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Abstract
Intelligent transportation systems, or ITS for short, includes a variety of ser-
vices and applications such as road traffic management, traveler information
systems, public transit system management, and autonomous vehicles, to name
a few. ITS are expected to be an integral part of urban planning and future smart
cities, contributing to improved road and traffic safety, transportation and transit
efficiency, as well as to increased energy efficiency and reduced environmental
pollution. On the other hand, ITS pose a variety of challenges due to its scalabil-
ity and diverse quality-of-service needs, as well as the massive amounts of data it
will generate. In this survey, we explore the use of machine learning (ML), which
has recently gained significant traction, to enable ITS. We provide a thorough
survey of the current state-of-the-art of how ML technology has been applied to
a broad range of ITS applications and services, such as cooperative driving and
road hazard warning, and identify future directions for how ITS can further use
and benefit from ML technology.

1 INTRODUCTION

Intelligent transportation systems, or ITS for short, typically refers to the application of information, communication,
and sensing technology to transportation and transit systems.1 ITS is likely to be an integral component of tomorrow’s
smart cities2 and will include a variety of services and applications such as road traffic management, traveler information
systems, public transit system management, and autonomous vehicles, to name a few. It is expected that ITS services will
contribute significantly to improved road and traffic safety, transportation and transit efficiency, as well as to increased
energy efficiency and reduced environmental pollution. While ITS applications have been enabled by unprecedented
advances in sensing, computing, and wireless communication technology, they will pose a variety of challenges due to
their scalability and diverse quality-of-service needs, as well as the massive amounts of data they will generate.

In parallel, machine learning (ML) techniques have recently gained significant traction enabled by a variety of tech-
nologies, notably cloud and edge computing. ML has been used by a diverse set of applications, that, similarly to ITS
services, impose a wide range of requirements. In particular, ML approaches such as deep learning and reinforcement
learning have been useful tools to explore patterns and underlying structures in big data sets for prediction and accurate
decision making3-5 in addition to vehicular cybersecurity.6 Statistics on scientific publications in the last ten years (see
Figure 1) show a clear increasing trend in the amount of research efforts leveraging ML to enable and optimize ITS tasks.
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F I G U R E 1 Number of publications on ITS, including ML-based approaches, from 2010 to 2020

T A B L E 1 Comparison with other recent surveys on ITS

Reference Year Scope Comments

7 2018 Survey on ML in vehicular networks Short survey on some ML tasks in vehicular networks

8 2019 Survey on vision-based vehicle
re-identification

Only for vehicle re-identification, one of perception
tasks

9 2019 Survey on 3D object detection for autonomous
driving applications

For 2D and 3D object detection, one of perception tasks

10 2019 Survey on object detection More general survey of perception tasks, not focused
on ITS

11 2019 Survey on AI-driven vehicular systems Focused on vehicular applications, but lacks coverage
of some recent research on the topic such as 4D
and 5D detection

12 2020 Survey on visual perception in industry
intelligence

Only for visual perception in industrial scenarios

13 2020 Survey on deep learning for autonomous
vehicle control

Focused on autonomous vehicle control, one of the
management tasks

14 2021 DRL for 6G vehicular networks Only covered DRL techniques and 6G

6 2021 Survey on ML for vehicular cybersecurity Focus on cybersecurity

Ours 2021 Survey on ML in ITS including perception,
prediction, management

Overview of ML for main tasks in ITS

The question of how to explore and adapt ML to address ITS applications’ distinctive characteristics and requirements
remains challenging and offers promising research directions. Existing surveys have explored some of these challenges
and solutions to address them. Table 1 lists the most recent ones and summarizes their scope. Notable works include,6-16

which focus on specific aspects of ITS, such as vehicular networks,7 vehicle detection,8-10 safety of vehicular ad-hoc net-
work (VANET),6,15 VANET performance optimization,16 autonomous vehicle control,13 and deep reinforcement learning
(DRL) for 6G VANETs.14 Compared to existing surveys, ours provides a broad perspective on the usage of ML in ITS and
ML’s role in enabling ITS services and applications.

The main goals of this article are: (1) to provide a thorough survey of the current state-of-the-art of how ML technology
has been applied to a broad range of ITS applications and services, such as co-operative driving and road hazard warning,
and (2) to identify future directions for how ITS can use and benefit from ML technology. To this end, the contributions
of our survey can be summarized as follows:

• First, we present an overview of ITS based on an ITS application-centric framework we propose.
• Second, we explain how ML can be used by ITS applications.
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F I G U R E 2 Survey structure and organization

• Third, based on the application-centric ITS framework, we provide a detailed review of the state-of-the-art on the
application of ML to ITS.

• Finally, we discuss future trends and research directions on how ML can be applied to benefit ITS applications.

The structure of the article, which is illustrated in Figure 2, is as follows. In Section 2, we present an overview of ITS
and in Section 3, review ML and discuss how ML techniques can be employed by ITS applications. Sections 4–6 describe
studies, most of which published in the last two decades, that apply machine learning to various ITS tasks. In Section 7,
we highlight several open research issues and discuss some future trends. Section 8 concludes the survey.

2 ITS OVERVIEW

ITS is a relatively recent- but fast-evolving area and has been attracting considerable attention from the research and
practitioner communities. This section provides an overview of ITS, including: (1) defining how ITS is currently under-
stood, (2) listing some of its more prominent applications and services, (3) proposing an application-centric framework
for ITS that will serve as the basis for the survey, and (4) identifying basic tasks that are used as building blocks by ITS
applications.

2.1 Working definition of ITS

Even though ITS is a relatively recent term, its definition has been evolving ever since it was first proposed in the 90’s.17

Stakeholders tend to have different but not disassociated views of what ITS means. The U.S. Department of Transporta-
tion (USDOT), for example, defines ITS as a mean to achieve safety and mobility in surface transportation through the
application of information and communication technologies.18 In this case, surface transportation refers to transporta-
tion by roads, rail, or water and excludes air transportation. The European Union uses a similar definition but limits
surface transportation to transportation by roads.19 This focus on surface transportation can be explained by the distinct
characteristics of aerial, marine, and terrestrial transportation in terms of several aspects, including usage and security.20

Other definitions approach ITS from different points of view, for example, focusing on the benefits that ITS can pro-
vide to ITS users (including drivers, passengers, and pedestrians) through the use of services aiming at traffic efficiency,
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security20 (eg, speed- and road condition monitoring, weather forecasting), and so on. Such services usually rely on the
interaction between vehicles and road infrastructure, which in turn motivates the idea of Cooperative ITS.

Cooperative ITS (C-ITS) leverages Vehicle-to-Everything (V2X) interaction21 and is consistent with current efforts
toward “smart and connected vehicles” as illustrated by standardization activities worldwide.2 The vision of intelli-
gent, interconnected transportation systems is aligned with the USDOT’s Connected Vehicle Pilot Program22 which views
ITS as a “mean to deploy applications utilizing data captured from multiple sources across all the elements of surface
transportation systems”.

Based on these current ITS definitions, in this survey, we define ITS as the means to interact with road transporta-
tion systems and deliver improved security, efficiency, and comfort to users through the deployment of applications that
employ information, communication, and sensing technology. To further elaborate on this definition, we discuss notable
ITS applications next.

2.2 ITS applications

Different ITS stakeholders propose different classifications for ITS applications. For example, the CAR-2-CAR com-
munication consortium groups ITS services in (1) Awareness driving (eg, speed and position); (2) Sensing driving (eg,
pedestrian detection); and (3) Cooperative driving (eg, turning intention) and movement coordination between vehicles.23

The ISO 14813-1, in turn, groups ITS services in 11 domains, ranging from traffic management operation to weather and
environmental conditions monitoring.20 The USDOT connected vehicle pilot program (CV Program) lists different appli-
cations categories, some of which (eg, V2V/V2I safety and V2I mobility applications), have started to be implemented in
US cities. Examples of CV Program’s applications include forward collision warning, intelligent traffic light and pedestrian
crosswalk.24 The European Telecommunications Standards Institute (ETSI) proposed the basic set of applications, which
is illustrated in Table 2. A comprehensive description of ETSI applications is presented in.25 Because ETSI’s applications

T A B L E 2 Examples of ETSI’s applications26

Class Application Objective
Use
Case Examples

Active road safety Driver assistance
co-operative awareness

Signal the presence of vehicles (eg,
emergency) and inform
surrounding vehicles

Slow vehicle indication, emergency
vehicle warning

Driver assistance-road
hazard warning

Warn surrounding vehicles of possible
hazards (eg, hard breaking, wrong
way)

Stationary vehicle warning, traffic
condition warning

Cooperative collision
avoidance or mitigation

Avoid collisions and mitigate their
impacts

Across traffic turn collision risk
warning, precrash sensing

Cooperative traffic
efficiency

Speed management Warn vehicles about speed discipline Regulatory/contextual speed limit
notification

Co-operative navigation Information exchange for traffic
navigation coordination (eg,
intersection management and
adaptive cruise control)

Traffic information and recommended
itinerary, enhanced route guidance
and navigation

Cooperative local
services

Location based services Provide information for local
commercial or noncommercial
services (eg, food and parking) and
multimedia access

Media downloading, automatic access
control and parking management

Global internet
services

Communities services Enable interaction, monitoring and
management of financial and
insurance services provided by the
wider internet

Fleet management, insurance and
financial services

ITS station life cycle
management

Manage services and the functioning
of the ITS infrastructure)

Vehicle software/data provisioning, and
data calibration
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F I G U R E 3 Proposed application-driven ITS framework

are well known and widely adopted, we use them in this survey to guide our exploration of ITS applications including
our application-driven ITS framework, which is described in detail below.

2.3 Application-driven ITS framework

We propose an application-driven ITS framework which is inspired by ETSI’s applications. As illustrated in Figure 3, the
proposed framework is structured in three layers, namely: infrastructure-, resource-, and orchestration, along with an
application realm.

2.3.1 ITS environment

ITS applications and services interact with the ITS physical environment which comprises: transportation infrastructure,
environmental conditions, and users. Transportation infrastructure includes vehicles, traffic lights, traffic signs, roads,
toll booths, road elements (eg, speed bumps), and other road infrastructure. Examples of environmental conditions are
weather, lighting, geography, and road conditions. Finally, ITS application users include drivers, passengers, pedestri-
ans, and operation and management personnel. The interaction between transportation infrastructure, environmental
elements, and users contributes to the complexity, heterogeneity, and dynamic nature of the ITS environment.

2.3.2 Infrastructure layer

The infrastructure layer is responsible for collecting data from the ITS environment and delivering it to the other layers.
Therefore, the infrastructure layer comprises both a (i) sensing infrastructure which includes all data collection devices
(eg, sensors); and (ii) communication infrastructure consisting of networking equipment responsible for enabling data
access and exchange.

As roads, vehicles, pedestrians, and passengers carry an increasing number and variety of sensors (eg, Internet of
Vehicles (IoV),27,28 On-Board Units (OBUs)29), the sensing infrastructure must be able to acquire and communicate sensed
information at unprecedented scale and heterogeneity. While sensing devices such as cameras, light radars (LiDARs)
and ultrasonic sensors offer visual data to ITS applications, kinetic sensors (eg, accelerometers), magnetic sensors (eg,
compasses), and position tracking systems (eg, global positioning system) provide scalar information. Road-side units
(RSUs), access points (APs), routers, switches, and transceivers enable communication among ITS users and components
(eg, Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V)) using communication standards like fifth generation (5G)
mobile networks and IEEE 802.11p.30
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Additionally, unmanned aerial vehicles (UAVs)31 are a recent addition to the ITS environment augmenting it with
high mobility and agility. UAVs can play various roles in ITS,32,33 such as aerial deliveries, aerial traffic signals, movable
base stations and aerial cameras.

2.3.3 Resource layer

ITS applications and data collected by the infrastructure layer can use a plethora of services provided by the resource
layer. Such services include computing, networking, storage, and energy. Storage resources are used to store historical data
and computational results locally or in clouds. Computing resources provide data processing capabilities, including fog
computing and cloud computing services deployed in dedicated hardware or virtual environments (eg, virtual machines
or containers). Networking resources are used to deliver data and include physical- and virtual networking functions
performed by communication infrastructure elements.34 Finally, energy resources provide power to the ITS infrastructure,
ensuring its continuous availability.

2.3.4 Orchestration layer

Since ITS applications have different resource requirements, services provided by the resource layer need to be delivered to
applications according to their needs. As such, resource allocation is one of the main roles of the orchestration layer, which
creates abstract representations, or models, for the resource- and infrastructure layers in order to schedule their resources
and services and address the different needs of ITS applications. Orchestrators then provide an interface between ITS
applications and the resource- and infrastructure layers handling requests from different applications, scheduling the
appropriate resources, and/or obtaining requested information to ensure applications receive the quality-of-service they
need. By providing this “bridge”, the orchestration layer also facilitates application development and deployment. Embod-
iments of the orchestration layer include software defined networking (SDN)35 controllers and applications as well as
network service orchestrators.36

2.3.5 ITS application realm

As previously discussed, there is a wide variety of ITS applications ranging from driver assistance to traffic efficiency and
media downloading. ITS applications need access to distinct resources, infrastructure, and data. To capture the different
needs of ITS applications, we classify them into three different groups, namely: local, global, and hybrid applications.

