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Abstract—Scenarios for distributed cloud with multiple edge
clouds and centralized data centers are being investigated as
the computing and networking underpinnings of next-generation
network services such as augmented reality, self-driving vehicles,
drones, and more. In such distributed environments, service
providers will typically face tens, hundreds, or thousands of
compute location candidates (edge, regional, and central) where
network service components can be placed. To take optimized
placement decisions of network services and execute the man-
agement workflows, orchestration systems require up-to-date and
accurate resource availability representation, in the form of a
network inventory that can be immense in distributed cloud
scenarios. As a result, the service management and placement
problems may become not tractable. In this work, we propose
the Abstracted Network Inventory (ANI) component to generate
service-optimized network views over the same network inven-
tory. ANI implements a novel abstraction method where network
service requirements are used as an input to generate an opti-
mized abstract network inventory representation, called Logical
Network Inventory (LNI). We also provide a formal definition
of the network model and problem statement along with the
development of three algorithms to efficiently build an LNI.
Results show the potential benefits of using an LNI to streamline
service management and placement: (i) the relationship between
compute nodes and links (i.e., density) in an LNI is reduced
between 1.8-2.7x compared to a full network inventory topology;
and (ii) up to 50% of time can be saved for service placement
after abstracting around 20% of the compute nodes.

Index Terms—Network Inventory, Distributed cloud, Central
Cloud, Regional Cloud, Edge Cloud

I. INTRODUCTION

Emerging use cases like virtual and augmented reality,
autonomous vehicles, smart cities, and drones call for trans-
forming the way telecommunications operators deploy new
network services, shifting from a manual and long process
to a more flexible and programmable way [5, 9]. In this
context, cloud computing [14, 21], Software Defined Net-
working (SDN) [11, 13], and Network Function Virtualization
(NFV) [16, 18] arise as technological pillars to achieve the
necessary flexibility and programmability during the provision
of such network services. By softwarizing a network service,
Network Functions (NFs) are separated from the hardware and
offered through virtualized services that can be instantiated on
data centers (as any other cloud applications) with the adequate
connectivity.

A distributed cloud is a cloud execution environment for
NFs or applications that is distributed across multiple cloud
sites (edge, regional, and central), with the required con-
nectivity (networking) between them [6]. Distributed cloud
deployment models keep latency-sensitive applications closer
to the edges of the network (close to users), and move non-
real-time applications to centralized data centers [2].

In such distributed cloud environments with edge and more
centralized computing facilities, multiple cloud sites become
candidate hosting targets for NFs and applications. Cloud sites
are typically geographically distributed and interconnected
through a Wide Area Network (WAN). Figure 1 shows inter-
connected edge cloud sites in which a centralized orchestrator,
or Central Orchestrator (CO), can establish communication
with Local Orchestrators (LOs) placed at individual edge
cloud sites. An LO is also part of an edge cloud site so that
some orchestration components can be deployed locally in a
data center without always accessing the WAN. Eventually,
regional cloud sites could also be deployed between central
and edge cloud sites. Examples of open source projects that
consider local and central orchestrators include Akraino1 and
ONAP2.

To take optimized placement decisions, COs or LOs need
to maintain an inventory of the network providing a real-
time representation of the available resources in the network
infrastructure along with their relationships. The size of a
network inventory can become very large in distributed cloud
scenarios because a typical service provider will have hundreds
or thousands of edge cloud deployments. As a result, COs
and LOs face scalability challenges when processing large
amounts of data to decide where to instantiate a service or part
of the service. A common system engineering principle to deal
with scalability requirements is to introduce proper abstraction
mechanisms that reduce the discovery time of resources while
simplifying and optimizing their management.

