
Exploring the Pub/Sub Routing&Forwarding Space
András Zahemszky, András Császár, Pekka Nikander

Ericsson Research
Email: {firstname.lastname}@ericsson.com

Christian Esteve Rothenberg
University of Campinas (UNICAMP)
Email: chesteve@dca.fee.unicamp.br

Abstract—We envision an information-centric future Internet

where the network is built around named pieces of data instead

of explicitly addressable hosts. One clear way of implementing

information-centric networking is using publish and subscribe

(pub/sub) operations instead of the send and receive primitives.

Internet-like pub/sub networking requires completely different

routing protocols and forwarding mechanisms compared to those

that are extensively used today. Consequently, we are facing a

clean-slate design exercise, where we should start our adventure

by exploring the new design space. We identify four key metrics

(signalling overhead, state in nodes, information in packets and

routing stretch) to help us evaluating the different proposals.

We present a general five-step approach for routing in pub/sub

networks. The presented approach is recursive, so it can be

repeated as many times as necessary until we reach manageable

sized problem instances. The final part of the mechanism is to

glue together the created and assigned forwarding structures and

the publication to ensure that all interested subscribers at any

domains in the network will get the requested data.

I. INTRODUCTION

In addition to the prominent World Wide Web, new forms of
Internet usage have appeared rapidly in the last years. People
read news feeds, listen to webradios, watch (RT or non-RT)
video streaming, and download huge amount of data using
BitTorrent. A common characteristic of these applications is
that the users indicate their wish to get some specific pieces of
information and they are not interested in the sources of data
as long as the data comes in its original, unmodified form.

The first one to prominently advertise this shift in the
application space from connections to information was Van
Jacobson in his talk in 2006 [1]. Since that, it has become a
common direction to propose clean-slate solutions for solving
the problems of IP [2]. Researchers are aiming for new inter-
networking solutions that have native support for mobility,
multi-homing, privacy, accountability, or other clearly missing
features. Furthermore, many of the proposed solutions use data
instead of the hosts as the basis for the design [3].

As a specific example, the EU FP7 PSIRP project [4]
has a goal of building a pub/sub-based network, where the
architecture uses pieces of data as the first-class citizens. With
the publish operation, an endpoint can indicate that it wants
to associate a document or a one-way channel with the given
(possibly randomly looking) identifier. With the subscribe, an
endpoint can signal its desire to get (read only) access to the
named document or channel. Based on the subscriptions, the
network is responsible for delivering the document or any data
appearing on the channel, to all the subscribers. As typical to
pub/sub-, multicast is the natural mode of communication.

In this paper, we explore the new design space we are
facing when attempting to design the routing and forwarding
components of the PSIRP architecture [4]. First, we discuss the
problem of designing a scalable routing mechanism for mul-
ticast and multicast-based publish/subscribe (Sec. II). Next,
we briefly overview the RTFM architecture [5], the variant of
the PSIRP architecture that our work is based on, including
various possible forwarding components (Sec. III). The core
contribution of this paper is our Divide&Conquer approach to
tackle the problems of scalable routing (Sec. IV). We divide
the routing problem in two dimensions: first, vertical and
second, horizontal. The former is hierarchical division and the
latter is dividing the overall problem of multicast routing in
each area of the hierarchy to smaller subproblems, each of
which is easily manageable as such. Finally, we discuss related
work (Sec. V) and provide our tentative conclusions (Sec. VI).

II. THE PROBLEM

Our aim is to create an information-oriented network based
on the pub/sub paradigm. The data transmission with unicast in
such networks is clearly not optimal w.r.t. transport efficiency,
while the same data is delivered over the same connections
multiple times. Thus, we have selected multicast as the primary
transport mechanism. As a consequence, it is more natural to
consider delivery trees rather than forwarding paths.

A forwarding tree for a given publication contains the
publisher and all subscribers. It may be optimal w.r.t. an
appropriate metric, e.g. delay. We call such trees as ideal trees.