Local applications rely solely on data collected locally. Cooperative collision avoidance is a typical example of a local
application as it tries to identify possible crashes collecting and exchanging information from the vehicle and its imme-
diate surroundings. Global applications, on the other hand, require information that transcends a specific locality. Road
hazard warning services, for example, collect different kinds of traffic events and use the information obtained from the
orchestration layer to enforce desired policies. For instance, in the case of impaired vehicles stopped on the road, the
road hazard warning application receives relevant information (eg, time of incident and where the vehicle is located) and
decides which geographical areas should receive information about the event. Finally, hybrid applications can use both
local as well as global information. Cooperative navigation services, for example, can access optimized traffic informa-
tion data provided by a server connected to the orchestration layer and use the local perception of traffic and hazards to
define the better route for a vehicle. Note that, as illustrated in Figure 3, ITS applications which are represented by the
application realm in the proposed ITS framework can interact with all other layers of the framework.

2.4 ITS application tasks

The wide scope of use cases and constant interactions with the highly dynamic and heterogeneous ITS environment
raise a number of challenges to ITS application deployment. For example, ITS applications need to acquire, process,
and take timely actions based on massive amounts of data, while providing efficiency, security and convenience to its
users.
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F I G U R E 4 Example of ITS applications tasks involved in collision avoidance and road hazard warning (adapted from Alam et al25)

To better understand and deploy ITS applications, some studies try to divide ITS applications according to the types
of tasks they perform. For example, works reported in References,37-39 which focus on driver assistance and co-operative
driving applications for semi and fully autonomous vehicles, give some examples of ITS tasks. In this article, we expand
the concept of ITS tasks in order to support the wide range of ITS applications. To this end, we categorize ITS tasks into
(i) perception tasks, (ii) prediction tasks, and (iii) management tasks. In the following subsections, we define and discuss
the challenges raised by each task. We also showcase how ITS applications can leverage such tasks using Figure 4 as an
example of the interaction between two applications, namely cooperative collision avoidance and road hazard warning
based on the proposed ITS framework.

2.4.1 Perception tasks

Perception tasks are those that try to detect, identify and recognize data patterns in order to extract, understand, and
present relevant information. These tasks are widely used in today’s transportation systems due to the widespread use
of sensors, shifting the challenge from how to gather to how to interpret data. Using perception, ITS applications can
receive information extracted from the environment. For example, as depicted in Figure 4, cooperative collision avoidance
interacts with the sensing infrastructure of a vehicle, collecting data and using perception to raise awareness of the sur-
rounding environment. Additionally, perception of road signs identifies signage on the side of a road, providing a decision
parameter to inform management applications.

The large number and types of sensors present in the sensing infrastructure as well as the enormous amounts of data
they produce28 pose data fusion40 and big data problems, which impact ITS perception tasks. For example, the variety of
vehicles with different mobility patterns and physical features can impact how they are identified by a co-operative colli-
sion avoidance application. On the other hand, camera images for a road sign detection task deal with signs in different
physical conditions, angles, and brightness, which can change the perception of the sign.41

Even with these concerns, perception tasks are expected to be robust and stable, since their outputs are used in the
applications’ decision-making process. As new sensor technologies28 arrive in transportation systems, perception tasks
have to deal with new features. Standardization between manufacturers2 and the definition of a standard protocol27 are
possible solutions to overcome challenges leveraged by heterogeneity. However, solely adopting a global automated data
collection scheme is not enough. What ITS perception really needs is real-time and situational assessment, which can be
achieved by the improvement of machine cognition.42

2.4.2 Prediction tasks

Prediction tasks, as their name suggests, try to predict future states given historical and real-time data. Due to dynamic
ITS environment, these tasks are used by proactive applications, which attempt to prepare for future states by prediction.
For example, the co-operative collision avoidance application illustrated in Figure 4 needs to predict where a vehicle will
be in a future point in time, prematurely identify an accident and apply actions to mitigate or lessen impacts (eg, precrash
warning use-case).

However, the heterogeneous and dynamic ITS environment hinders the accuracy of prediction tasks. Besides, uncer-
tainty, ambiguity, and quality of the information are also crucial in state prediction. For instance, in a traffic flow prediction
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task, a plethora of factors are relevant, including time-related (eg, day of the week, day’s schedule and holiday impact),
vehicle proportion (eg, number of cars in relation to bicycles), accidents, weather and even sociocultural ones (eg, the
behavior of drivers in a specific country). Because of this, extracting the correct features to give a precise prediction is a
challenge, which restricts the scope of prediction solutions.

2.4.3 Management tasks

Management tasks are responsible for dictating the behavior in ITS. Management tasks are needed to provide a systematic
and reliable solution for a given problem. For example, in Figure 4, a co-operative collision avoidance application, after
perceiving a vehicle ahead and predicting a crash, has to use management tasks to control the vehicle’s trajectory and
motion to avoid the accident. If a vehicle fails to avoid the collision, the orchestration layer can gather information about
the crash and provide it to a global road hazard warning application. The latter application will elect geographical locations
and manage message dissemination policies to warn nearby vehicles about the crash (eg, stationary vehicle warning
use-case), leveraging the use of management tasks.

As soon as the scope covered by an ITS application keeps growing, the increased number of data necessary to deploy a
management solution can compromise the scalability of the solution. Therefore, optimization in management is essential.
Even for local applications, stringent time requirements demand optimal use of computational resources. Moreover, the
heterogeneity of nodes and applications leverage concerns to network management, since essential nodes and sensitive
applications must be prioritized to lessen the data transfer latency. The availability of data is yet another concern since a
management system has to decide how the needed data can be retrieved.

3 MACHINE LEARNING FOR ITS

In this section, we discuss the potential of using ML in ITS, focusing on how ML can integrate and enhance perception,
prediction, and management tasks. We provide a background on the mainstream ML approaches, introducing nomen-
clature and concepts typically found in the surveyed literature. An ML-experienced reader may jump the ML background
and go directly to Section 3.2, in which how ML works in ITS is discussed.

3.1 Machine learning

ML is an area of computer science, which emphasizes the intelligence of machines in performing human-like tasks. In
this subsection, we focus on mainstream ML approaches, including supervised learning (SL),43 unsupervised learning
(UL),44 reinforcement learning (RL),45 and deep learning (DL)46 (Table 3). In order to have a better understanding of
state-of-the-art ML approaches, we provide a brief review following the taxonomy presented in Figure 5.

3.1.1 Supervised learning

SL models relationships and dependencies between predicted output and the input features. It does so by inferring a
classification or regression from a labeled training dataset. A training dataset is composed by examples used for learning.
Labeled data is a group of samples that have been tagged with target variables. Based on the function learned from the

T A B L E 3 Comparison of SL, UL, and RL

Techniques Data format Objective Feedback

SL Labeled training data Predict Direct

UL No-labeled Explore No feedback

RL Zero-shot, but interact Take action Reward
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F I G U R E 5 A taxonomy of mainstream ML approaches

training data, SL can predict the output values for new data. According to its role, most of SL algorithms can be split
into two major categories: Classification algorithms learn to predict a category as the output for a new observation, on
the basis of labeled training data. For example, support vector machine (SVM),47 and Adaptive Boosting (AdaBoost)48 are
representative classification algorithms. Regression algorithms work for the regression problem whose output variable is a
real or continuous value, such as “salary” or “weight”. Many different approaches have been proposed for the regression
problem. The simplest one is the linear regression (LR),49 which tries to fit data with the best hyper-plane going through
the points of training data. Another famous example is support vector regression (SVR).50 Note that some algorithms are
applied on both classification problems and regression problems, such as k-nearest neighbors (k-NN),51 random forest
(RF),52 and boosted regression trees (BRT).53

3.1.2 Unsupervised learning

UL is a data-driven knowledge discovery approach that can infer a function describing the structure from datasets consist-
ing of input data without labeled responses. Unsupervised algorithms can be split into two different categories: clustering
algorithms, such as K-means clustering,54 discover the inherent groupings in the data. Dimension reduction algorithms,
such as principal component analysis (PCA),55 and independent component analysis (ICA),56 find the best representation
of the data with fewer dimensions.

3.1.3 Reinforcement learning

RL aims to learn how to take a sequence of actions in an environment in order to maximize cumulative rewards. RL can
be a zero-shot learning, which means it can begin to learn with no data. Figure 6 depicts the working mechanism of RL
combined with the ITS environment. The ITS environment includes all the ITS layers and the surrounding environment
(for instance, the road condition). The agent in RL is the component that makes decisions on which action ought to take.
To achieve it, the agent needs the ability to interact with the environment to obtain data (state, action, and reward). Then,
with the obtained data, the agent can train and update itself to provide better decisions.

RL algorithms can be split into three different kinds: value-based algorithms are based upon temporal difference learn-
ing to obtain value function, which estimates how good to take specific actions on given states. Q-learning,57 SARSA,58

and deep Q-network (DQN)59 are three typical value-based RL. Policy-based algorithms directly learn optimal policy
or try to obtain an approximate optimal policy based on the observation, such as policy gradients (PG)60 and deter-
ministic policy gradient (DPG).61 Imitation algorithms62 (also called apprenticeship learning - AL) try to make decisions
using demonstrations, which usually obtain a good performance when the reward function is difficult to specify or
sparse and when it is challenging to optimize actions directly. These algorithms can deal with unexplored states (ie,
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F I G U R E 6 The way of RL works in ITS

T A B L E 4 Neural networks comparison

Type Entities Relations Scenario

FNN Units All-to-all -

CNN Grid elements Local Spatial correlation

RNN Time steps Sequential Time correlation

GNN Nodes Edges Node, edge correlations

new states not in the training data) so that they offer more reliable frameworks for many tasks such as self-driving cars,
for example generative adversarial imitation learning (GAIL) and reward augmented imitation learning (RAIL). Hybrid
algorithms combine value-based algorithms with policy-based algorithms. Their goal is to represent the policy function
by policy-based algorithms, where updates of policy functions depend on value-based algorithms, for example, actor
critic (AC),63 asynchronous actor-critic agents (A3C),64 deep deterministic policy gradients (DDPG),65 and soft actor
critic (SAC).66

3.1.4 Deep learning and neural networks

DL is famous in various fields, its success mostly relies on artificial neural networks (ANNs). ANNs have become a trendy
method for data representation. An ANN consists of a set of interconnected nodes designed to imitate the functioning of
the human brain. Each node has a weighted connection to several other nodes in neighboring layers. Individual nodes take
the input received from connected nodes and use the weights together with a simple function to compute output values.
ANNs, especially deep neural networks (DNNs), became attractive inductive approaches owing to their high flexibility,
nonlinearity, and data-driven model building.

The main kinds of neural networks are fully-connected neural networks (FNNs), convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), as shown in Table 4. CNNs achieve dominant performance on visual
tasks, such as exploiting fundamental spatial properties of images and videos. RNNs can successfully characterize the
temporal correlations of data, thus exhibit superior capability for time series tasks. The long short-term memory (LSTM)
methods, whose units are RNNs, are capable of learning order dependence in sequence prediction problems. Graph
neural networks (GNNs)67,68 are a kind of graph structure, which models a set of nodes (entity) and edges (relation-
ship). FNNs, CNNs, and RNNs are based on Euclidean data. However, GNNs use non-Euclidean data structures for deep
learning.

The neural networks have a lot of extensions, such as deep belief networks (DBN),69 error-feedback recurrent convolu-
tional neural networks (eRCNNs), fully convolutional neural networks (FCNs), and spatio-temporal graph convolutional
neural networks (STGCNs). For example, DBNs can be described as a stack of restricted Boltzmann machines (RBMs),70

which has a two-layer network model, consisting of visible units and hidden units.
As shown in Figure 5, there is a new item, namely DRL, to describe the algorithms that combine RL with DL. For

example, DQN, DDPG, and multi-agent RL (MARL) are DRL algorithms.
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F I G U R E 7 ML pipeline and interaction between ML and ITS

3.2 ML meets ITS

Data is one of the main commodities extracted from today’s ITS. Given the different scopes of ITS applications (global,
local, and hybrid applications), data can be obtained from all the ITS layers. This data-heavy characteristic of ITS paves
the way for the inherent ability of ML to discover knowledge from data. Regression, classification, prediction, clustering,
and even decision-making, are features provisioned by ML capable of enhancing ITS and being foundations for the ITS
application’s building blocks, that is, tasks. In this section, we discuss 1) how ML is integrated inside ITS, backed by an
ML pipeline; and 2) how ML is harnessed by ITS tasks.

3.2.1 ML pipeline

In this part, we discuss the ML pipeline depicted in Figure 7. The main objective of such a pipeline is to model desired
ITS elements or behavior, which can be harnessed by ITS tasks. For example, modeling vehicle’s mobility is useful for
prediction tasks, whereas models to classify transportation infrastructure from images can be applied in perception. The
ML pipeline consists of several steps, namely data preprocessing, feature extraction, and modeling.

Data preprocessing: The raw data usually needs preprocessing; for example, data cleaning and data normalization.
Feature extraction: Feature extraction from data is a critical step. There are two ways for feature extraction, namely,

hand-crafted features and deep learning features. Hand-crafted features are selected with the knowledge of human
experts, which are relevant for a given task. However, even the most experienced human cannot identify all the underly-
ing features not explicitly related to the captured data.71 Therefore, the extracted features can only reflect limited aspects
of the problem, which yield lower accuracy. Examples of hand-craft extractors are Gabor filter, local binary pattern (LBP),
local ternary pattern (LTP), and histogram of oriented gradients (HOG) for image feature extraction. Thanks to deep
learning, which has superiority in learning of deep features, the feature extraction can be automatic without any manual
intervention.

Modeling: Regarding model training, ML has reached celebrity status. In particular, the advent of ML enables great
strides toward better visual understanding.46 The trained ML models can be used for regression, classification, clustering,
and making decisions, which can be applied to ITS tasks.