Some examples of resource abstraction mechanisms are one-
big-switch abstractions [1, 20], virtual-link abstractions [7, 8],
and linear inequalities representation [22]. However, to the best
of our knowledge, none of the existing approaches take into
account service requirements to generate a logical network

1https://wiki.akraino.org/display/AK/Akraino+Edge+Stack
2https://wiki.onap.org/display/DW/Edge+Automation+through+ONAP978-1-7281-5684-2/20/$31.00 c©2020 IEEE
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Fig. 1: A distributed cloud computing environment comprised
by interconnected cloud sites and a centralized orchestrator
communicating with local orchestrators in edge clouds.

inventory representation. The novel abstraction method pre-
sented in this paper is directed to the Abstracted Network In-
ventory (ANI) component (i) receiving services requirements
from a catalog, (ii) receiving a network representation from a
network inventory, and (iii) processing those inputs to generate
an optimized abstract network representation, referred to as
Logical Network Inventory (LNI). Using the LNI delivers
two main advantages. First, a reduced time for placement of
NFs since resource candidates for the placement are logically
reduced, in terms of the number of compute nodes and links, in
comparison to the original representation in the conventional
network inventory. Second, a summarized topology per service
can be used to simplify and optimize management of re-
sources. An example of management is life-cycle operations in
which service resources should be rearranged such as scaling
NFs or workloads.

A challenging task for LNI generation is to find an optimal
mapping of NFs within a network service to the components
of a network inventory. To address this issue, we formalize a
system model to solve the LNI generation problem based on
network service requirements and infrastructure capabilities.
Afterwards, we also develop three algorithms to build different
types of LNIs efficiently: (i) Node-oriented LNI, (ii) Edge-
oriented LNI, and (iii) Node/Edge-oriented LNI.
The main contributions of this paper are as follows:
• We propose the ANI as a novel component that allows

the creation of service-optimized network inventory views
in distributed cloud environments. To the best of our
knowledge, ANI is the first approach that uses service
requirements as an input to generate an abstract network
inventory.

• We formally define a network model and problem state-
ment along with the development of three algorithms to
generate an LNI given the capacity-related resources and
requirements of a network inventory and network service,
respectively.

• We evaluate the proposed algorithms through extensive ex-
periments using random and real-world topologies. Results
show significant benefits of COs/LOs using an LNI to
simplify (i) service management: the density in a network
inventory is reduced between 1.8-2.7x; and (ii) service

placement: up to 50% time saving rates after reducing less
than 20% of the compute nodes.

This paper is organized as follows. Section 2 covers related
work for network inventory creation and abstraction. Section 3
describes in details the ANI component (key concepts, deploy-
ment, and LNI generation). Section 4 gives the formulation of
the ANI model, including the problem statement. We introduce
three algorithms for the LNIs generation in Section 5. Section
6 evaluates the LNI methods and its impact in the network ser-
vice provisioning under two validation environments. Finally,
we conclude the paper in Section 7 and point to our future
work.

II. RELATED WORK

Several solutions have been proposed for network inven-
tory creation and abstraction [1, 7, 8, 15, 17, 19, 20, 22].
For example, ALTO [1] is a protocol that provides coarse-
grained network information such as network locations and
cost between them. ALTO uses maps to create abstract net-
work topology representations and to express network costs
between endpoints., UNIFY [20] provides an abstraction of
type big-switch and big-software that includes compute and
network resources. Solution in [22] uses linear inequalities
to represent network resources availability in terms of band-
width. However, all these solutions do not consider service
requirements to generate a network representation. In addition,
network representations are typically either coarse- or fine-
grained. The former does not provide enough information from
the infrastructure for placement decisions [20]. Fine-grained
methods are too costly for a distributed cloud environment,
meaning that since the number of infrastructure resources
such as switches and compute devices can be very large in
a distributed cloud environment. Solution in [22] does not
consider network services in terms of NFs since it is a solution
for workloads with available bandwidth requirements.