It appears that the routing&forwarding solution space for
multicast tree implementations is 4-dimensional, as they can
be evaluated by four rather orthogonal metrics. The first is
the transport efficiency measured in stretch, meaning that the
packets follow the shortest possible paths (in any appropriate
metric). The second concerns the amount of network state
needed in the forwarding nodes. This must grow sublinear
w.r.t. the number of nodes and subscribers and strongly sublin-
ear w.r.t. the number of publications. The third aspect involves
the number of bits included in the packet headers, encoding
the information that helps the forwarding node to determine
the outgoing interface. The final one is the signalling overhead
caused by routing and other related control protocols.

Assume two examples: a) source routing requires a high
amount of information in the packet headers but relatively little
state in the forwarding nodes. The downside is the signaling
overhead in scenarios under subscribers’ churn, as the sender
of the data should be always up-to-date on the information



encoded in the headers. Moreover, the transport utilization
depends to a large extent on the algorithms the overall system
uses to compute the forwarding trees for data delivery.

In the second example, b) network state installed to describe
directly the ideal trees into the forwarding nodes provides
high levels of transport efficiency and minimal number of
bits in packet headers (just a tree identifier). Potentially, each
forwarding node may need to have a separate entry for each
single active publication tree in the globe. Moreover, every
change in any tree would need to be signalled to a potentially
large number of forwarding nodes.

To avoid potential state explosion (as estimated total number
of possible publications ≈ 1015), we are looking for solutions
that use good enough forwarding trees, i.e., which are close
to ideal but require only a reasonable amount of state in the
network. When trying to save state, we may end up with a
little higher overhead, for example in terms of unnecessarily
sent packets. However, this may be remedied by other means,
for instance by utilising opportunistic caching.

In this paper, our goal is to work towards a solution that
finds a good balance among the contradictory aspects. To get
there, we first present the overall PSIRP architecture, and then
briefly discuss our ongoing work in the forwarding domain.

III. THE PSIRP COMPONENTS

In this section, we start by briefly outlining the RTFM ar-
chitecture [5], an early design choice from the PSIRP project.
Our present contribution can be regarded as an evolutionary
step building upon RTFM. The RTFM consists of recursive
functional building blocks:

1) A Rendezvous system is in charge of matching subscrip-
tions to publications within information scopes.

2) The Topology system, our main focus in this paper, is
responsible for collecting and managing network topol-
ogy information, as well as creating and maintaining the
required multicast delivery trees both proactively (estab-
lishment, optimization) and re-actively (on-demand).

3) The Forwarding functions perform the actual datagram
delivery, based on the forwarding identifiers in the
headers and the state installed in the forwarding nodes
by the topology system.

4) Finally, More refers to the additional data mediation
functions at forwarding time, such as network coding.

The structure above the forwarding layer can be divided into
a data and control plane (see Fig. 1). The control plane consists
of the topology and rendezvous systems. At the data plane, in
addition to the traditional transport functions, we envision a
number of new network functions, e.g. opportunistic caching
and lateral error correction. The transport functions will work
in concert, utilising each other in a component wheel [4],
similar to the way Haggle managers are organised [6].

In our design, the basic communication scheme is function-
ally similar to IP-based source specific multicast (SSM) [7],
with the IP multicast groups having been replaced by an iden-
tifier identifying the publication, similar to the topic identifier
described in [8].

Each publication, be it a single packet, a one-way multicast
channel or a document, is identified with a Rendezvous Iden-
tifier (RId). More precisely, each publication is identified with
a < ScopeID, RId > pair, where the ScopeIDs < SId >
are just specific RIds, identifying scopes, which help the
rendezous system to scale and to organise the publications.

When a publisher wants to publish a new piece of informa-
tion, it picks up a RId and hands the publication data to the
system. Correspondingly, subscribers acquire the RIds through
application-specific means and ask the system to arrange the
data to be received. Once the rendezvous system has identified
a publication that has both a publisher (or an up-to-date cache)
and one or more subscribers, the topology system is requested
to build a forwarding tree from the present location of the data
to the subscribers. The high-level operations of this routing
function are the main concern of this paper. First, however,
we briefly consider a few different options for forwarding.

A. Forwarding components
We outline four solution components: using in-packet

Bloom filters to encode delivery trees, using Merkle trees
to represent partial forwarding trees, and scaling these ap-
proaches up to more dense trees through installing explicit
state within the forwarding nodes, and finally, we briefly
outline how the latter approaches could work together.