3.2.2 ML for ITS tasks

In this article, we introduce how ML works for each ITS task. Firstly, traditional approaches for perception were usu-
ally based on traditional sensors, such as magnetic sensors, inductive loop detectors, GPS, REID, and so on. With the
widespread deployment of vision-based devices in ITS infrastructures, an unprecedented quantity of images and video
data is generated, which leverages vision understanding as the crux of the perception task. Traditional techniques can-
not offer the needed speed and accuracy in vision-based perception, whereas ML approaches can be used to improve
these metrics. Such improvement was primarily done with hand-crafted features, which are derived from the informa-
tion in the image. However, considering the growing diversity of objects and little difference between similar objects in
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F I G U R E 8 The evolution of ML technologies in ITS over years

some perceptive problems, the process of deriving hand-crafted features may not be discriminative enough. Thanks to
DL, perception accuracy has been greatly improved with the extraction of deep features.

Secondly, researchers have investigated a number of parametric and nonparametric methods for the prediction
problem. When the model structure is fixed and parameters are learned from data, this way of modeling is called a para-
metric method; examples include gray system models, time series, and Kalman Filters. However, this method needs a
good model structure in advance, based on the qualitative judgment of experts. It is highly subjective, and limited in
the sense that results come under a high cost in terms of time and money. Likewise, nonparametric methods deter-
mine both parameters and their model structure from data through training. ML-based algorithms, a typical class of
nonparametric methods, are driven by big data analytics, allowing ML to discover the patterns within the data automat-
ically. For example, fuzzy logic, k-NN, and SVM are variations of this class of methods. Especially, with the development
of parallel processing technology, neural networks are one of the best models for prediction,72 since it can approx-
imate almost all functions without prior knowledge of its functional form, and it is suitable for both linearity and
nonlinearity problems. By practice and experimentation, ML-based prediction methods can obtain accuracy with a fast
learning speed.73

Finally, classical management approaches try to find a sequence of actions that transfer the environment or objects
from an initial state to a desired state with some objective. In this kind of management mechanism, the problems are
assumed to be fully observable (the state of environment is precisely known), finite (state space and action space is lim-
ited), deterministic (the rule of state transfer is known in advanced), and static (only the entity for which we control
changes the state).74 However, the environment of ITS is more complicated, being unable to meet all the assumptions of
classical algorithms. ML approaches, such as RL, which offer methods dealing with infinite state and action space with
uncertain effects, are more suitable for ITS management tasks.

Figure 8 shows the evolution over the recent ten years of the trending application of different mainstream ML tech-
nologies in ITS, and this is for the main tasks of perception, prediction, and management. The data used to produce
this figure is extracted from related published papers between 2010 and 2020. In this figure, the radius of a circle is pro-
portional to the number of papers on each task and proposing the use of the associated ML technology, the center of
the circle is the weighted average publication year, where the weight of a year is the ratio of the number of published
papers in this year to the number of published papers over all years considered. The first observation here, which is in
line with the result in Figure 1, is that the number of circles tends to increase with years, thus highlighting the trend-
ing application of ML in ITS. Furthermore, DNN-driven technologies are becoming more and more popular. Secondly,
we can also observe that some technologies are more popular for some tasks than others. For example for perception,
CNN seems to be the most attractive in the recent three years, followed by R-CNNs and You only look once (Yolo),75

which got increased attention since 2019. For the prediction task, the LSTM technology has been mostly used the recent
3 years, followed by RNN and CNN. Older years than 2019 has seen a surge in the popularity of the SVM technology for
the prediction task, before this popularity being decreased in the following years. For the management task, Q-learning
has been first mostly used, before leaving its place to more advanced techniques such as DQN and DDPG starting
from 2019.
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In brief, the application of ML technologies has considerably inspired the ITS revolution and the intelligent upgrade
of its main tasks, with a long list of research works being proposed to advance the state of the art on the topic. In the
following sections, we review relevant ML-based works on perception, prediction and management of ITS and discuss
their role in each of the specific problems.

4 ML-DRIVEN PERCEPTION IN ITS

Given the suitability of ML approaches to deal with image processing, ML-driven perception is introduced mainly from
the view of vision-based perception. Giving that perception tasks can be applied on different ITS topics and scopes, we
elected the ITS topic focused by each related work focused alongside the ML approaches utilized and the role performed by
ML. Considering the topics surveyed, four major categories for tasks were profiled: road, vehicles, users, and networking.
These categories and all the information related to them are grouped within Table 5.

T A B L E 5 Researches on ML-based Perception for ITS

Category Research Topic ML Role of ML

Road 76-78 Traffic sign and marking recognition SVM, RF Classification with hand-crafted
features

79-81 Road signs recognition with RGB
single image

CNN Classification and recognition
method

82,83 Road signs recognition with LAB
color space and in moving vehicles

ELM, SVM Classification and recognition
method

84-87 Road detection and road scene
understanding

CNN Distinguish different image patches

88 Road lane detection CNN Detection position of lane

89,90 Obstacle detection CNN, SVM Solve as regression

91,92 Detect parking occupancy CNN Classifier of parking

93,94 Road surface state and road crack
recognition

SVM, CNN Classification of surface state and
estimate cracks

Vehicles 95-100 Vehicle detection using appearance
features

SVM, R-CNN,
Adaboost

Classification method of vehicles

100-102 Vehicle classification SVM, RF Classification algorithm

103,104 Vehicle identification with license
plate recognition

SVM, CNN Character recognition of license
plates

105-108 Vehicle re-identification CNN, SNN Feature extractor and classifier

109-113 Brake, vehicle steering, lane change,
orientation, drive behavior
detection

CNN, RF, SVM Classify method for driving
behaviors

Users 71,114-121 Recognize driving styles of drivers K-means, SVM, k-NN,
RF, RNN

Classification driving styles into
groups

122,123 Pedestrian detection using
handcrafted features

SVM, AdaBoost Tell pedestrians from the
background of images

124-126 Pedestrian detection using deep
features

UL, CNN, R-CNN Feature learning and classification
of pedestrians

Network
127-129 Cluster or rank network messages or

nodes
K-means, SL Classification the network messages

and nodes

130-134 Network safety hazard detection LSTM, DRL, RF Feature extractor and classifier
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4.1 Perception of road

Traffic flow and behavior are affected by different road transportation elements. Roads, freeways, and bridges are full of
signaling infrastructure responsible for dictating traffic flow (eg, road surface markings and traffic signals) and enforcing
the desired traffic behavior (eg, road signs). Road condition (eg, road integrity and wetness level) and surrounding scene
(eg, obstacles, trees, and guardrails) are also relevant, given their impact on driving behavior.135,136 Because of this, the
road has useful information that can be utilized by applications. For instance, in co-operative driving, the vehicle needs
to be aware of other vehicles and road conditions to define a driving policy.136 Therefore, the role of road perception is to
make the information present in the road available for ITS applications.

4.1.1 Perception of road signs

Road signs are installed at the side or above roads to give instructions with different shapes, colors, and text. Given the
high number of road signs, it is too expensive to install and maintain a sensing infrastructure in each one of them. Thus,
the perception of road signs is mostly realized by vision-driven system embedded in each vehicle.

As a typical pattern recognition task, the accuracy of the road signs perception mainly depends on the feature extractor
and the classifier.137 In the beginning, ML approaches, like SVM76,77 and RF,78 were used as classifiers with hand-crafted
features. These ML approaches are still insufficient to deal with the not typical (or regular or conforming) images. DNN
offers methods for automatic learning of deep features, which are stored in massive data. Especially, CNN79-81 showed its
outstanding capabilities of feature-learning in the road signs perception.

Although the CNN-based methods demonstrated their efficiency for this kind of application, they still have some
drawbacks. CNN-based approaches usually deal with images in RGB space, which have a negative effect on the repre-
sentation learning of CNN, in particular, due to nonuniform color distribution and information coupling of RGB space.
For instance, DP-KELM,82 which is a kernel extreme learning machine (ELM) classifier with deep perceptual features,
is a learning method from the perceptual LAB color space instead of the RGB space. On the other hand, when the sign
recognition task uses a video instead of a single image, DNN-based methods may obtain good results but they require
high computing resources, such as GPUs. To cope with that, incremental SVM and multiclass SVM were used in Refer-
ence 83 alongside a scale-based voting method that combines the classification results of multi-images on the same signs
in a moving vehicle.

4.1.2 Perception of surrounding scene and road conditions

The road and surrounding scene detection is an essential task for some ITS applications, such as a driving assistance
application. Regarding the perception of the road scene in ITS, image segmentation is an important method. For example,
classifying single image patches with CNN is an approach in which the pixels of an image are classified into the road and
nonroad parts.84,85 More precise approaches, such as SegNet86 and DeconvNet87 use efficient encoder-decoder CNN based
models for image segmentation, which have the ability to model appearance, shape and can understand the spatial rela-
tionship between different classes (such as roads and sidewalks). Some researches focused on specific object recognition
in ITS, such as lane detection88 and obstacle detection.89,90

The recognition of vehicle parking is focused on detecting parking occupancy91,92 along the road or in a parking lot.
The occupation detection of parking offers visibility into parking space vacancies, which is used to assist the selection of
a parking location. CNN, for example, offers advantages for occupancy detection by image processing.91 Ling et al,92 in
turn, used not only ML-driven local agents but also remote ones by leveraging Amazon web services to solve the vehicle
parking problem.

Furthermore, road surface conditions have a significant impact on transport safety and driving comfort. For this area,
the road surface state classification (including dry, wet, snow, ice, and water)94 and road crack detection93 were discussed.

4.2 Perception of vehicles

Vehicle perception covers various aspects, such as vehicle detection, vehicle classification, vehicle identification, and
driving behavior.
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4.2.1 Vehicle detection

Vehicle detection can find out vehicles in the surrounding environment without the need to distinguish vehicles. In partic-
ular, vision-based vehicle detection involves filtering vehicles from an image’s background. Appearance-based methods,
for example, detect vehicles directly from images. In such methods, a variety of appearance features can be used as cues for
vehicle detection, from the more straightforward image features like edges and symmetry features to general and robust
features like HOG features, Gabor features and Haar-like features.138

Before deep learning, ANNs were thought to be out of favor for vehicle detection, since they require several parameters
to tune, and the training results tend to converge to a local optimum.99 Thus, researches were focused on classifiers whose
training converges to a global optimum, such as SVM and AdaBoost. SVM was used as a classifier in vehicles detection
with different features, such as HOG96 and Haar-like features.98 Compared to SVM classifiers, AdaBoost offers advantages
in automatically finding relevant features for classification in a vast feature pool, and it was proved to have impressive
performance in vehicle detection.97 However, the training process of AdaBoost is quite time-consuming, so to tackle this
weakness, an improved AdaBoost algorithm99 was proposed for vehicle detection with Haar-like features. However, in
recent years, deep models have proven to be more accurate for classification and detection across almost all object types.
Especially, CNN can minimize the work for designing features, model objects and the need to rely on additional sensors.95

For example, faster R-CNN95,100 was adopted in vehicle detection.

4.2.2 Vehicle classification

Vehicle classification aims to categorize vehicles into different groups according to their appearance based on vehicle
detection. Compared to typical image classification, vehicle classification, especially fined-grained vehicle classification,
is more challenging. The reason is that many vehicle models are similar and difficult to distinguish. However, each kind of
vehicles presents some unique features, such as logos, wheels, and headlights, which makes slight differences in appear-
ance among different but similar vehicle models. Thus, exploiting these vehicles’ features can improve the classification
accuracy.

Traditional vision-oriented classification uses a shallow classification model, such as SVM139 and RF,140 to classify an
image based on the features extracted from the whole images. Recently, CNN100,101 was widely applied to vehicle classifi-
cation and made a huge breakthrough in learning the feature representation from raw images automatically. Even though
CNN has achieved great success in vehicle classification, each pixel of an image is treated without distinction, which
limits the capability of capturing and highlighting the nuances in the critical features for classification. For fine-grained
classification, CNNVA102 integrates multiglimpse and visual attention mechanism into CNN, and it uses DRL to find the
critical areas of an image to assist vehicle classification.

4.2.3 Vehicle identification

Vehicle identification aims to identify specific vehicles. In contrast to vehicle classification, it can distinguish individuals
and describe the objects in details. Vehicle re-identification (V-reID)8 is an essential branch of vehicle identification,
whose role is to identify if a particular vehicle is the same one as observed on a previous occasion.

V-reID can also be considered as a vehicle tracking problem with multicameras. Both hand-crafted features106 and
deep features107 were exploited in existing vision-based researches of V-reID. Most of these researches focused on utilizing
the license number plate recognition103,104 to identify or reidentify vehicles. Liu et al106,107 considered both hand-crafted
features (color and texture features) and high-level semantic information extracted by CNN for V-reID. Besides, they
exploited Siamese neural network (SNN) for the verification of license number plates of vehicles, which consists of
twin networks that accept distinct inputs but are joined by an energy function at the top. Liu et al108 also utilized the
spatio-temporal cues of vehicles in order to improve the V-reID accuracy for vehicles that are spatially and temporally
close to each other. DRDL105 exploited a two-branch deep CNN to map vehicle images into an Euclidean space where the
L2 distance can be directly used to measure the similarity of two arbitrary vehicles.
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4.2.4 Driving behavior

Driving behavior recognition is the task responsible for recognizing the actions that a vehicle makes, such as braking,
steering, accelerating, and lane changing. Related to vision-enable tasks, CNN can be used to recognize a vehicle braking
through its brake-lights112 and SVM can determine the vehicle orientation.113 On the other hand, kinetics data, such as
speed and acceleration, can be paired with SVM to identify abnormal lane changing111 or with RF for identifying vehicle
steering pattern.110 Besides that, SVM can also be used for some abnormal driving behaviors detection,109 which includes
weaving, swerving, side slipping, fast U-turn, turning with a wide radius and sudden braking.