Likewise, [7, 8] provide different abstraction models (big-
switch, virtual link with single weights, virtual link with
multiple weights, and optical transport transformation) of
optical transport networks, focusing especially on centralized
radio access networks (C-RANs). However, both solutions also
do not consider the use of service requirements as an input
to generate an abstract network representation. In addition,
abstraction models for cloud environments are out of scope,
as stated by the authors.

Work in [15] uses abstraction strategies described in [8] for
distributed data center network scenarios, however, it does not
provide new abstraction mechanisms to represent information
related to the network infrastructure. [19] supports grouping by
joining entities within hypernodes or hyperedges. Our proposal
has two main differences (i) filtering instead of aggregation
as abstraction mechanism and (ii) service requirements as an
additional input. Finally, ONAP AAI [17] is a component
that provides real-time network inventory of infrastructure
resources, but there is no defined an abstraction process.
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Fig. 2: Exemplary system architectures in which the ANI component is (a) executed as part of a CO component or (b) in a
distributed manner across several orchestrators components, i.e., CO and LOs.

III. ABSTRACTED NETWORK INVENTORY (ANI)

A. Basic Definitions

Network Inventory. Network infrastructure resources are
represented in the form of a network inventory. A network
inventory may comprise nodes3 and links4 each providing a
particular capacity. Examples of node-related capacities are
number of CPUs, amount of RAM (e.g., 32 GB of RAM), and
amount of disk space (e.g., 10 TB of disk space). Examples of
link-related capacities include bandwidth characteristics (e.g.,
100 Gbps) and latency characteristics (e.g., 1 ms RTT).
Network Service. A network service, or simply service, is
deployed or instantiated over the infrastructure resources. A
service specifies one or more nodes (a set of required NFs) as
well as links (how NFs are connected) [10]. Nodes include
resource demands (e.g., CPU, memory, storage) and links
contain performance objectives (e.g., latency, bandwidth).

B. ANI Component & Deployment

The ANI component proactively constructs multiple net-
work views over the same network infrastructure, called LNIs.
Each LNI is optimized to a service in terms of its requirements
such as CPU, memory, latency, etc. Every new service in
a catalog triggers the creation of another LNI that will be
part of the optimized network inventory. As such, service
requirements are used in the method to guide the right level
of abstraction.

The ANI component may be executed as part of the CO
(see Fig. 2a). As shown in the figure, the ANI receives two
inputs: (i) services requirements from a catalog, and (ii) a
central network inventory representation. The CO component
may build a central network inventory based on local resource
infrastructure information received from one or more LO,
which maintain a local network inventory. In another variant
(see Fig. 2b), the ANI component may be executed in a
distributed manner across a service provider (hosting the CO
component), and several cloud providers (hosting the LO
component).

3The terms node and vertex are used interchangeably
4The terms link and edge are used interchangeably

C. Logical Network Inventory (LNI)

A two-step procedure is performed to generate a LNI. In
the first step, a classification of a service is carried out to
determine whether the service is node-oriented, edge-oriented,
or node/edge-oriented. In the second step, the actual node
and/or edge oriented mode is executed over the network
inventory to generate an LNI.
Service Classification. This classification may be executed: (i)
determining a reference value of node and/or link capacities
in the network inventory. This value can be computed as the
sum of available node/link capacities. (ii) calculating the total
of required node and link capacities from the service, and
(iii) comparing both values to determine a Provisioning Index
(PI)5. If the calculated PI indicates node underprovisioning
(i.e., that not enough node resources are available for the
service), it is determined that the service is classified as
node-oriented. If, on the other hand, the PI value indicates
overprovisioning (i.e., that node resources are available in
abundance), it is indicated that the service is classified as
edge-oriented mode. Otherwise, the service is classified as
node/edge oriented.
LNI Generation. The process of building up an LNI is in
accordance with the service classification, so that we have
three types of LNIs: (i) node-oriented LNI, (ii) edge-oriented
LNI, and (iii) node/edge-oriented LNI. Section 4 provides
more detailed information about this generation.
• Node-oriented LNI. A set of vertices in the network inven-

tory are assigned to the LNI (links are discarded). Such
selected vertices have to support the CPU capacity constraint
of NF nodes in a service.