1) Encoding delivery trees with Bloom filters: Bloom fil-
ters (BFs) [9] are data structures for representing subsets of a
given maximum size without listing the individual elements.
BFs are applicable in any situation where a small number of
false positives is acceptable. When used to take forwarding
decisions, false positives are translated into packets being
transmitted over additional links than the ones originally
programmed. As long as the false positive rate is low enough,
we consider that acceptable due to active caching and the
decreasing probability of concatenated false positives over
multiple hops; for the details, see [10].

To encode delivery trees, we form a set L of directed links.
That is, for the forwading nodes A and B, we represent the
link from A to B as −−→AB, and the link from B to A as ←−−AB.
So, any forwarding tree can be seen as a set of unidirectional
links. Consider Fig. 2, where encoding a tree with nodes A,
B and C means adding −−→AB and −→AC into the BF.

Fig. 1: High level arquitectural overview.



We place the BF describing the delivery tree into the packet
header. Checking the header, each forwarding node tests which
of its outgoing links are included into the set. Since this is a
simple binary and operation, the checks can be done parallel
in hardware, producing a very fast forwarding plane.1

As we show in [10], using 248-bit BFs, it is possible
to encode up to about 40 link names (out of trillions) into
a single BF, while still having an acceptable false positive
rate (of around 4%.) That means that we can forward unicast
packets over 40 links, well over the maximum practical hop
count in the current Internet. For multicast, if we assume
realistic topologies, we can use a single BF to address up
to 20 receivers scattered all over a large AS topology. If more
is needed, state can be added into the network in the form of
virtual links as shown below.

Hence, using BFs in packets seems to provide us with an
efficient way of source-routing in arbitrary trees over Internet-
like topologies.Our approach aims to work in intra- and inter-
domain scenarios over any transport technology.

2) Merkle tree representation: Merkle trees [11] are data
structures that contain summary information about a larger
tree-like data structure. We propose to use them as an alterna-
tive compact form to represent domain-level forwarding trees
and to derive chained forwarding labels.

Consider each node in a typical Merkle tree as a domain
router. Every node in the Merkle tree has a domain-level view
of its vicinity and knows about the active trees it participates
in. The active tree structures need to be consistent among the
domains participating in the inter-domain routing, requiring
the existence of a “BGP-like” routing protocol to maintain
the tree structures. Then, given a pair of rendezvous identifier
and scope, the actual labels forming the hash trees can be
constructed for each active tree. The node compares the
received label with the compiled root hashes of its active
network trees to resolve the next domain hop(s) and include
the updated forwarding identifiers. Hence, the chained hashing
mechanism of Merkle trees provide an uniform way to derive
compact labels that aggregate paths recursively.

3) Utilising subtrees as virtual links: When the capacity of
a single BF is not sufficient, the system can be extended by
representing some subtrees as virtual link. Basically, a virtual
tree is a subtree that has a distinct name and associated state
in the network nodes. That is, while we use BFs to encode
the components (i.e. links) of a tree in the packet header, we
use Merkle trees to encode trees in the network, and then
include these trees as virtual links into the Bloom-filter-based
presentation.

Given the scale-free characteristics of the Internet, a major
part of the data travels through a very small hub (tier-1).
With virtual links, we can define forwarding subtrees that
take advantage of the common path towards the center of
the network that can be assumed for the vast majority of the
traffic from any source. By defining virtual links spanning

1There is a small possibility that this simple method would create forward-
ing loops. For loop prevention, see [10].

over multiple hops towards the domain edges, more stable fast
forwarding paths can be installed explicitly in the network.

Hence, with this construction, the problem of mapping
rendezvous identifiers to forwarding identifiers can be reduced,
deeper in the network, to a smaller mapping problem of active
flows (partly defined by virtual links), which is well within the
scope of feasibility.2

4) Approximate fast stateful edge switching: False-positive-
prone fast forwarding decisions can also be performed through
stateful operations between domain boundaries. At the edges,
making a switching or mapping decision between the large
rendezvous identifier space and the smaller forwarding identi-
fier space needs to be efficient both in space (small high speed
memories in routing elements) and time (few computation
cycles per packet).