4.3 Perception of users

One of the main participants of ITS are the users, given their interaction as drivers and pedestrians in the ITS environment.
In this subsection, we highlight the user-oriented perception tasks, grouped under driving style and pedestrian detection.

4.3.1 Recognition of driving style

Driving style141 can be defined as the way the driver controls the vehicle in the context of the driving scene and external
conditions, such as time, weather, and mood. Given that the driver’s fault is one of the most common causes of traffic
accidents,142 driving style plays an essential role in ITS, especially for driving safety and advanced driving assistance
systems. The data used to perform driving style evaluation can be collected from different sources. The most common
sources are smartphones,143 the On Board Diagnostic system (OBD)144 and embedded systems equipped with vision and
kinetic sensors.145 Features are usually extracted from the collected data based on experiments, expertness or heuristics.71

Given the variety of features, numerous researches are motivated to study ML for driving style recognition.
RF is one of the most used algorithms in this task, proving itself as a good alternative to profile driving style from smart-

phone data115 and embedded systems.121 In a similar application, RF was used to identify the same driving style across
multiple vehicles116 and identify specific drivers using data from a single accelerometer sensor.146 Besides that, K-means
clustering is another widespread technique that can be used to group information in datasets accordingly to driver style.
For instance, K-means was applied to classify driver aggressiveness,117 alongside SVM to differentiate drivers120 and along-
side RNN to model lane-changing behavior.118 Another classical technique for recognition is k-NN, which was used by
Vaitkus et al119 to classify driving style into aggressive or normal with 3-axis accelerometer signal statistical features. In
a search to automate features extraction and take advantage of hidden features as well, CNN was used to classify driving
styles with smartphone71 data and DL was exploited to model driving risk from OBD and GPS information.114

4.3.2 Detection of pedestrians

Avoiding collisions with pedestrians is one of the critical aims of safe driving. The main challenges of the pedestrian detec-
tion task are due to the cluttered background and significant occlusions. As many other vision-based tasks, a breakthrough
has been achieved in the field of pedestrian detection thanks to ML (especially DL).147

First, hand-crafted features, such as Haar-like features123 and HOG,122 are used for this task. Recently, deep learning
features have been found to be effective in pedestrian detection. Sermanet et al126 used unsupervised feature learning for
a two-layer CNN based on convolutional sparse coding. On the other hand, Du et al proposed a fused-DNN (F-DNN)124 to
improve the robustness and computational performance of pedestrian detection, while Li et al125 proposed a scale-aware
fast R-CNN model, which has a good performance in detecting pedestrians with different spatial scales. Besides that,
some approaches focus on occlusion handling to improve the accuracy of pedestrian detection. For example, DBN148 was
employed to learn the visibility masks for different body parts, and FasterRCNN was proposed in134 to detect occluded
pedestrians.

4.4 Perception of networking conditions in ITS

Some ITS applications are deployed in an open access data-sharing environment where huge amounts of messages of dif-
ferent types are exchanged. Although congestion and delay in the network cannot be avoided in such an environment,
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their impact can be dampened, especially for critical applications like road hazard warning. This can be done with the clas-
sification and prioritization of messages or applications, where critical ones have more access to network resources. For
this task, the K-means algorithm can be used to cluster messages by classes with different access to resources.128 Another
approach would be to use SL to rank the messages according to their features, like spatial and temporal features,127 or to
rank nodes to decide the next-hop of such messages.129

In open-access ITS networking environment, malicious nodes can insert or modify the exchanged information for
their own advantage. Moreover, attackers can use the interfaces that enable V2X communication as a means to gain
access to private information or even the control of a transportation system. This behavior raises security and privacy
concerns in vehicular networks,149 leveraging the detection of safety hazards as essential in ITS. ML has been exploited
to improve the accuracy and speed of such detection. Some examples include LSTM for controller area network bus
anomaly detection,133 DRL for malicious network traffic detection,131 RF for jamming detection,132 and DBN for intrusion
detection in the in-vehicle networks.130

5 ML-DRIVEN PREDICTION IN ITS

ML approaches have achieved state-of-art performance on prediction problems in ITS, mainly providing tasks that can be
categorized in prediction of traffic flow, travel time, behavior of vehicles, behavior of users, and road occupancy. The ITS
topics related to prediction tasks are grouped in Table 6, which also presents the ML approaches and the role performed
by ML in each topic.

T A B L E 6 Researches on ML-based Prediction for ITS

Category Research Topic ML Role of ML

Traffic 150-153 Traffic flow prediction depicting
temporal dependencies

k-NN, SVR, LSTM Learning traffic patterns with a time
series of traffic data

154-157 Traffic flow prediction depicting
temporal and spatial dependencies

CNN,RNN, GNN,SAE Learning traffic patterns with temporal
and spatial data

158-161 Traffic flow prediction with
correlation between weather and
traffic

DBN Learning traffic patterns considering
the weather feature

Travel time 162,163 Predicting the travel time of road
segments

SVR, LSTM Learning travel time patterns with
temporal feature

164,165 Predicting the travel time of road
segments

RBM, SVM, BRT Learning travel time patterns with
temporal-spatial traffic flow feature

166-168 Travel time prediction of paths for
cars, bus and train

DBN, RNN, DELM Extracting features and learning travel
time pattern

169 Travel time prediction with
segment-based and path-based
approach

LSTM, CNN Temporal dependencies learning and
feature transform

Behavior 170,171 Predicting lane change SVM Classifying the driver’s intention

172 Predicting vehicle steering angle CNN Finding the pattern from vision data

173-175 Vehicle trajectory prediction RNN, LSTM, CNN Inferring future movement of vehicle

176-179 Predicting pedestrian actions CNN, RNN, LSTM Extracting of features and anticipating
actions and trajectory of pedestrian

Road 180,181 Road occupancy prediction for
urban region

CNN Modeling long-term motion

182-184 Parking occupancy prediction SVM, FNN, BRT, LSTM Learning parking occupancy patterns
with temporal data

185,186 Parking occupancy prediction in
spatio-temporal networks

GCN, LSTM, GAT Learning parking occupancy patterns
with temporal-spatial features
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5.1 Prediction of traffic

Forecasting traffic flows is typically a time-series problem. Therefore, traditional methods try to capture temporal depen-
dencies in time series data using classical time-series models, such as the autoregressive moving average.187 Due to the
stochastic and nonlinear nature of traffic flows, traditional methods have a minimal effect. To improve the performance,
some ML approaches, such as k-NN150 and SVR,151 were used to address the traffic prediction problem. In the last cou-
ple of decades, deep learning has drawn a lot of academic and industrial interest in this problem, which is driven by the
expressive DNNs. RNN and LSTM152,153 were also exploited to depict temporal dependencies. To improve the accuracy of
prediction, not only the temporal dependencies but the spatial dependencies should be considered. Generally, CNN188 is
more suitable for finding spatial dependencies from image-like data. However, elementary ANNs, such as RNNs, LSTMs,
and CNNs, fail to obtain spatial and temporal dependencies simultaneously. To deal with this challenge, some studies
tried to combine the characteristics of RNN or LSTM with CNN.154-156,159 Besides that, abundant researches exploited new
architectures of neural networks, such GNN,158 stack autoencoders (SAE)189 and STGCN.157 Furthermore, in addition to
spatial and temporal data, external features, such as the weather,159-161 were considered in traffic flow prediction.

5.2 Prediction of travel time

Travel time prediction is of great importance for traffic control, path planning, vehicle dispatching (eg, busses and trains),
and so on. However, it is a complex and challenging problem, which is affected by diverse factors, including spatial corre-
lations, temporal dependencies, and external conditions (eg, weather and traffic lights). In regard to its implementation,
there are two main approaches: segment-based estimation and path-based estimation. Firstly, the segment-based estima-
tion method splits a path into several road segments (or links). The prediction of travel time is based on the estimation of
the travel time for each segment. Some approaches were proposed to estimate the travel time of road segments, such as
SVR,163 LSTM,162 restricted Boltzmann machine (RBM) and SVM,164 and gradient BRT.165 Although these methods can
estimate travel time of each segment accurately, they fail to capture the traffic conditions of the entire path, such as road
turns, intersections and traffic lights. Thus, merely summing up the travel time of each road segment in the path results in
low accuracy of prediction. Secondly, the path-based estimation method is to estimate the travel time of the entire path190

directly. ML approaches, such as DBN,168 RNN,166 deep extreme learning machines (DELM),167 and graph attention net-
works (GATs),186 showed their strength in solving this problem. However, it is challenging to find a good data set which
covers all possible paths. These problems may reduce confidence in the estimation of travel time with incomplete data sets.

To address these issues of segment-based and path-based methods, some approaches have been proposed. For example,
DeepTTE169 integrated the segment-based and path-based approaches, in which a geo-based convolutional layer is used
to transform the raw GPS sequence to a series of feature maps, and LSTM is used to learn the temporal dependencies of
feature maps.

5.3 Behavior prediction of vehicles and users

Behavior prediction is a fundamental task for many ITS applications, such as in the exchange of intentions performed
in co-operative driving. ML offers potential for automatically predicting the behavior and inferring the action intent of
vehicles and users. Vehicle behavior corresponds to actions of vehicles include braking, steering, lane change and even
moving trajectory. User behavior, in turn, includes motion trajectory and actions of pedestrians (eg, running, crossing the
street, interacting with objects) and the vehicles’ actions induced by drivers considering nonself-driving vehicles.

To offer better performance to ITS automation, the prediction of vehicle behavior is an important issue to tackle.
Due to the complex and dynamic ITS environment, this problem is not as simple as regular moving object tracking.
For example, the vehicle motion is affected by various latent factors including road conditions, traffic rules, and driver’s
driving style. Traditional approaches use sophisticated models to predict vehicles behavior with these factors, such as
dynamic Bayesian network191 and Gaussian mixture models.192 Although these methods claim to have good prediction
accuracy, the complexity of training and manual intervention on factor selection are their drawbacks. ML approaches offer
an opportunity to such issues. For example, SVM170,171 showed good performance in predicting lane changes. On other
hand, the CNN-based approach proposed in Reference 172 was more accurate in predicting car steering angle. Besides,
the trajectory of vehicles can be considered as time sequence data. Thus, RNNs175 and LSTMs174 were used to improve
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vehicle trajectory prediction. Considering some real-time systems have strict time constraints, CNNs173 were proposed to
estimate the vehicle trajectory instead of RNNs and LSTMs.

Prediction of actions of pedestrians is a prerequisite for safe driving, such as for collision avoidance applications.
Traditional model-based methods use hand-crafted factors, such as the walking speed of pedestrians. Furthermore, it is
challenging to combine all factors (for example, road conditions, walking styles of pedestrians) into one model, which
limits the task performance in complex and crowded scenes, such as in an urban environment. Subsequently, the ML
approaches show their strength on this problem, especially in vision-based prediction of human actions.193 Similar to the
prediction of vehicles, CNNs can be used for image analysis of pedestrians, whereas RNNs or LSTMs are convenient to
predict the action and trajectory of pedestrians.176-179

5.4 Prediction of road occupancy

In addition to traffic flows, travel time and behaviors of ITS users, the prediction of road occupancy and parking space
are also in the scope of prediction tasks in ITS.

Road occupancy prediction is a fundamental task for various ITS applications and systems, like collision avoidance
applications. The road occupancy task needs to predict the situation of a set of traffic participants (such as vehicles,
pedestrians and so on) in a segment or a region. Traditional approaches can predict the occupancy of a fixed road segment
with single-lane194 and even road segment with multi-lanes.195 However, the occupancy prediction for a region like an
urban environment is a complex problem. To tackle it, Hoermann et al180,181 proposed a CNN-based approach with an
occupancy grid map.

In addition to the road occupancy, the prediction of parking occupancy is also an essential task. With a reliable
parking occupancy prediction, proper recommendations and navigation of parking location can be made in advance. To
support this strand, a wide range of ML-approaches, such as SVM, FNN,184 gradient BRT,182 and LSTM183 have been
used. Besides, multiple metrics can be considered in occupancy prediction, such as car parking, traffic speed, pedestrian,
parking meter transactions, nearby facilities, and weather conditions. Yang et al185 leveraged graph convolutional neural
networks (GCN) to extract the spatial relationships of traffic flows and utilized LSTM to capture their temporal features.

6 ML-DRIVEN MANAGEMENT IN ITS

The task of management is to plan the actions and distribute resources, supporting ITS applications to achieve its objec-
tives and fair usage of resources (eg, for communication and computation). In this section, ML-driven ITS management is
introduced from two aspects: ITS infrastructure management and ITS resource management. The related work is shown
in Table 7.

6.1 Infrastructure management

Among the different parts of the ITS environment, the infrastructure is the main vector of interaction between applications
and the ITS environment. Because of this, the objectives of ITS applications are achieved through the management of the
ITS infrastructure, mainly categorized in (1) management of traffic signals and (2) management of vehicles.