• Edge-oriented LNI. A set of edges in the network inventory
are assigned to the LNI. Selected edges have to support the
required bandwidth capacity of edges in a service.

• Node/Edge-oriented LNI. A set of vertices and edges in the
network inventory are assigned to the LNI. Vertices and
edges are selected according to the CPU and bandwidth
capacity constraints in a service, respectively.
An illustrative example of this process is shown by Figure 3,

where orange nodes (dashed borders) and blue links (dashed

5Different mechanisms may be used to compute a PI (out of the scope of
the paper)
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lines) could become logically discarded of the network in-
ventory based on the network service demands (green nodes
and red link) and service classification (node-oriented, edge-
oriented, or node/edge-oriented).

IV. NETWORK MODEL & PROBLEM STATEMENT

A. Network Model

Network Service. We model a network service as a directed
graph denoted by Gs = (Vs, Es), where Vs is a set of NFs
connected via a set of directed edges Es. Each NF vs ∈ Vs is
associated with a requested CPU capacity value cpuvs . Each
edge es(y, z) ∈ Es, connecting two NFs y and z, is associated
with a requested bandwidth capacity value bwes

6.
Network Inventory. In its basic form, a network inventory
is modeled as an undirected graph Gi = (Vi, Ei), where a
vertex vi ∈ Vi has an available CPU capacity (CPUvi ), and
an edge ei(m,n) ∈ Ei, between two vertices m and n , is
associated with a bandwidth capacity BWei . We also denote
the set of all loop-free paths from the source vertex s to
the destination vertex d by Pi(s, d). Therefore, the available
bandwidth capacity of a path pi ∈ Pi is given by:

BW (pi) = min
ei∈pi

BW (ei)

6We are considered a basic scenario, with only CPU and bandwidth
constraints. Additional capacity constraints of nodes (e.g., memory) and edges
(e.g., delay) can be easily extended in our model.
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In order to support graph collections, our network in-
ventory model is extended to include a set of LNI graphs
Gi = (Vi, Ei, LNIi), where LNIi represents multiple possi-
ble views of the same network inventory.

We model a LNI graph Ll ∈ LNIi as an undirected graph
denoted by Ll = (Vl, El) where Vl is a subset of vertices such
that Vl ⊆ Vi, and El is a subset of edges such that El ⊆ Ei.
Besides, LNI graphs may overlap such that ∀Ly, Lz ⊆ LNIi :
|V (Ly) ∩ V (Lz)| ≥ 0 ∧ |E(Ly) ∩ E(Lz)| ≥ 0.

B. Problem Statement

Given a service request Gs = (Vs, Es) and a network
inventory Gi = (Vi, Ei, LNIi), our objective is to determine a
LNI graph Ll ∈ LNIi optimized for the service requirements
in terms of vertex and edge constraints.

We illustrate our problem statement with an example given
in Figure 4. The left side of this figure shows two network
services, where the numbers in rectangles represent requested
CPU capacity, and the numbers near the links represent
required bandwidth capacity. The network service 1 (ns1)
connects two NFs (nf1 and nf2) with 45 units of bandwidth on
the edge between them. The network service 2 (ns2) requires
the bandwidth 5 over the edge (nf2, nf4) and 15 units over
the edge (nf3, nf5), and the CPU resources 60, 70, 65 at NFs
nodes, nf3, nf4, and nf5, respectively. Figure 4 (right side) also
depicts a network inventory. The number near the links is the
available bandwidth, and the numbers in rectangles represent
the available CPU resources at the vertices. Once the process
of determining an LNI is performed, the network inventory
contains two logical graphs LNIi = {Lns1, Lns2}, where
each graph has a dedicated subset of vertices and edges, which
represent an optimized network view to the requirements of
each network service. Note that also a vertex (vc) is overlapped
since V (Lns1) ∩ V (Lns2) = {vc}.