The SPSwitch in [2] is a promising approach to solve the
problem: with only a few bits per entry (40-50 bits), label
switching can be performed in a fast and efficient way, with
packets identified with large (e.g., 256-bit long) flat identifiers.
Again, the affordable price is a fairly small amount of traffic
delivered over unrequested paths.

B. Putting the components together

As described above, we have different forwarding mecha-
nisms (in-packet BF-s and Merkle-trees) at our disposal. The
idea of virtual links combines both approaches by allowing
explicit stateful trees to be included into the in-packet Bloom
filters. Finally, the SPSwitch approach tackles the mapping
problems we are likely to have at domain boundaries.

We need to combine these mechanisms so that we create
state on-demand and only where required, adapting to the
actual traffic patterns. This is achieved by relying on semi-
stable subtrees represented by virtual links spanning multiple
hops. In addition, by employing false-positive-prone forward-
ing schemes over suboptimal trees, we achieve state reduction
and line speed at the cost of some extra delivery. It is a
fair and currently necessary trade-off to reach the required
levels of scalability. Indeed, a clever design can convert this
appearent bandwidth waste into a strength of the architecture
(e.g. opportunistic caching, resilience etc.).

IV. DIVIDE AND CONQUER

We present our Divide&Conquer-based approach to tackle
the scalability problem of massive amount of overlapping
multicast trees for efficient data delivery. We split the problem
space along two dimensions: we use hierarchisation in the
network to achieve scalability and we divide the problem into
smaller, more manageable steps.

A. Hierarchisation

As a first approach, we use the traditional and successful
way for achieving scalability: hierarchical aggregation. Our
requirement can be explained in what we call scalability

2Consider as a reference the current performance of MPLS/VPN devices
under route reflector operations handling up to few millions of flows.



principle: In any given domain A, the amount of state cor-
responding to any remote domain B should not depend on the
number of subscribers in domain B. The key of this principle
is that any node in domain A should see domain B as only one
subscriber, even if there are many real subscribers within B.
Changes inside domain B, therefore, should only cause change
in the forwarding states within domain B. Topology hiding,
like in today’s Internet, not only meets the operators’ business
interest but also helps achieving scalability.

Hierarchy can be implemented recursively on different
levels, e.g. consider OSPF areas, autonomous systems, AS
confederations etc. in today’s networks. We should, however,
not restrict ourselves to this division, as the introduction
of the new paradigm may not only change the current AS
structure but also the fundamental policies [12] that define
what autonomous system means. We should not introduce a
constraint in the number of levels to be used: when an operator
feels necessary it could introduce a new hierarchy level at any
time. For the sake of easier explanation, in the following we
will work only with two-level hierarchies: intra-domain and
inter-domain levels.

B. A five-step approach

Now we turn our attention towards the other dimension of
the division. Our approach can be described as taking a few
steps, one after each other. All these operations should take
place within each single area that we have in the hierarchy.
The steps are as follows:

1) Compute an ideal tree.
2) Determine the gaps between the ideal tree and any

existing trees.
3) Select tree-creation strategies or gap filling strategy for

each gap.
4) Compute the needed changes according to the strategies.
5) Apply the changes to the network.
1) Ideal tree: The first step is to compute an ideal for-

warding tree that connects the publisher to all the subscribers.
We envision that this will be performed in the vicinity of
rendezvous and topology layers, in a (possibly) distributed
manner. The resulting forwarding tree will usually span several
different domains. With hierarchisation, we can reduce the
problem of creating one overall ideal forwarding tree to
creating several intra-domain forwarding trees and an inter-
domain (AS-level) forwarding tree, connecting them.3 These
ideal forwarding trees will guide us as a reference when we
assign the actual trees for the ultimate data delivery.

2) Gaps: In the second step, the topology layer compares
the existing forwarding trees to the ideal ones and selects the
best matching existing trees in each domain. There are no
restrictions on the number of existing trees used, logically
combining several existing trees is allowed. The resulting
best-matching tree either covers all the subscribers in the
domain, and therefore can be utilized for publication delivery

3Note that the resulting overall tree may not be ideal but that it will be
policy compliant and that each subtree will be ideal.

if other criteria are met (see below) or does not cover some
subscribers. In the latter case, it cannot be used for publication
delivery in its current form, before it gets expanded. However,
we may be able to avoid the latter situation by default
including trivial broadcast and short-range unicast trees in each
domain.