6.1.1 Traffic signal management

Traffic signal management is a way to alleviate traffic congestion, especially important in urban areas. In the current ITS
deployment stage,2 advanced traffic signal management (such as the vehicle actuated signal control) is mostly imple-
mented based on information from vehicle-actuated detectors, such as loop detectors. These approaches have a limitation
in coping with the fluctuation of traffic demand, especially within short periods. Adaptive traffic signal management,
which can adjust the traffic signal according to the real-time traffic demand, is a more practical approach to alleviate
traffic congestion. Among all the ML, RL is considered as one of the most promising approaches for adaptive traffic signal
management. This is mainly due to the convenience of formulating signal management as a sequential decision-making
problem.
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T A B L E 7 Researches on ML-based management for ITS

Category Research Topic ML
Role
of ML

Signal 196-199 Traffic light management with queue
and traffic

Q-learning Making decisions on traffic light phases

200,201 Traffic light management with position
and speed

DQN, CNN Manage traffic light, and traffic
information extracting

202 Traffic light management in partial
detection

DQN Making decisions on traffic light

203-206 Variable speed limit control Q-learning,
MA-DQN

Making decisions on limited speed

Vehicle 207,208 Planning vehicle path or trajectory SVM, AL Finding trajectory and control vehicles’
actions

209,210 Planning vehicle trajectory with control
motions

DNN,DDPG Offering optimal intelligent driving
maneuver for trajectory

211,212 End-to-end vehicle steering and speed
control

CNN Regressing steering angles and speed from
front-view cameras

213-216 Imitate human behavior for
autonomous vehicle

GAIL, RAIL,
DMN

Driving behavior learning

Networking 217,218 Network resource management to max
the QoE

DDPG Routing paths and bandwidth management

219-222 Network resource management in edge
and mobile network

DRL, MARL Path finding and resource allocation
algorithm

Resource 223 Resource provisioning in vehicular
clouds

DRL, PG Decision making of resource provisioning

224,225 Offload edge computing for the vehicles A3C Optimization offloading decision

226,227 Management of the edge caching in
base stations

Q-learning,
EL

Caching resource provisioning policy
learning

228-231 Optimize network, cache and
computing resources in ITS

DQN Determining an optimal policy in resources
management

Energy 232-234 Optimize RSU’s battery usage Q-learning,
DQN

Energy-efficient adaptive management
algorithm

235,236 Vehicle energy management DRL Adaptive vehicle energy usage algorithm

Early works of RL used Q-learning for traffic light management (green, yellow, and red), considering the number of
waiting vehicles or the queue length,196,197 and the statistics of traffic flow.198,199 However, these parameters are unable
to depict the real traffic situation accurately. With the popularization of modern sensors, more information on traffic is
extracted and transmitted via the vehicular network, such as the traffic speed and vehicle waiting time. Nevertheless, more
information increases the dimension of states, exponentially growing the complexity of traditional RL. To deal with this
complexity, DNNs have been employed in RL, forming DRL. DQN200-202 has been proposed with information of position
and speed. Besides, instead of hand-crafted features, these studies used CNN to extract machine-crafted features from raw
real-time traffic data. Given the growing scale of ITS, some researches investigate promising approaches202 in a partially
observable environment.

Nowadays, modern speed limit signs can be dynamically adjusted according to various factors, such as traffic volume
and weather. Variable speed limit management is a flexible way to improve road condition, increase driving safety, and
reducing travel time. Some proposals used Q-Learning to estimate the optimal speed limits so as to reduce the travel
time204 and decrease traffic congestion.203,205 Besides, in large-scale networks, multi-agent DQN (MA-DQN) under V2I
was used for speed limit control.206
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6.1.2 Vehicle management

The management of vehicles is one of the most critical tasks in modern ITS, especially for autonomous driving. It consists
of two primary components: vehicle path (or trajectory) planning and motion control (such as steering angle and vehicle
speed control). The scenario of vehicle management includes diverse types of events like parking, lane changing, merging,
platooning, and so on.

For path planning, most existing approaches attack this problem by designing a reference path that a vehicle could
approximately follow. For example, SVM was used in Reference208 to provide a safe and feasible path, which has a max-
imum clearance from obstacles. However, a good path-planning approach needs to consider more complex objectives,
including the path length, smoothness, distance to obstacles, lane-keeping, maximum curvature, and so on. Abbeel et al207

utilized AL for trajectories planning (called the designed trajectory) considering a lot of metrics based on a demonstration
set of realistic parking path trajectories. Because of dynamic constraints (eg, the limited steering angle of an autonomous
vehicle) and unforeseen modifications in the environment, some deviations exist between the designed trajectory and
the actual trajectory. Liu et al209 proposed a DNN-based method to find the best parking path trajectory by connecting
the candidate parking path trajectories and steering actions. Besides, DDPG was proposed to plan vehicle trajectory and
decide an optimal driving maneuver.210

Regarding motion control, most previous approaches try to make a good decision on vehicle motion, where percep-
tion and vehicle control are two individual tasks. Inspired by the vision-based perception, motion control can be viewed
as an end-to-end task, where CNN can be used to regress steering angles directly from raw pixels recorded by front view
cameras.211 As an extension, speed control can also be used alongside steering angle as a feature.212 Besides, some works
focused on how to imitate human behavior on vehicle motion control. Xu et al216 imitated human operations on gas
and brake pedals using partly connected multilayered perceptron (PCMLP). DMN,215 a six-layer decision-making net-
work (SDMN), was proposed to learn human decision-making behaviors for autonomous vehicles. GAIL is an excellent
method to predict and simulate human driving behavior, which was used in Reference 214. In nature, human driving
scenes are composed of several vehicles, which are inherently multiagent for imitating multiple human drivers. Reli-
able human driver models must be capable of catching the interaction between different agents. However, GAIL cannot
scale to imitating the behavior of multiple vehicles because of the problem of covariate-shift caused by multiagent set-
ting. Covariate-shift refers to the change in the distribution of the training data and the production data. To solve this
problem, the multiagent RAIL method was proposed in Reference 213 to imitate human driving behavior with emergent
properties caused by multiagent interactions.

6.2 Resource management

ITS leverages ML in infrastructure management to offer services primarily for road safety and efficiency. However,
resource-intensive use-cases (eg, on-demand multimedia video and live traffic reports) require efficient resource alloca-
tion. In support of these use-cases, efficient and intelligent management of local and shared resources is required. In
general, the shared resources are located remotely (cloud computing), leveraging the use of RSUs as gateways. However,
in ITS, cloud resources are extended to include RSUs and OBUs, which form a vehicular cloud.223

Resource management needs to take both the resource availability and the utility of allocation policies into considera-
tion. The previous mainstream approaches of ITS resource management were formulated as optimization problems with
objectives and constraints, that is, the search for optimal solutions. However, this approach is not sufficient in high mobil-
ity networks, such as ITS, given the brevity of optimization results validity. Therefore, ITS needs a more dynamic and
efficient resource provisioning mechanism considering high mobility environments. On the other hand, it is challenging
to formulate a satisfactory objective function that simultaneously accounts for the vastly different goals of the hetero-
geneous vehicular links. To address these issues, ML were applied to resource management. Next, ML-based resource
management is introduced considering each resource category—networking, computing, storage, and energy.

6.2.1 Networking resource management

The communication network in ITS is split into core networking, and the edge and mobile networking. Firstly, the core
networking consists of a set of forwarding equipment with high bandwidth provided by wired links. Secondly, the edge and



22 of 35 YUAN et al.

mobile networks consist of a set of edge nodes (eg, RSUs) and mobile devices (eg, vehicles and smartphones). VANET,237

for example, is a typical scenario in which edge networks and mobile networks are deployed. The networking resources
in VANETs include transmission power, subbands, connections between mobile devices and edge nodes, and connections
between the mobile devices.

Concerning core networking, dynamic resource management with ML has been studied. Through proactive learning
and interaction, the RL framework can manage and allocate resources automatically. Using RL, controllers can observe
the changes in demand and resources; thus, they can act as agents of RL. Different objectives have been researched, such
as maximal Quality of Experience (QoE) in multimedia traffic217,238 and maximal network utility218 using DDPG.

How to allocate the resources of edge and mobile networks has been studied from different context information,
such as communication type (V2I, V2V, unicast, and broadcast), connection-dependency (connection-dependent or
connection-independent), packet payload size and transmission costs. In Reference 219, Q-learning was used to learn
the best routing policy for the last two-hop communications, and edge nodes work as agents, where ML-techniques were
deployed. MARL was used in Reference 239 to manage subband and power allocation for V2V and V2I communications.
In Reference 220, DQN was used to optimize data transmission management with the goal of minimizing transmission
costs. In Reference 221, dueling deep Q-network (DDQN) was proposed to find the most trusted routing path in VANET.

6.2.2 Computing and storage resource management

By our investigation, most of the researches focus on cloud and edge resource management. Besides the centralized cloud,
which usually consists of data centers, vehicular clouds are also prominent in ITS. Edge computing, in turn, is an alterna-
tive to cloud computing, moving the computation and storage to the edge of the network. The current ITS edge computing
environment usually contains a number of edge nodes, including computing nodes (located with multiple base stations),
cloudlet edge computing servers (deployed with wireless access points located at RSUs), and ad hoc vehicular nodes.224

The mainstream objectives of dynamic computing and caching resource management are threefold: (1) maximize
Quality of Service (QoS) and/or QoE,226 (2) minimize overhead and (3) minimize the cost227 of dynamic resource pro-
visioning. For resource management in vehicular clouds, RL was confirmed to be powerful with these objectives.223 For
edge computing, A3C,224225 was used to provide offloading policy. Regarding edge caching management, Q-Learning227

and extreme learning (EL)226 were used to improve the performance of caching in base stations. Furthermore, various
studies jointly considered networking, computing, and caching resource in ITS using DQN.228,230,231,240,241

6.2.3 Energy management

The current trend to reduce greenhouse gas emissions, due to climate change and air quality issues,242 leverages the
importance of electric vehicles (EV) in the transportation sector. However, managing the energy efficiency in EVs is a
problem with a large number of pertinent factors243 (eg, battery charge level and estimated trip time).

Energy management must consider energy optimization based on the current route244 to determine charge/discharge
policies. Such optimization can be done with regression algorithms245 and RL.246 On the other hand, management appli-
cations also have to consider energy-efficient resource management. Given that some RSUs in ITS are powered by battery,
ML, such as Q-learning234 and DQN,232,233 can be used to extend the battery lifetime. Moreover, taking into account the
limited power of vehicles, the energy management of hybrid electric vehicles is an important issue that involves a trade-off
between gasoline and electricity. DQN, for example, was used in vehicular energy management for both electrical236 and
hybrid vehicles.235

7 CHALLENGES AND FUTURE TRENDS

ML are impacting a multitude of ITS applications. However, we believe that existing studies do not represent the full
potential of ML-driven ITS due to both limitations of existing ML approaches and the needs of evolving ITS. In this section,
we discuss challenges and some future trends of ITS that deserve further investigation, which are summarized in Table 8.

Challenges. As highlighted by our survey, ITS tasks and services have made extensive use of ML techniques. Yet,
there are still a number of important challenges that need to be addressed. We discuss some of those below.
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T A B L E 8 Future trends in ITS

Trends Description and keywords Approaches and technologies

Deep sensing High dimensional perception and social transportation Multimodal data fusion and reasoning

Cooperative ITS Efficient and reliable cooperation Cooperative intelligence and learning

Privacy and security enhancement Privacy protection and anomaly detection Federated learning and blockchain

6G ITS Low-latency and ultra-high speed communication In-network computing and SDN

• Safe autonomous driving. Real-time visual understanding of the surrounding environment including the complex social
interactions and behavior of drivers, passengers and pedestrians, which is among the basic components of autonomous
driving, is still an open research question. In addition to understanding the surrounding environment, deciding how
to respond in a safe manner is critical. Also, communicating with other vehicles and people for cooperation are other
important considerations. Indeed, driving is a social process that frequently involves complex interactions with other
drivers, cyclists and pedestrians. In many of these situations, humans rely on extensive intelligence and common sense
(eg, reasoning and anticipating) which robots are still lacking.

• Efficient cooperation in ITS. ML services in ITS are no longer limited to being deployed in centralized and computa-
tionally powerful facilities in the cloud. This is largely due to the breakthroughs in edge computing that have enabled
ML on edge- and end user devices.247 However, due to the fact that edge devices typically exhibit energy and comput-
ing resource limitations, it is still challenging for edge devices to perform complicated ML tasks alone. Intelligence
cooperation is a promising way for device cooperation. Yet, the diversity of ITS applications leads to a wide range of
requirements, some of which are quite stringent.

• Privacy and security concerns. As intelligent vehicles become increasingly connected, applications such as traffic flow
prediction can be achieved by sharing data collected from the vehicle sensors. This, of course, brings up security and
privacy concerns.

7.1 Deep sensing ITS

Most previous works on perception and motion prediction focused on two-dimension (2D). However, in several ITS
scenarios like co-operative navigation, 2D models are not enough to describe three-dimension (3D) real-world objects.
Existing works on 3D perception mainly rely on LiDAR248,249 and monocular cameras.250,251 LiDAR has the following
drawbacks: high cost, relatively short perception range, and sparse information. On the other hand, monocular images
do not offer depth information. The shortages of LiDAR and monocular perception lead to low accuracy in 3D object
perception. Currently, modern camera devices in ITS can generate stereo images that could be used to provide 3D object
perception.252 Besides that, considering the hybrid ITS context where different sources of data are available, how to com-
bine these data to improve the accuracy of 3D perception represents an exciting and critical research area. Furthermore,
tasks with higher dimension, such as four-dimension (4D) perception, are still challenging and critical in ITS, especially
for autonomous driving. The definition of 4D and 5D may have different definition. For example, work in Reference 253
try to do 4D (3D+temporal) tracking, 5D (4D+interactive) interactive event recognition and 5D intention prediction.