V. PROPOSED ALGORITHMS

The primary objective here is to design three algorithms that
efficiently create LNIs. The ANI component considers three
modes of LNIs generation:
Node-oriented LNI. It takes a network service Gs = (Vs, Es)
and a network inventory Gi = (Vi, Ei, LNIi) as input and
returns a set of vertices V (Ly) such that Ly ⊆ LNIi.



Algorithm 1: Node-oriented LNI
Input:
Gs = (Vs, Es): Network Service;
Gi = (Vi, Ei, LNIi): Network Inventory;
Output:
V (Ly), ∀Ly ∈ LNIi and Vl ⊆ Vi;

1 foreach vs in Vs do
2 foreach vi in Vi do
3 if CPU(vi) ≥ cpu(vs) then
4 V (Ly)← V (Ly) ∪ {vi};

For each service node vs, the algorithm searches all nodes vi
in the network inventory and adds nodes with CPU capacity
greater than or equal to the CPU requirement (Line 3) into
the subset of vertices V (Ly) (Line 4). The pseudo-code of
this mode is provided in Algorithm 1.
Edge-oriented LNI. Algorithm 2 provides an overview of this
proposed mode. It also takes a network service Gs = (Vs, Es)
and a network inventory Gi = (Vi, Ei, LNIi) as inputs.
However, it returns a set of vertices V (Ly) and a set of edges
E(Ly) as output.

For each service edge es, we first iterate all the possible
network inventory nodes to get a source node visrc and a
destination node vidst (Lines 1-6). After, the algorithm finds
the paths from visrc to vidst (Line 7) and only considers those
paths that respect the bandwidth requirement in a service link
bw(es) (Line 8). Finally, all the nodes and edges which are in
a path pi (Line 9) will be part of the subset of vertices V (Ly)
and edges E(Ly) (Lines 10-12).
Node/Edge-oriented LNI. This algorithm (see Algorithm 3)
is quite similar to Algorithm 2 except that the CPU constraints
of service nodes should also be satisfied by the CPU capacity
of network inventory nodes (Lines 4 and 7).

Algorithm 2: Edge-oriented LNI
Input:
Gs = (Vs, Es): Network Service;
Gi = (Vi, Ei, LNIi): Network Inventory;
Output:
V (Ly), ∀Ly ∈ LNIi and Vl ⊆ Vi

E(Ly), ∀Ly ∈ LNIi and El ⊆ Ei;
1 foreach es(src, dst) in Es do
2 visrc ← ∅, vidst ← ∅;
3 foreach vi in Vi do
4 visrc ←vi;
5 foreach vi in Vi do
6 vidst ←vi;
7 foreach pi in Pi(visrc , vidst

) do
8 if BW (pi) ≥ bw(es) then
9 foreach ei(s, d) in pi do

10 V (Ly)← V (Ly) ∪ s;
11 V (Ly)← V (Ly) ∪ d;
12 E(Ly)← E(Ly) ∪ ei;

VI. EXPERIMENTAL EVALUATION

In this section, we analyze the performance of our proposed
algorithms. Two evaluation environments are considered: (i)
quality of the LNI quality using randomly generated network
inventory topologies, and (ii) LNI impact on network service
provisioning time using a real graph dataset. For each ex-

Algorithm 3: Node/Edge-oriented LNI
Input:
Gs = (Vs, Es): Network Service;
Gi = (Vi, Ei, LNIi): Network Inventory;
Output:
V (Ly), ∀Ly ∈ LNIi and Vl ⊆ Vi

E(Ly), ∀Ly ∈ LNIi and El ⊆ Ei;
1 foreach es(src, dst) in Es do
2 visrc ← ∅, vidst ← ∅;
3 foreach vi in Vi do
4 if CPU(vi) ≥ cpu(src) then
5 visrc ←vi;
6 foreach vi in Vi do
7 if CPU(vi) ≥ cpu(dst) then
8 vidst ←vi;
9 foreach pi in Pi(visrc , vidst

) do
10 if BW (pi) ≥ bw(es) then
11 foreach ei(s, d) in pi do
12 V (Ly)← V (Ly) ∪ s;
13 V (Ly)← V (Ly) ∪ d;
14 E(Ly)← E(Ly) ∪ ei;

periment, we first describe the experimental setup, and then
present and discuss the evaluation results.