3) Tree-creation and gap filling strategies: The third step
is to select a tree-creation strategy, separately in each domain,
for creating the actual forwarding tree. If the combination of
the existing trees already covers all the subscribers inside a
domain, then this combination could be used as the actual
delivery tree. However, if any of the determined further
constraints are not met, more work is needed. For example, if
the best-matching tree contains too many subtrees where there
are no interested subscribers, an action must be taken, either
immediately or later. In general, it seems a viable strategy
to first use the existing, unoptimal tree, and build one or
more new trees in parallel, and switch over to the new trees
once they are ready. An alternative may be to modify some
existing trees, provided that the modified trees still fulfill the
requirements of their other use. The exact details, however,
depend on how the trees are built and installed, i.e. how much
the solution is based on source-routing like approaches and
how much on actually representing the trees with explicit state
in the forwarding nodes. Our present solution is largely flexible
here, as it became apparent from the description of the solution
components in Section III-A.

If the combination of the existing trees does not cover all
the subscribers, the network must select a gap filling strategy.
For example, it may decide to modify existing trees or create
new ones in order to reach all the subscribers and meet other
constraints. Note that the compulsory requirement for the new
combination of forwarding trees is that it must cover all the
subscribers for the given publication.

4) Compute the changes: After the routing entity has
selected the strategies, it should compute the new/modified
trees accordingly. This process is eventually mapping the
internal representation of the tree to the representation that is
used in the network. Here, different forwarding solutions yield
different actions: either installing elements to Bloom Filters, or
encoding tree structures into Merkle trees, or more possibly
combining both of them. Finally, the routing entity should
identify the places (network elements) where state injection
or update is needed.

5) Apply changes: As the last step, the network must signal
the changes to all affected entities. This involves sending con-
trol messages ordering nodes to install or modify forwarding
states, as well as notifying the source of data delivery if a new
forwarding identifier is to be placed into the packet header.

C. An example scenario
Figure 2 illustrates the hierarchisation: we refer to entities

in each hierarchy simply as nodes. The nodes contain nodes
are nested (e.g. today ASes contain areas and areas contain
routers). Consider that on a level of hierarchy Node A is the
publisher (which means that Node A contains the publisher



Fig. 2: Example of hierarchisation and tree selection

host) and Node D and E are the subscribers. From the hop
count point of view, the tree A-D-E is the ideal. Assume that
there exists another publication which has the tree A-C-D-
E. The routing system therefore can assign this tree for the
new publication as well, as it contains all subscribers. Now,
no new states had to be added into the nodes. By caching
the publication, Node C may as well increase the network
performance by supporting for e.g. faster error correction. Of
course, if some policy dictates that the ideal tree should be
used or any requirements are not met, the delivery of the
publication can be switched to it as soon as all the necessary
states are installed in the network.

D. Towards a pub/sub routing protocol
A key to implement the five-step mechanism is to have a

(distributed) entity in the network that is topology-aware. We
suggest a GMPLS Path Computation Element (PCE)-like [13]
topology manager, adopted into our pub/sub world.

The pub/sub PCE collects the topology information of
the network domain by subscribing to link advertisements
coming from the nodes (this requires to have a default path
between any node and the PCE). The content of the link
advertisements may vary depending on the actual forwarding
mechanism used. Finally, the pub/sub PCE will have a full
view of the topology of the domain. Assuming that publish
and subscribe messages collect the path between the PCE and
the publishers/subscribers, the PCE can locate all the entities
and can compute the trees.4

The difference of the current practice is there is no need
to flood these link advertisements, as only the PCE should
build the network graph and other participants do not need
to subscribe, and a change may yield less control messages
than today. Considering the inter-domain case, the coopera-
tion of pub/sub PCEs results in the appropriate inter-domain
forwarding structure.

E. Challenges of the division
The operations at the hierarchical boundaries (e.g., edge

router mapping of trees) represent the main scalability chal-
lenge of our Divide&Conquer approach. Obviously, a full
source-route would circumvent the edge-mapping problem.

4Note that we completely avoided the use of node identifiers in the
advertisements and control messages. Without explicit node IDs we make
one step towards preventing DDoS attacks.