Despite high dimensional sensing, social transportation will undoubtedly also be a key element of future transporta-
tion systems. Humans cooperate and interact with each other every day through virtual environments known as social
networks enabling huge data exchange. In the transportation context, social networks are generally accessed through
mobile personal devices which, in conjunction with data entered by the users, provide spatial, temporal and emotional
information about users and their environment.254 From this information, useful models for ITS applications can be
retrieved, such as models for user emotional behavior, mobility pattern, and traffic-related events (eg, accident, street
blocked, scheduled maintenance in traffic equipment).255 In social transportation, the user acts as a social sensor, per-
ceiving the environment with a perspective different from that provided by hardware sensors. Despite being able to
improve ML tasks performance, new types of data sources need to be fused with the data already in place, an endeavor
that is still in early stage of development for both scientific and engineering fields.255 Despite of this, the social approach
for transportation data is being recognized as a field with potential for future researches with a growing number of
related works.256
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Emerging technologies, such as multimodal data fusion257 and deep reasoning,258 are promising avenues for deep
sensing in ITS. Multimodal data fusion aims to integrate datasets from different sources, dimensions and types into a
global space in which both intermodality and cross-modality can be represented in a uniform manner. Deep reasoning
aims at extending neural networks to “learn-to-reason” from data, which opens up new ways to get insights from data
through reasoning.

7.2 Cooperative ITS

One of the ITS aims is to automate the interactions among the infrastructure and vehicles to accomplish cooperative
work. C-ITS259 covers a wide range of applications, relying on the perception, prediction, and management discussed in
this work. Among all the cooperative applications, cooperative driving is probably the most interesting and challenging
one. The idea of cooperative vehicles, jointly with the wireless communication advancements in ITS, highlights the value
of interconnected devices and data sharing in vehicular networks.260 Therefore, exploring how to learn and cooperate in
ITS is a meaningful trend.

Despite currently being considered to become a standard by ETSI, cooperative services in C-ITS, like the collective
perception services (CPS), are still discussing which message exchange methodologies or algorithms should be imple-
mented to improve service performance.261 Also, the dependence between vehicles in C-ITS raises interesting challenges
that aim at balancing the reliability gains resulting and the increased overhead caused by the cooperation.262 Cooperative
intelligence263 can integrate multiple device capabilities (eg, computing and observing) to achieve teamwork with joint
goals and shared intentions, which is a promising avenue to support C-ITS. Cooperative intelligence brings new opportu-
nities in enhancing next-generation ITS,264 which has been exploited in various fields, such as mobility management,33

network control, and resource allocation.222 Existing works explored how to train multiagent cooperatively to make
learning efficient, for example, via centralized learning and networked distributed learning.

7.3 Security and privacy enhancement

Because of the features of sharing data with each other in ITS, ITS exhibits a variety of vulnerabilities that can be subject
to various threats and attacks. For example, the computational capability of OBUs in vehicles grant vehicles significant
computing capability. However, it also enables attackers to occupy computation resources and obtain the private infor-
mation from vehicles. The main security concerns in ITS include integrity, confidentiality, availability, and attacks on
authentication and accountability.265 Although security breaches in ITS are often critical and hazardous, deployment
of comprehensive security enhancement for ITS is challenging in practice. This is due in part to the fact that typically,
ITS systems are quite dynamic with frequent and instantaneous arrivals and departures of vehicles as well as short con-
nection duration. In addition to its dynamic nature and high mobility, the use of wireless communication also makes
ITS systems vulnerable to attacks that exploit the open and broadcast nature of wireless communication. Therefore, the
security design in physical layer was mentioned in Reference 266. However, when the number of ITS devices increases,
the complex propagation environments make the security design more complex. ML thus brings new opportunities to
increase ITS security, for example, anomaly detection.267,268 Moreover, for secure message exchange, blockchain tech-
niques that use consensus mechanisms and encryption algorithms to protect information from being tampered can be
applied.269

The privacy concerns related to sharing individual data hampers cooperation in ITS. For example, in cooperative
driving, vehicles could learn trajectory cooperatively for safe driving. However, vehicles may be unwilling to share
their datasets (eg, on-board videos and records of flying behaviors). Another example is collaborative ITS resource
management, in which local information (eg, locations and feedback) is private. Some existing approaches270-272 try to
offer (partial) privacy protection while promoting cooperative intelligence through cooperative learning. However, they
either lack adequate privacy protection270,271 or incur high communication overheads and latency.272 Therefore, how
to improve the privacy with lower overheads is still an open challenge. Federated learning,273 a promising approach
for privacy protection, finds a way out of the data sharing privacy dilemma by training ML models locally at edge
devices without the need to exchange data. For example, traffic flow prediction with federated learning was presented in
Reference 274.



YUAN et al. 25 of 35

7.4 6G ITS

As described and discussed, both entities and intelligence in modern ITS need to cooperate via communication. To this
end, guaranteeing the reliability and efficiency of communication is also critical for next-generation ITS. Fortunately,
due to the innovation of network technology–the sixth generation (6G), the development of the network has provided a
communication foundation for ITS.

On the one hand, as the successor to 5G cellular technology, the goal of 6G is to offer communication with microsecond
latency. 6G is expected to facilitate significant improvements in the quality of networking services for ITS, especially
for data-intensive and delay-sensitive applications, such as mobile augmented reality.275 However, the emergence of 6G
has raised several new challenges. For example, how to allow vehicles and users to enjoy services (eg, automatic remote
driving) while ensuring their safety with reliable networking. SDN is a solution for this challenge because it can offer
logically centralized control of networking, for example, appropriate networking resource allocation and route to trade-off
between safety control and QoS. A prototype of software-defined vehicular networking was proposed in Reference 276.
Due to the limited battery capacity on vehicles, the authors in Reference 277 further improved the energy efficiency of
software-defined vehicular networking.

On the other hand, 6G, working in conjunction with ML, is envisioned intelligent and innovative network. Using
ML techniques in 6G vehicular networks for vehicular services received considerable attention from research and
communities.278 Furthermore, integration of ML with 6G can motivate and enable various technologies. For example, fed-
erated learning with in-network computing279 was applied to autonomous driving280,281 while considering security issues
in 6G. In a conclusion, research about 6G ITS has just begun, and this is one of the current and future research hotspots.

8 CONCLUSION

ITS is a field of research and development of rapidly evolving technologies folded into different types of platforms for a
myriad of advanced applications. For the deployment and run-time operation of many applications to be effective, the
timely acquisition, processing, and analysis of large volumes of data become an essential cornerstone. Therefore, advances
in ML are considered as key enabling technologies to drive a revolution in ITS. In this survey, we have investigated how
ML has being increasingly proposed to address many of the ITS challenges. To this end, our comprehensive state of the
art literature survey covers many-fold perspectives grouped into ITS ML-driven supporting tasks, namely perception,
prediction, and management. We also outline some trends that are likely to contribute to the continuous shaping of the
future of ITS. We expect this survey to provide basic knowledge for beginners and to encourage new research and insights
to the vibrant field of ITS.
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NOTATIONS
5G Fifth generation
6G Sixth generation
A3C Asynchronous actor-critic agents
AC Actor critic
AdaBoost Adaptive boosting
AL Apprenticeship learning
ANNs Artificial neural networks
APs Access points
BRT Boosted regression trees
C-ITS Cooperative intelligent transportation system
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CNNs Convolutional neural networks
CPS Collective perception services
DBN Deep belief networks
DDPG Deep deterministic policy gradients
DDQN Dueling deep Q-network
DELM Deep extreme learning machines
DL Deep learning
DNNs Deep neural networks
DPG Deterministic policy gradient
DQN Deep Q-network
DRL Deep reinforcement learning DRL
ELM Extreme learning machine
eRCNNs Error-feedback recurrent convolutional neural networks
ETSI European telecommunications standards institute
EV Electric vehicles
F-DNN Fused deep neural networks
FCNs Fully convolutional neural networks
FNNs Fully-connected neural networks
GAIL Generative adversarial imitation learning
GATs Graph attention networks
GCNs Graph convolutional neural networks
GNNs Graph neural networks
ICA Independent component analysis
IoV Internet of Vehicles
ITS Intelligent transportation system
k-NN k-nearest neighbors
LiDARs Light radars
LR Linear regression
LSTM Long short-term memory
MA-DQN Multi-agent DQN
MARL Multi-agent reinforcement learning
ML Machine learning
OBD On board diagnostic system
OBUs On-board units
PCA Principal component analysis
PCMLP Partly connected multilayered perceptron
PG Policy gradients
QoE Quality of Experience
QoS Quality of Service
RAIL Reward augmented imitation learning
RBMs Restricted Boltzmann machines
RBM Restricted Boltzmann machine
RF Random forest
RL Reinforcement learning
RNNs Recurrent neural networks
RSUs Road-side units
SAE Stack autoencoders
SDMN Six-layer decision-making network
SDN Software defined networking
SL Supervised learning
SNN Siamese neural network
STGCN Spatio-temporal graph convolutional neural networks
SVM Support vector machine
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SVR Support vector regression
UAVs Unmanned aerial vehicles
UL Unsupervised learning
USDOT U.S. department of transportation
V-reID Vehicle re-identification
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VANET Vehicular ad-hoc network
Yolo You only look once
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132. Puñal O, Aktaş I, Schnelke CJ, Abidin G, Wehrle K, Gross J. Machine learning-based jamming detection for IEEE 802.11: design and

experimental evaluation. Proceedings of the 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM); 2014:1-10; IEEE.

133. Taylor A, Leblanc S, Japkowicz N. Anomaly detection in automobile control network data with long short-term memory networks.
Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA); 2016:130-139; IEEE.

134. Zhang S, Yang J, Schiele B. Occluded pedestrian detection through guided attention in CNNs. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2018:6995-7003; IEEE.

135. Tang T, Wang Y, Yang X, Wu Y. A new car-following model accounting for varying road condition. Nonlinear Dyn. 2012;70(2):1397-1405.
doi:10.1007/s11071-012-0542-8

136. Kim S-W, Liu W, Ang MH, Frazzoli E, Rus D. The impact of cooperative perception on decision making and planning of autonomous
vehicles. IEEE Intell Transp Syst Mag. 2015;7(3):39-50.

137. Baró X, Escalera S, Vitrià J, Pujol O, Radeva P. Traffic sign recognition using evolutionary adaboost detection and forest-ecoc classifica-
tion. IEEE Trans Intell Transp Syst. 2009;10(1):113-126.

138. Yang Z, Pun-Cheng LS. Vehicle detection in intelligent transportation systems and its applications under varying environments: a review.
Image Vis Comput. 2018;69:143-154.

139. Chen Z, Pears N, Freeman M, Austin J. Road vehicle classification using support vector machines. Proceedings of the 2009 IEEE
International Conference on Intelligent Computing and Intelligent Systems; Vol. 4, 2009:214-218; IEEE.

140. Joshi N, George B, Vanajakshi L, et al. Application of random forest algorithm to classify vehicles detected by a multiple inductive loop
system. Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems; 2012:491-495; IEEE.

141. Martinez CM, Heucke M, Wang F-Y, Gao B, Cao D. Driving style recognition for intelligent vehicle control and advanced driver assistance:
a survey. IEEE Trans Intell Transp Syst. 2018;19(3):666-676.

142. Singh S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report; 2015.
143. Engelbrecht J, Booysen MJ, van Rooyen G-J, Bruwer FJ. Survey of smartphone-based sensing in vehicles for intelligent transportation

system applications. IET Intell Transp Syst. 2015;9(10):924-935.
144. Baltusis P. On board vehicle diagnostics. SAE Technical Paper, Technical report; 2004.
145. Kaplan S, Guvensan MA, Yavuz AG, Karalurt Y. Driver behavior analysis for safe driving: a survey. IEEE Trans Intell Transp Syst.

2015;16(6):3017-3032.
146. Li Z, Zhang K, Chen B, Dong Y, Zhang L. Driver identification in intelligent vehicle systems using machine learning algorithms. IET

Intell Transp Syst. 2018;13(1):40-47.
147. Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V. Computer vision and deep learning techniques for pedestrian detection and tracking:

a survey. Neurocomputing. 2018;300:17-33.
148. Ouyang W, Wang X. A discriminative deep model for pedestrian detection with occlusion handling. Proceedings of the 2012 IEEE

Conference on Computer Vision and Pattern Recognition; 2012:3258-3265; IEEE.
149. Qu F, Wu Z, Wang F-Y, Cho W. A security and privacy review of VANETs. IEEE Trans Intell Transp Syst. 2015;16(6):2985-2996.
150. Chang H, Lee Y, Yoon B, Baek S. Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences. IET

Intell Transp Syst. 2012;6(3):292-305.
151. Jeong Y-S, Byon Y-J, Castro-Neto MM, Easa SM. Supervised weighting-online learning algorithm for short-term traffic flow prediction.

