

IV. CONCLUSION AND ONGOING WORK

In this demonstration, we present at least four components
that are in the current state-of-the-art: Intent at the service level
(Video QoE), ML methods at the edge (MEC), DASH-based
video streaming (challenging for QoE estimation), and CCL-
based automation. Regards the latter, future activities involve
the use of P4 programmable switches to gather fine granular
telemetry information to build the QoE-QoS model and feed
the edge QoE Probe at run-time. Moreover, ML methods will
be used not only to correlate but also to predict the overall
users’ QoE.

REFERENCES

[1] Nathan F. Saraiva de S., Danny Lachos P., Raphael V. Rosa, Mateus A.S.
Santos, and Christian E. Rothenberg. Network service orchestration: A
survey. Computer Communications, 142-143:69 – 94, 2019.

[2] ETSI Industry Specification Group (ISG) NFV. ETSI GS NFV-SOL 001
V2.5.1: Network Functions Virtualisation (NFV) Release 2; Protocols and
Data Models; NFV descriptors based on TOSCA specification, 2018.

[3] IBM. An architectural blueprint for autonomic computing. Technical
report, IBM, 2005.

[4] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. In-band network telemetry via pro-
grammable dataplanes. In ACM SIGCOMM, 2015.

[5] Tom Nolle. What Role Can AI Play in Service Lifecycle Automation?
https://blog.cimicorp.com/?p=3122, 2017.

[6] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. A survey on
intent-driven networks. IEEE Access, pages 1–1, 2020.

[7] Nathan Saraiva, Nazrul Islam, Danny Alex Lachos Perez, and Chris-
tian Esteve Rothenberg. Policy-driven network traffic rerouting through
intent-based control loops. In Proceedings of the XXIV Workshop on
Management and Operations of Networks and Services, pages 15–28,
Porto Alegre, RS, Brazil, 2019. SBC.

[8] Qiong Sun, Will LIU, and Kun Xie. An intent-driven man-
agement framework. Internet-Draft draft-sun-nmrg-intent-framework-
00, IETF Secretariat, July 2019. http://www.ietf.org/internet-drafts/
draft-sun-nmrg-intent-framework-00.txt.