However, strict source-routing has its limitations and price (see
Sec. II), therefore we need to consider suitable label swapping
and stacking mechanisms with an optimal balance of the size
of network state and packet headers, and signaling overhead.

During the tree construction phase, the appropriate set of
forwarding trees (potentially multi-domain) has to be chosen
so that all domain internal subscribers all covered. At the
domain boundaries, when an edge forwarding node receives
a packet over an inter-domain tree, the edge node must
determine the right internal tree; similarly, after receiving
packet on the inter-AS tree, it must determine the right inter-
domain tree. Obviously, there will be no one-to-one mapping
between the internal trees and the AS-level trees.

To change between the hierarchy levels, one possibility is to
look inside the packet, using the publication-level identifiers.
This approach seems unfeasible from a scalability point of
view considering the potential amount of active rendezvous
identifiers travelling an edge during a certain time window
(publication data delivery time).

However, to benefit this fact that potentially many publi-
cation identifiers will require the same mapping of trees, we
propose the use of a special set of ”non-routable” link IDs
with the goal of triggering this mapping. In a typical scenario,
we require at least one of these virtual links from each edge
node in the AS to the rest of border routers. Typically, the
amount of intra-domain virtual links “bridging” edge routers
and providing a fast path to each neighbouring AS will be in
the order of a few hundreds.5 On packet reception, the edge
node checks for the presence of this special link idenitifiers
and on success will stack the appropriate forwarding label for
the intra-domain delivery tree.

Another solution space of the mapping problem is deter-
mined by the notion of information scoping. While scope
identifiers (SIds) are meant to guide the pub/sub directives to
the suitable rendezvous points in the network for matching, we
consider to include the SId in the actual data packets to take
edge filtering decisions at this granularity. Since scopes are
aggregating data in a semantic layer, it makes sense to think
of re-using this aggregation for communal transport services
at the forwarding layer.

In this work we only provided back-of-the-envelope cal-
culations to support the scalability of our Divide&Conquer
approach. We are aware of additional challenges that deserve
more attention, including extensive evaluation of the trade-
offs, Bloom-filter check performance, implications of the delay
in the multi-step approach, and specific issues w.r.t. content-
orientation of inter-domain routing policies. Each of these
challenges will be the subject of upcoming papers.

V. RELATED WORK

We are certainly not the first to work with rout-
ing&forwarding problems in future networks. However, to the
best of our knowledge no prior work has proposed the adoption

5Given the power-law distribution of an AS degree. In practice, maximal
1024 AS neighbours can be assumed [14], [15].



of the pub/sub paradigm throughout the stack in Internet-scale,
and described its relation to routing.

TRIAD [16] was among the first proposals of a content-
based routing design in the sense that it routes on URLs by
mapping fully qualified domain names (FQDN) to next-hops.
While similar in the spirit of data-centrism, our work is more
ambitious and aims at a finer granularity of content, namely
individual pieces of information objects (pub/sub channels or
documents).

IP multicast can be viewed as a special case of a data-
oriented networking service. In practice, a multicast address
is a name (cf. a pub/sub topic) rather than a true network
identifier. IP multicast issues w.r.t. complexity and deploya-
bility incentives have been widely discussed [15]. The authors
of [15] revisit the case of IP multicast and propose Bloom
filters to aggregate the active multicast groups inside a do-
main, piggybacking this information in BGP updates. Their
IP multicast design also includes a Bloom-filter- based shim
header in packets to represent AS-level paths of multicast
packets. Our work handles links as more general destination
information than IP prefixes and explores more dimensions of
the routing&forwarding space.

ROFL [17] proposes Internet-scale routing scheme on flat
host identifiers based on neat DHT constructs, but suffers from
policy-compliancy issues [12] and larger stretch. AIP [18] is
based on a two-level (domain and host) routing architecture
with self-certifying domain and host identifiers to account
on an Internet scale. The future internetworking proposal in
[19] also combines the notion of separating of routing and
forwarding using generic link identities.

Considering data-oriented networking, DONA [3] em-
ploys flat self-certifying labels for data objects operated by
find/register primitives over the legacy IP network. The main
difference in our work is that we do not assume underlying IP
forwarding. Besides policy and incentive compatibility issues,
DONA suffers from scalability problems [12] near Tier-1
operators as they require an entry for each single registered
publication in the global network. This suggests that a new
data plane design is required to support global data-oriented
internetworking.