IEEE Trans Intell Transp Syst. 2013;14(4):1700-1707.
152. Ma X, Tao Z, Wang Y, Yu H, Wang Y. Long short-term memory neural network for traffic speed prediction using remote microwave

sensor data. Transp Res C Emerg Technol. 2015;54:187-197.
153. Tian Y, Pan L. Predicting short-term traffic flow by long short-term memory recurrent neural network. Proceedings of the 2015 IEEE

International Conference on Smart City/SocialCom/SustainCom (SmartCity); 2015:153-158; IEEE.
154. Cheng X, Zhang R, Zhou J, Xu W. Deeptransport: learning spatial-temporal dependency for traffic condition forecasting. Proceedings of

the 2018 International Joint Conference on Neural Networks (IJCNN); 2018:1-8; IEEE.
155. Wang J, Gu Q, Wu J, Liu G, Xiong Z. Traffic speed prediction and congestion source exploration: a deep learning method. Proceedings

of the 2016 IEEE 16th International Conference on Data Mining (ICDM); 2016:499-508; IEEE.
156. Wu Y, Tan H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework; 2016. arXiv

preprint arXiv:1612.01022.
157. Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting; 2017. arXiv

preprint arXiv:1709.04875.
158. Shahsavari B, Abbeel P. Short-term traffic forecasting: modeling and learning spatio-temporal relations in transportation networks using

graph neural networks. Technical report no. UCB/EECS-2015-243, University of California at Berkeley; 2015.
159. Jia Y, Wu J, Ben-Akiva M, Seshadri R, Du Y. Rainfall-integrated traffic speed prediction using deep learning method. IET Intell Transp

Syst. 2017;11(9):531-536.

info:doi/10.1007/s11071-012-0542-8


32 of 35 YUAN et al.

160. Koesdwiady A, Soua R, Karray F. Improving traffic flow prediction with weather information in connected cars: a deep learning approach.
IEEE Trans Veh Technol. 2016;65(12):9508-9517.

161. Soua R, Koesdwiady A, Karray F. Big-data-generated traffic flow prediction using deep learning and dempster-shafer theory. Proceedings
of the 2016 International Joint Conference on Neural Networks (IJCNN); 2016:3195-3202; IEEE.

162. Duan Y, Lv Y, Wang FY. Travel time prediction with LSTM neural network. Proceedings of the 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC); 2016:1053-1058; IEEE.

163. Wu C-H, Ho J-M, Lee D-T. Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst. 2004;5(4):276-281.
164. Niu X, Zhu Y, Zhang X. DeepSense: a novel learning mechanism for traffic prediction with taxi GPS trace. Proceedings of the 2014 IEEE

Global Communications Conference; 2014:2745-2750.
165. Zhang F, Zhu X, Hu T, Guo W, Chen C, Liu L. Urban link travel time prediction based on a gradient boosting method considering

spatiotemporal correlations. ISPRS Int J Geo-Inf . 2016;5(11):201.
166. Chen C-H. An arrival time prediction method for bus system. IEEE Internet Things J. 2018;5(5):4231-4232.
167. Oneto L, Fumeo E, Clerico G, et al. Train delay prediction systems: a big data analytics perspective. Big Data Res. 2018;11:54-64.
168. Siripanpornchana C, Panichpapiboon S, Chaovalit P. Travel-time prediction with deep learning. Proceedings of the 2016 IEEE Region 10

Conference (TENCON); 2016:1859-1862; IEEE.
169. Wang D, Zhang J, Cao W, Li J, Zheng Y. When will you arrive? estimating travel time based on deep neural networks. Proceedings of the

32nd AAAI Conference on Artificial Intelligence; 2018.
170. Dogan Ü, Edelbrunner J, Iossifidis I. Autonomous driving: a comparison of machine learning techniques by means of the prediction of

lane change behavior. Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics; 2011:1837-1843.
171. Kim IH, Bong J-H, Park J, Park S. Prediction of driver’s intention of lane change by augmenting sensor information using machine

learning techniques. Sensors. 2017;17(6):1350.
172. Maqueda AI, Loquercio A, Gallego G, García N, Scaramuzza D. Event-based vision meets deep learning on steering prediction for

self-driving cars. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018:5419-5427.
173. Djuric N, Radosavljevic V, Cui H, Nguyen T, Chou FC, Lin TH, Schneider J. Motion prediction of traffic actors for autonomous driving

using deep convolutional networks; 2018. arXiv preprint arXiv:1808.05819.
174. Kim B, Kang CM, Kim J, Lee SH, Chung CC, Choi JW. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent

neural network. Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC); 2017:399-404;
IEEE.

175. Ondruska P, Posner I. Deep tracking: seeing beyond seeing using recurrent neural networks. Proceedings of the 13th AAAI Conference
on Artificial Intelligence; 2016.

176. Rehder E, Wirth F, Lauer M, Stiller C. Pedestrian prediction by planning using deep neural networks. Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA); 2018:1-5.

177. Xu Y, Piao Z, Gao S. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2018:5275-5284.

178. Xue H, Huynh DQ, Reynolds M. SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. Proceedings of the 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV); 2018:1186-1194; IEEE.

179. Zhang P, Ouyang W, Zhang P, Xue J, Zheng N. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition; 2019.

180. Hoermann S, Bach M, Dietmayer K. Dynamic occupancy grid prediction for urban autonomous driving: a deep learning approach with
fully automatic labeling. Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018:2056-2063;
IEEE.

181. Hoermann S, Bach M, Dietmayer K. Learning long-term situation prediction for automated driving. Proceedings of the 2017 16th IEEE
International Conference on Machine Learning and Applications (ICMLA); December 2017:1000-1005; IEEE.

182. Alajali W, Wen S, Zhou W. On-street car parking prediction in smart city: a multi-source data analysis in sensor-cloud environ-
ment. Proceedings of the International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage;
2017:641-652; Springer, New York, NY.

183. Shao W, Zhang Y, Guo B, Qin K, Chan J, Salim FD. Parking availability prediction with long short term memory model. Proceedings of
the International Conference on Green, Pervasive, and Cloud Computing; 2018:124-137; Springer, New York, NY.

184. Zheng Y, Rajasegarar S, Leckie C. Parking availability prediction for sensor-enabled car parks in smart cities. Proceedings of the 2015
IEEE 10th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP); 2015:1-6; IEEE.

185. Yang S, Ma W, Pi X, Qian S. A deep learning approach to real-time parking occupancy prediction in spatio-termporal networks
incorporating multiple spatio-temporal data sources; 2019. arXiv preprint arXiv:1901.06758.

186. Fu K, Meng F, Ye J, Wang Z. Compacteta: a fast inference system for travel time prediction. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining; 2020:3337-3345; ACM, New York, NY.

187. Das S. Time Series Analysis. Princeton, NJ: Princeton University Press; 1994.
188. Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y. Learning traffic as images: a deep convolutional neural network for large-scale transportation

network speed prediction. Sensors. 2017;17(4):818.
189. Lv Y, Duan Y, Kang W, et al. Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst.

2015;16(2):865-873.



YUAN et al. 33 of 35

190. Wang Y, Zheng Y, Xue Y. Travel time estimation of a path using sparse trajectories. Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; 2014:25-34; ACM, New York, NY.

191. Gindele T, Brechtel S, Dillmann R. Learning driver behavior models from traffic observations for decision making and planning. IEEE
Intell Transp Syst Mag. 2015;7(1):69-79.

192. Wiest J, Höffken M, Kreßel U, Dietmayer K. Probabilistic trajectory prediction with Gaussian mixture models. Proceedings of the 2012
IEEE Intelligent Vehicles Symposium; 2012:141-146; IEEE.

193. Kong Y, Fu Y. Human action recognition and prediction: a survey; 2018. arXiv preprint arXiv:1806.11230.
194. Althoff M, Dolan JM. Online verification of automated road vehicles using reachability analysis. IEEE Trans Robot. 2014;30(4):903-918.
195. Althoff M, Magdici S. Set-based prediction of traffic participants on arbitrary road networks. IEEE Trans Intell Veh. 2016;1(2):187-202.
196. Abdoos M, Mozayani N, Bazzan AL. Holonic multi-agent system for traffic signals control. Eng Appl Artif Intell. 2013;26(5-6):1575-1587.
197. El-Tantawy S, Abdulhai B, Abdelgawad H. Design of reinforcement learning parameters for seamless application of adaptive traffic signal

control. J Intell Transp Syst. 2014;18(3):227-245.
198. Arel I, Liu C, Urbanik T, Kohls A. Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell Transp

Syst. 2010;4(2):128-135.
199. Balaji P, German X, Srinivasan D. Urban traffic signal control using reinforcement learning agents. IET Intell Transp Syst.

2010;4(3):177-188.
200. Gao J, Shen Y, Liu J, Ito M, Shiratori N. Adaptive traffic signal control: deep reinforcement learning algorithm with experience replay

and target network; 2017. arXiv preprint arXiv:1705.02755.
201. Genders W, Razavi S. Using a deep reinforcement learning agent for traffic signal control; 2016. arXiv preprint arXiv:1611.01142.
202. Zhang R, Ishikawa A, Wang W, Striner B, Tonguz O. Partially observable reinforcement learning for intelligent transportation systems;

2018. arXiv preprint arXiv:1807.01628.
203. Walraven E, Spaan MT, Bakker B. Traffic flow optimization: a reinforcement learning approach. Eng Appl Artif Intell. 2016;52:203-212.
204. Zhu F, Ukkusuri SV. Accounting for dynamic speed limit control in a stochastic traffic environment: a reinforcement learning approach.

Transp Res C Emerg Technol. 2014;41:30-47.
205. Li Z, Liu P, Xu C, Duan H, Wang W. Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at

freeway recurrent bottlenecks. IEEE Trans Intell Transp Syst. 2017;18(11):3204-3217.
206. Wang C, Zhang J, Xu L, Li L, Ran B. A new solution for freeway congestion: cooperative speed limit control using distributed

reinforcement learning. IEEE Access. 2019.7:41947–57.
207. Abbeel P, Dolgov D, Ng AY, Thrun S. Apprenticeship learning for motion planning with application to parking lot navigation. Proceedings

of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008:1083-1090; IEEE.
208. Huy Q, Mita S, Yoneda K. A practical and optimal path planning for autonomous parking using fast marching algorithm and support

vector machine. IEICE Trans Inf Syst. 2013;96(12):2795-2804.
209. Liu W, Li Z, Li L, Wang F-Y. Parking like a human: a direct trajectory planning solution. IEEE Trans Intell Transp Syst.

2017;18(12):3388-3397.
210. Yu L, Shao X, Wei Y, Zhou K. Intelligent land-vehicle model transfer trajectory planning method based on deep reinforcement learning.

Sensors. 2018;18(9):2905.
211. Bojarski M, Del Testa D, Dworakowski D, et al. End to end learning for self-driving cars; 2016. arXiv preprint arXiv:1604.07316.
212. Yang Z, Zhang Y, Yu J, Cai J, Luo J. End-to-end multi-modal multi-task vehicle control for self-driving cars with visual perceptions.

Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR); 2018: 2289-2294; IEEE.
213. Bhattacharyya RP, Phillips DJ, Liu C, Gupta JK, Driggs-Campbell K, Kochenderfer MJ. Simulating emergent properties of human driving

behavior using multi-agent reward augmented imitation learning; 2019. arXiv preprint arXiv:1903.05766.
214. Kuefler A, Morton J, Wheeler T, Kochenderfer M. Imitating driver behavior with generative adversarial networks. Proceedings of the

2017 IEEE Intelligent Vehicles Symposium (IV); 2017:204-211; IEEE.
215. Li L, Ota K, Dong M. Humanlike driving: empirical decision-making system for autonomous vehicles. IEEE Trans Veh Technol.

2018;67(8):6814-6823.
216. Xu L, Hu J, Jiang H, Meng W. Establishing style-oriented driver models by imitating human driving behaviors. IEEE Trans Intell Transp

Syst. 2015;16(5):2522-2530.
217. Huang X, Yuan T, Qiao G, Ren Y. Deep reinforcement learning for multimedia traffic control in software defined networking. IEEE Netw.

2018;32(6):35-41.
218. Xu Z, Tang J, Meng J, et al. Experience-driven networking: a deep reinforcement learning based approach. Proceedings of the IEEE

INFOCOM 2018-IEEE Conference on Computer Communications; 2018:1871-1879; IEEE.
219. An C, Wu C, Yoshinaga T, Chen X, Ji Y. A context-aware edge-based VANET communication scheme for ITS. Sensors. 2018;18(7):2022.
220. Zhang K, Leng S, Peng X, Pan L, Maharjan S, Zhang Y. Artificial intelligence inspired transmission scheduling in cognitive vehicular

communications and networks. IEEE Internet Things J. 2018;6(2):1987-1997.
221. Zhang D, Yu FR, Yang R, Tang H. A deep reinforcement learning-based trust management scheme for software-defined vehicular net-

works. Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications; 2018:1-7;
ACM, New York, NY.

222. Yuan T, da Rocha Neto W, Rothenberg CE, Obraczka K, Barakat C, Turletti T. Dynamic controller assignment in software defined internet
of vehicles through multi-agent deep reinforcement learning. IEEE Trans Netw Serv Manag. 2020;18(1):585-596.



34 of 35 YUAN et al.

223. Salahuddin MA, Al-Fuqaha A, Guizani M. Reinforcement learning for resource provisioning in the vehicular cloud. IEEE Wirel Commun.
2016;23(4):128-135.

224. Qi Q, Ma Z. 2018. arXiv preprint arXiv:1901.04290.
225. Qi Q, Wang J, Ma Z, et al. Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning

approach. IEEE Trans Veh Technol. 2019;68(5):4192-4203.
226. Tanzil SS, Hoiles W, Krishnamurthy V. Adaptive scheme for caching Youtube content in a cellular network: machine learning approach.

IEEE Access. 2017;5:5870-5881.
227. Wang W, Lan R, Gu J, Huang A, Shan H, Zhang Z. Edge caching at base stations with device-to-device offloading. IEEE Access.

2017;5:6399-6410.
228. He Y, Yu FR, Zhao N, Leung VC, Yin H. Software-defined networks with mobile edge computing and caching for smart cities: a big data

deep reinforcement learning approach. IEEE Commun Mag. 2017;55(12):31-37.
229. He Y, Yu FR, Zhao N, Yin H, Boukerche A. Deep reinforcement learning (drl)-based resource management in software-defined and

virtualized vehicular ad hoc network. Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular
Networks and Applications; 2017:47-54; ACM, New York, NY.