The platform used in all the experiments is an Intel R©

CoreTM I7-4790 @ 3.60GHz x 8 with 16GB RAM, running
Ubuntu 14.04LTS (Linux) 64-bit. For reproducibility purposes,
all supporting codes are publicly available in our research
group repository.7

A. LNI Quality Evaluation

This experiment mainly serves to illustrate the performance
of our three proposed algorithms to generate a LNI.
Simulation Setup. Network inventory topologies are ran-
domly created using Networkx library in Python. The number
of nodes varies between 20 and 100, and each pair of nodes
are randomly connected with probability 0.5. The CPU and
bandwidth capacity is a number uniformly distributed between
1-16 and 1-100, respectively. LNIs are created from service
requests. Each service has 2 NFs (i.e., 2 nodes). The CPU
demand of each NF is normally distributed between 1 and
16 and the bandwidth requirement of each link is a number
between 1 and 100, uniformly distributed.
Performance Metrics. We use two measures of nodes/edges
reduction and degree to evaluate the quality of LNIs generated
by the three different algorithms: (i) Node-oriented LNI (N-
LNI), (ii) E-oriented LNI (E-LNI), (iii) Node/Edge-oriented
LNI (N/E-LNI).

For each series of experiments, we randomly generate 100
service requests with two NFs. A new LNI is generated
from a service request and then the percentual node and edge
reduction and average degree that a LNI topology obtains,
using the three algorithms, is compared to the same metrics
in the full network inventory topology (used as a baseline).
In case of the average degree evaluation, we are considering
two variations: (i) different network inventory topology sizes
with a service composed of two NFs and (ii) same network

7https://github.com/intrig-unicamp/ani
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Fig. 5: Normalized reduction in nodes (a) and edges (b) using
the three algorithms: Node-oriented LNI, Edge-oriented LNI,
and Node/Edge-oriented LNI

inventory topology size (100 nodes) but increasing the number
of NFs from 2 to 6.
Simulation Results. Figures 5 shows the normalized reduction
of nodes and edges (as candlesticks with median, quartiles, and
max/min values) with different network topology sizes by N-
LNI, E-LNI, and N/E-LNI. The node reduction (see Fig. 5a)
by N-LNI achieves the higher values, and its edge reduction is
100%. This is because N-LNI only considers nodes supporting
the CPU constraints, and edges are discarded. Besides, E-LNI
achieves the lowest node reduction value since, it traverses
all the nodes without restrictions. On the other hand, the
edge reduction measure (see Fig. 5b) by N/E-LNI is higher
than E-LNI. This behavior is expected because N/E-LNI only
considers nodes and edges supporting CPU and bandwidth
constraints, respectively.

Figure 6a shows the average degree comparison between
the three algorithms with different topology sizes. The degree
measure is always 0 for N-LNI because edges are no longer
considered, and therefore all the nodes are isolated. N/E-
LNI achieves a lower degree that E-LNI. This is because, as
we just mentioned, N/E-LNI combines both nodes and edge
restrictions. Also, generated network inventories are densely
connected (see baseline values); however, E-LNI and N/E-LNI
always achieve much lower degree values (1.8-2.7x) than the
baseline.