VI. CONCLUSION AND FUTURE WORK

This paper explored the routing options and problems of a
new (inter-)networking layer based on the publish/subscribe
paradigm. We moved a step forward towards pure pub-
lish/subscribe routing by dividing the problem in two di-
mensions. First, we use hierarchical aggregation; second we
describe five steps that together solve the problem of routing:
(1) Construct the best possible (ideal) forwarding tree on
the known topology. (2) Examine the existing forwarding
trees and combine them to best match the ideal tree. (3) If
it does not reach all subscribers, or it does not meet any
additional requirements, select tree-creation and gap-filling
strategies, then (4) compute the modifications. Finally, (5) push
the necessary information the affected entities and update the
source of the data delivery, if needed.

The ultimate goal we strive to achieve is to find a solution,
which has (A) reasonable signalling overhead in dynamic
condititions and (B) fairly low stretch, and which minimises
(C) the unnecessarily used network resources and (D) the per-
packet overhead. These goals seem to be contradictory at this
point, therefore finding a right balance will be crucial for
future work. Our plan for future work also includes validating
the overall solution with implementation (NetFPGA routers,
FreeBSD nodes) and simulation works (ns-3) using realistic
network traces of Internet-like information flows, adapted to
the pub/sub paradigm.

ACKNOWLEDGMENT

We would like to thank Petri Jokela, Jarno Rajahalme and
Somaya Arianfar their valuable comments.

REFERENCES

[1] V. Jacobson, “If a clean slate is the solution what was the problem?”
Stanford ”Clean Slate” Seminar., Feb 2006.

[2] C. Esteve Rothenberg, F. Verdi, and M. Magalhes, “Towards a new
generation of information-oriented internetworking architectures,” in
First Workshop on Re-Architecting the Internet, Madrid, Spain, Dec
2008.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM CCR, vol. 37, no. 4, pp. 181–192, 2007.

[4] D. Trossen (ed.), “Conceptual Architecture of PSIRP Including Subcom-
ponent Descriptions (D2.2),” http://psirp.org/publications, June 2008.

[5] M. Särelä, T. Rinta-aho, and S. Tarkoma, “RTFM: Publish/subscribe
internetworking architecture.” ICT Mobile Summit, Stockholm., June
2008.

[6] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim,
and E. Upton, “Haggle: Seamless networking for mobile applications,”
in Ubicomp, 2007, pp. 391–408.

[7] H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” RFC 4607,
August 2006.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[10] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and P. Nikander,
“LIPSIN: Line speed publish/subscribe inter-networking,” in Proceed-
ings of the 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’09), submitted paper.

[11] R. C. Merkle, “A certified digital signature,” in CRYPTO ’89: Proceed-
ings on Advances in cryptology. New York, NY, USA: Springer-Verlag
New York, Inc., 1989, pp. 218–238.

[12] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma, “Incentive-
compatible caching and peering in data-oriented networks,” in First
Workshop on Re-Architecting the Internet, Madrid, Spain, Dec 2008.

[13] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation Element
(PCE)-Based Architecture,” RFC 4655, Aug. 2006.

[14] S. Jiang, “An addressing independent networking structure favorable for
all-optical packet switching,” SIGCOMM CCR, vol. 37, no. 1, pp. 17–28,
2007.

[15] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “Revisiting ip multicast,”
in Proceedings of ACM SIGCOMM’06, Pisa, Italy, Sep. 2006.

[16] D. R. Cheriton and M. Gritter, “Triad: A new next-generation internet
architecture,” http://www-dsg.stanford.edu/triad/, July 2000.

[17] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker, “ROFL: Routing on flat labels,” in Proceedings of ACM
SIGCOMM’06, Pisa, Italy, Sep. 2006.

[18] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable internet protocol (aip),” in ACM SIG-
COMM, 2008.

[19] L. B. Poutievski, K. L. Calvert, and J. N. Griffioen, “Routing and
forwarding with flexible addressing,” Journal Of Communication and
Networks, vol. 9, pp. 383–393, Dec. 2007.