230. He Y, Zhao N, Yin H. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach.
IEEE Trans Veh Technol. 2018;67(1):44-55.

231. Tan LT, Hu RQ. Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans Veh Technol.
2018;67(11):10 190-10 203.

232. Atallah R, Assi C, Khabbaz M. Deep reinforcement learning-based scheduling for roadside communication networks. Proceedings of the
2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt); 2017:1-8; IEEE.

233. Atallah RF, Assi CM, Khabbaz MJ. Scheduling the operation of a connected vehicular network using deep reinforcement learning. IEEE
Trans Intell Transp Syst. 2018;99:1-14.

234. Atallah RF, Assi CM, Yu JY. A reinforcement learning technique for optimizing downlink scheduling in an energy-limited vehicular
network. IEEE Trans Veh Technol. 2017;66(6):4592-4601.

235. Hu Y, Li W, Xu K, Zahid T, Qin F, Li C. Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning.
Appl Sci. 2018;8(2):187.

236. Qi X, Luo Y, Wu G, Boriboonsomsin K, Barth MJ. Deep reinforcement learning-based vehicle energy efficiency autonomous learning
system. Proceedings of the 2017 Intelligent Vehicles Symposium (IV); 2017:1228-1233; IEEE.

237. Hartenstein H, Laberteaux L. A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag. 2008;46(6):164-171.
238. Zhang H, Dong L, Gao G, Hu H, Wen Y, Guan K. DeepQoE: a multimodal learning framework for video quality of experience (QoE)

prediction. IEEE Trans Multimed. 2020;22(12):3210-3223.
239. Ye H, Li GY. Deep reinforcement learning for resource allocation in V2V communications. Proceedings of the 2018 IEEE International

Conference on Communications (ICC); 2018:1-6; IEEE.
240. Khan LU, Yaqoob I, Tran NH, Kazmi SA, Dang TN, Hong CS. Edge-computing-enabled smart cities: a comprehensive survey. IEEE

Internet Things J. 2020;7(10):10 200-10 232.
241. He Y, Liang C, Zhang Z, et al. Resource allocation in software-defined and information-centric vehicular networks with mobile edge

computing. Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall); 2017:1-5.
242. Bakker S, Trip JJ. Policy options to support the adoption of electric vehicles in the urban environment. Transp Res D Transp Environ.

2013;25:18-23.
243. Rigas ES, Ramchurn SD, Bassiliades N. Managing electric vehicles in the smart grid using artificial intelligence: a survey. IEEE Trans

Intell Transp Syst. 2015;16(4):1619-1635.
244. Vogel A, Ramachandran D, Gupta R, Raux A. Improving hybrid vehicle fuel efficiency using inverse reinforcement learning. Proceedings

of the 26th AAAI Conference on Artificial Intelligence; 2012.
245. Ermon S, Xue Y, Gomes C, Selman B. Learning policies for battery usage optimization in electric vehicles. Proceedings of the Joint

European Conference on Machine Learning and Knowledge Discovery in Databases; 2012:195-210; Springer, New York, NY.
246. Liu T, Hu X, Li SE, Cao D. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle.

IEEE/ASME Trans Mechatron. 2017;22(4):1497-1507.
247. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc

IEEE. 2019;107(8):1738-1762.
248. Chen X, Ma H, Wan J, Li B, Xia T. Multi-view 3D object detection network for autonomous driving. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR); July 2017.
249. Ku J, Mozifian M, Lee J, Harakeh A, Waslander SL. Joint 3D proposal generation and object detection from view aggregation. Proceedings

of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018:1-8.
250. Mousavian A, Anguelov D, Flynn J, Kosecka J. 3D bounding box estimation using deep learning and geometry. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition; 2017:7074-7082; IEEE.
251. Xu B, Chen Z. Multi-level fusion based 3D object detection from monocular images. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition; 2018:2345-2353.
252. Li P, Chen X, Shen S. Stereo R-CNN based 3D object detection for autonomous driving; 2019. arXiv preprint arXiv:1902.09738.
253. Xue J, Fang J, Li T, et al. BLVD: building a large-scale 5D semantics benchmark for autonomous driving; 2019. arXiv preprint

arXiv:1903.06405.



YUAN et al. 35 of 35

254. Wanichayapong N, Pruthipunyaskul W, Pattara-Atikom W, Chaovalit P. Social-based traffic information extraction and classification.
Proceedings of the 2011 11th International Conference on ITS Telecommunications; 2011:107-112.

255. Zheng X, Chen W, Wang P, et al. Big data for social transportation. IEEE Trans Intell Transp Syst. 2015;17(3):620-630.
256. Lv Y, Chen Y, Zhang X, Duan Y, Li NL. Social media based transportation research: the state of the work and the networking. IEEE/CAA

J Automat Sin. 2017;4(1):19-26.
257. Gao J, Li P, Chen Z, Zhang J. A survey on deep learning for multimodal data fusion. Neural Comput. 2020;32(5):829-864.
258. Tran T, Le V, Le H, Le TM. From deep learning to deep reasoning. Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining; 2021:4076-4077; ACM, New York, NY.
259. Sjoberg K, Andres P, Buburuzan T, Brakemeier A. Cooperative intelligent transport systems in Europe: current deployment status and

outlook. IEEE Veh Technol Mag. 2017;12(2):89-97.
260. Javed MA, Zeadally S, Hamida EB. Data analytics for cooperative intelligent transport systems. Veh Commun. 2019;15:63-72.
261. Thandavarayan G, Sepulcre M, Gozalvez J. Generation of cooperative perception messages for connected and automated vehicles; 2019.

arXiv preprint arXiv:1908.11151.
262. Javed MA, Hamida EB, Al-Fuqaha A, Bhargava B. Adaptive security for intelligent transport system applications. IEEE Intell Transp Syst

Mag. 2018;10(2):110-120.
263. Dafoe A, Hughes E, Bachrach Y, et al. Open problems in cooperative AI. Proceedings of the NeurIPS Cooperative AI Workshop; 2020.
264. Dafoe A, Bachrach Y, Hadfield G, Horvitz E, Larson K, Graepel T. Cooperative AI: machines must learn to find common ground. Nature.

2021;593(7857):33-36.
265. Takefuji Y. Connected vehicle security vulnerabilities [commentary]. IEEE Technol Soc Mag. 2018;37(1):15-18.
266. ElHalawany BM, El-Banna AAA, Wu K. Physical-layer security and privacy for vehicle-to-everything. IEEE Commun Mag.

2019;57(10):84-90.
267. Khan Z, Chowdhury M, Islam M, Huang C, Rahman M. Long short-term memory neural networks for false information attack detection

in software-defined in-vehicle network; 2019. arXiv:1906.10203v2.
268. Han ML, Kwak BI, Kim HK. Event-triggered interval-based anomaly detection and attack identification methods for an in-vehicle

network. IEEE Trans Inf Forens Secur. 2021;16:2941-2956.
269. Lu Y, Huang X, Zhang K, Maharjan S, Zhang Y. Low-latency federated learning and blockchain for edge association in digital twin

empowered 6G networks. IEEE Trans Ind Inform. 2021;17(7):5098-5107.
270. Peng B, Rashid T, de Witt CAS, et al. Facmac: factored multi-agent centralised policy gradients; 2020. arXiv preprint arXiv:2003.06709.
271. Sunehag P, Lever G, Gruslys A. Value-decomposition networks for cooperative multi-agent learning based on team reward. Proceedings

of the 17th International Conference on Autonomous Agents and MultiAgent Systems; 2018:2085-2087.
272. Zhuo HH, Feng W, Xu Q, Yang Q, Lin Y Federated reinforcement learning; 2019. arXiv preprint arXiv:1901.08277.
273. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions; 2019. arXiv preprint

arXiv:1908.07873.
274. Liu Y, Yu JJQ, Kang J, Niyato D, Zhang S. Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J.

2020;7(8):7751-7763.
275. Siriwardhana Y, Porambage P, Liyanage M, Ylianttila M. A survey on mobile augmented reality with 5G mobile edge computing:

architectures, applications, and technical aspects. IEEE Commun Surv Tutor. 2021;23(2):1160-1192.
276. Sadio O, Ngom I, Lishou C. Design and prototyping of a software defined vehicular networking. IEEE Trans Veh Technol.

2020;69(1):842-850.
277. Kumar N, Chaudhry R, Kaiwartya O, Kumar N, Ahmed SH. Green computing in software defined social internet of vehicles. IEEE Trans

Intell Transp Syst. 2021;22(6):3644-3653.
278. Tang F, Kawamoto Y, Kato N, Liu J. Future intelligent and secure vehicular network toward 6G: machine-learning approaches. Proc

IEEE. 2019;108(2):292-307.
279. He J, Yang K, Chen H-H. 6G cellular networks and connected autonomous vehicles. IEEE Netw. 2021;35(4):255-261.
280. Zhou X, Liang W, She J, Yan Z, Wang KI-K. Two-layer federated learning with heterogeneous model aggregation for 6G supported internet

of vehicles. IEEE Trans Veh Technol. 2021;70(6):5308-5317.
281. Khan LU, Tun YK, Alsenwi M, Imran M, Han Z, Hong CS. A dispersed federated learning framework for 6G-enabled autonomous driving

cars; 2012. arXiv:2105.09641v1.

How to cite this article: Yuan T, DaRocha W, Rothenberg CE, Obraczka K, Barakat C, Turletti T. Machine
learning for next-generation intelligent transportation systems: A survey. Trans Emerging Tel Tech.
2022;33(4):e4427. doi: 10.1002/ett.4427


	Machine learning for next&hyphen;generation intelligent transportation systems: A<?xmltexpenalty @M ?> surveyhspace *{3pt}
elax 
elax 
elax 
	1 INTRODUCTION
	2 ITS OVERVIEW
	2.1 Working definition of<?xmltex
obreak ?> ITS
	2.2 ITS applications<?xmltexvspace *{-0pt}?>
	2.3 Application&hyphen;driven ITS framework
	2.3.1 ITS environment
	2.3.2 Infrastructure layer
	2.3.3 Resource layer
	2.3.4 Orchestration layer
	2.3.5 ITS application realm
	2.4 ITS application tasks
	2.4.1 Perception tasks
	2.4.2 Prediction tasks
	2.4.3 Management tasks
	3 MACHINE LEARNING FOR ITS
	3.1 Machine learning
	3.1.1 Supervised learning
	3.1.2 Unsupervised learning
	3.1.3 Reinforcement learning
	3.1.4 Deep learning and<?xmltex
obreak ?> neural networks
	3.2 ML meets ITS
	3.2.1 ML pipeline
	3.2.2 ML for<?xmltex
obreak ?> ITS tasks
	4 ML&hyphen;DRIVEN PERCEPTION IN ITS
	4.1 Perception of<?xmltex
obreak ?> road
	4.1.1 Perception of<?xmltex
obreak ?> road signs
	4.1.2 Perception of<?xmltex
obreak ?> surrounding scene and<?xmltex
obreak ?> road conditions
	4.2 Perception of<?xmltex
obreak ?> vehicles
	4.2.1 Vehicle detection<?xmltexvspace *{-0pt}?>
	4.2.2 Vehicle classification<?xmltexvspace *{-3pt}?>
	4.2.3 Vehicle identification<?xmltexvspace *{-3pt}?>
	4.2.4 Driving behavior<?xmltexvspace *{-5pt}?>
	4.3 Perception of<?xmltex
obreak ?> users<?xmltexvspace *{-3pt}?>
	4.3.1 Recognition of<?xmltex
obreak ?> driving style<?xmltexvspace *{-3pt}?>
	4.3.2 Detection of<?xmltex
obreak ?> pedestrians<?xmltexvspace *{-3pt}?>
	4.4 Perception of<?xmltex
obreak ?> networking conditions in<?xmltex
obreak ?> ITS
	5 ML&hyphen;DRIVEN PREDICTION IN ITS
	5.1 Prediction of<?xmltex
obreak ?> traffic
	5.2 Prediction of<?xmltex
obreak ?> travel time
	5.3 Behavior prediction of<?xmltex
obreak ?> vehicles and<?xmltex
obreak ?> users
	5.4 Prediction of<?xmltex
obreak ?> road occupancy
	6 ML&hyphen;DRIVEN MANAGEMENT IN ITS
	6.1 Infrastructure management
	6.1.1 Traffic signal management
	6.1.2 Vehicle management
	6.2 Resource management
	6.2.1 Networking resource management
	6.2.2 Computing and<?xmltex
obreak ?> storage resource management
	6.2.3 Energy management
	7 CHALLENGES AND FUTURE TRENDS
	7.1 Deep sensing ITS
	7.2 Cooperative ITS
	7.3 Security and<?xmltex
obreak ?> privacy enhancement
	7.4 6G ITS
	8 CONCLUSION
	
ormalfont 
mfamily �ontsize {10}{13}�ontseries {b}�ontshape {tr}selectfont mathversion {bold}leftskip z@ 
ightskip z@ plus1filACKNOWLEDGMENTS
	
ormalfont 
mfamily �ontsize {10}{13}�ontseries {b}�ontshape {tr}selectfont mathversion {bold}leftskip z@ 
ightskip z@ plus1filDATA AVAILABILITY STATEMENT
	
ormalfont 
mfamily �ontsize {10}{13}�ontseries {b}�ontshape {tr}selectfont mathversion {bold}leftskip z@ 
ightskip z@ plus1fil{Notations}
	letterspaceeleven {REFERENCES}