To further test the effect of the number of NFs on the LNI
quality, we set services with different amounts of NFs (2-6).
Figure 6b shows the degree comparison between E-LNI and
N/E-LNI on a network inventory topology with 100 nodes.
As shown in the figure, the value of the degree is decreasing
as the number of NFs increases. This is because a new NF
adds new CPU and bandwidth constraints, therefore we can
infer that the number of NFs decreases the nodes and/or edges
supporting such requirements.

B. Network Service Provisioning

We now focus on quantifying the time it takes for a CO, in
terms of execution time, to map a requested network service
considering an optimized network inventory (i.e., an LNI).
Simulation Setup. We consider a real wide-area net-
work topology obtained from the Internet Topology Zoo
project [12]. Specifically, we extend the Interoute topology
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— one of Europe’s largest cloud service providers8 — to
represent a full network inventory. This network topology is
composed of 110 nodes connected through 148 links9. As
with the previous experiment, node and link capacities are
uniformly distributed between 1-16 and 1-100, respectively.

In case of the CO, we opt to re-use an exiting open-source
software tool, called ESCAPE (Extensible Service ChAin
Prototyping Environment)10. ESCAPE [4] is a framework
that supports the development of several parts of the service
chaining architecture and it can run a number of emulated LOs
with emulated interfaces to load information about a local
network inventory. ESCAPE also includes a simple service
layer where users can request services.
Performance Metrics. ESCAPE uses a heuristic-based
greedy backtracking algorithm to map service requests to a
network inventory topology. In this experiment, we measure
the ESCAPE’s time saving rate for mapping of a service. This
value is defined as a fraction of the amount of saved time
using a LNI topology (generated by Node/Edge-oriented LNI
algorithm) out of running time using a full network inventory
topology. We generate 50 different LNIs from 50 service
requests. Each service is with two NFs where the CPU and
bandwidth demands are normally distributed between 1 and
16 and between 1 and 100, respectively.
Simulation Results. Figure 7 presents the average saving time
at 95% of confidence level according to the percentage of
reduced nodes and edges when using a Node/Edge-oriented
LNI and when using a full network inventory. Results indicate
significant improvements in terms of saving time when the
orchestrator uses LNI compared to the approach in which a
full topology is used. More specifically, the key observation
here is: a CO can achieve up to 50% time saving for service
deployment with the reduction of less than 20% of nodes in a
network inventory. Even, with a reduction of nodes and edges
by less than 55%, it is possible to obtain up to 75% time
saving rate.

8Interoute was acquired by GTT Communications in 2018 [3]
9http://www.topology-zoo.org/files/Interoute.gml
10https://github.com/5GExchange/escape
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Fig. 7: Time saving rate for mapping a service according to the
percentage of reduced nodes and edges using a Node/Edge-
oriented LNI.

VII. CONCLUSION & FUTURE WORK

One of the foremost challenges for management systems
in distributed cloud environments is how to effectively han-
dle the scale and complexity of network service placement
and management considering actual resource inventories. This
paper contributes with a novel component called Abstracted
Network Inventory (ANI) that generates optimized network
views called Logical Network Inventory (LNI) based on net-
work service requirements and network inventory capabilities.
Our results reveal that, when using an LNI methodology, we
can reduce the time to place network services while optimizing
the management of resources by following the principle of
abstraction, i.e., by logically reducing the sets of candidate
resources in terms of compute nodes and links.

We reckon that, as the deployment size and heterogeneity
complexity of softwarized networks increase, properly apply-
ing fundamental software principles like layering (e.g., SDN
controller foundations), indirection (e.g., overlay tunnels), or
abstraction (e.g., LNI), just to cite a few examples, will be
more important than ever to deliver manageable systems.

For future work, it will be beneficial to extend the three
proposed offline algorithms (which typically comes at the
expense of long runtimes) to online algorithms implemented
via heuristics. Also, future activities include extending our
network model to consider other decision variables such as
cost and revenue. Embodiments of the proposed methods as
extensions to the ALTO protocol and more specific use cases
driven by industry partners are also in our roadmap.
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