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Brazil
david.moura@eb.mil.br

Christian Esteve Rothenberg
University of Campinas (UNICAMP)

Brazil
chesteve@dca.fee.unicamp.br

Abstract—5G communication technologies promise reduced
latency and increased throughput, among other features. The
so-called enhanced Mobile Broadband (eMBB) type of services
will contribute to further adoption of video streaming services.
In this work, we use a realistic emulation environment based on
5G traces to investigate how Dynamic Adaptive Streaming over
HTTP (DASH) video content using three state-of-art Adaptive
Bitrate Streaming (ABS) algorithms is impacted in static and
mobility scenarios. Given the wide adoption of end-to-end
encryption, we use machine learning (ML) models to estimate
multiple key video Quality of Experience (QoE) indicators
(KQIs) taking network-level Quality of Service (QoS) metrics as
input features. The proposed feature extraction method does not
require chunk-detection, significantly reducing the complexity
of the monitoring approach and providing new means for QoE
evaluation of HAS protocols. We show that our ML classifiers
achieve a QoE prediction accuracy above 91%.

Index Terms—5G, QoE, TLS, machine learning, QoS,
HTTPS, DASH, HAS

I. INTRODUCTION

Video content providers such as YouTube, Netflix, Ama-
zon Prime, and Hulu use HTTP adaptive streaming (HAS)
with HTTPS to deliver end-to-end encrypted video streaming
services [2]. Cisco predicts that the HAS traffic will be at
the top of traffic load with 82% from all Internet traffic
by 2022 [1]. This increase in HAS traffic has opened
many research dimensions. While encryption is necessary,
network providers face many challenges in monitoring and
managing their network resources because encryption limits
their visibility to Quality of Experience (QoE) and Quality of
Service (QoS) metrics. In addition, traditional network mon-
itoring techniques rely on Deep Packet Inspection (DPI) to
assess Key Performance Indicators (KPIs). However, network
operators have limited power for traffic inspection in current
network scenarios due to Transport Layer Security (TLS)
encryption mechanisms, which provide a secure and private
connection with end-to-end encryption [1].

Recently, QoS to QoE mapping has received a lot of
attention [3, 13, 14]. To this end, methods based on machine
learning offer promising avenues for QoE inference based
on network-level QoS metrics. In this work, we examine
encrypted QoS features derived from real 5G network traces
to estimate QoE indicators. We select three state-of-the-

art Adaptive Bitrate Streaming (ABS) algorithms for video
quality adaptation, namely: (i) Hybrid – Elastic, (ii) Buffered
– BBA, and (iii) Rate-based – Conventional [11]. The main
contributions of this work can be therefore summarized as:

• QoE assessment in 500 ms time window with varying
bandwidth in static and mobile 5G scenarios. This is the
smallest granularity proposed so far for the detection of
anomaly and troubleshooting approaches. The analysis
is undertaken through objective QoE models such as the
P.1203 QoE standard [8, 6].

• A proposal of a machine learning classifier to estimate
QoE based on packets length distribution into (10-90)
percentile in 0.5 s intervals. Moreover, the classifiers
are unaware of the specific ABS algorithm and 5G
scenarios, using only network QoS metrics (throughput
and packets) and not requiring any chunk detection.

II. RELATED WORK

Previous works support that stalls, resolutions and bitrate
are the main reasons that affect end users QoE [10]. However,
other factors cannot be ignored as well, such as ABS
adaptation mechanisms. Similarly, it has also been observed
that continuous quality switching is also a relevant QoE
factor [4].

In a recent study, a research based on YouTube QoE
prediction used packet level information such as packet
size, arrival time, and packet length [14]. Another research
conducted on cellular networks considering same sorts of
packet level information and KPIs such as stall and bitrate
etc [3]. In another study authors used objective QoE metrics
of YouTube to map user level QoE such as number of
stalling events, total stalling time, initial delay [13]. Most
of research used YouTube as a reference to conduct their
respective studies ignoring different adaptation algorithms
for different types of services. Thus, in our previous work
we find QoS features such as per-segment (RTT, throughput,
packets) that can be mapped to objective QoE metrics [11,
9]. but, many techniques become challenging when traffic is
encrypted with HTTPS.

In this work, we consider only packets level statistics to
find QoE class from encrypted video stream. In contrast



to our preliminary work, here, we present a QoS feature
extraction method and video-QoE prediction with varying
bandwidth in static and mobile 5G scenarios.

III. APPROACH

Our primary purpose is to introduce methods that make
it easier to estimate QoE from encrypted QoS features. In
Algorithm 1, we present a method to extract QoS features
from packet captures (pcap traces). We first initialize three
Arrays, A, C and QoS, to store packets length, packets
time and QoS features in a 0.5 s stream. We iterated from
Time 0 to entire video session S with a step size of 0.5 s.
We saved packets length and packets time in Arrays A and
C. Next (lines 9− 14), we extract packets from Array A,
and check if packets length greater than 100, then increment
the counter variable gt 100. In addition to that, on line 13,
we convert packets length to bits/s. We compute all these
features until Array A total values. On line 15, we compute
throughput in 0.5 s. Next (lines 16−18), we convert packets
length A into the distribution of (10 − 90) percentile for
0.5-time. On line 19, we compute the average time between
packets followed by average time of packets length greater
than 100 as AT gt100. Finally we have total packets in
Array A on line 21. On line 22, the resulting fourteen QoS
features stored in Array QoS and used as inputs to machine
learning classifiers to estimate QoE into three classes (Bad,
Average, Good). For QoE labeling, we leverage video player
(goDASH) logs at 0.5 s time slots and take aggregated values
of P.1203, stall, bitrate, resolutions which were running at
that moment using arrival and delivery of segment feature
available in the goDASH log files. Then, we define output
values based on QoE model P.1203 classes, namely, Poor
if the output value is between 0 and 2, Average, if it fits
between 2 and 3, and Good if the observed value ranges
between 3 and 5.

Algorithm 1 Features extraction method
1: S = 120s
2: A = Array ()
3: C = Array ()
4: QoS = Array ()
5: gt 100 = 0 . Packet length greater than 100
6: for T ime = 0 To S STEP + 0.5seconds do
7: A() = Array of (Packets length in 0.5s)
8: C() = Array of (Packets time in 0.5s)
9: for E = 0 To Count of A do

10: if Length in A[E] > 100 then . Packet length
11: gt 100 = gt 100 +1
12: end if
13: TP = TP + (A[E] ∗ 8) . Throughput in 0.5s as bits/s
14: end for
15: TP = TP/0.5s . Throughput in 0.5s
16: for P = 10 To 90 do
17: P percentile of A
18: end for
19: AT = Average-time of packets in A
20: AT gt100 = Average-time of packets in A greater than 100
21: T = Total packets as Count of array A
22: QoS = (10− 90)P, gt 100, T, AT, TP,AT gt100
23: end for
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Fig. 1: QoS features extraction and ML steps.

IV. EXPERIMENTAL SETUP

The complete setup consists of topology with 2 Open
vSwitches (switch 1 and switch 2). A DASH client streaming
from the server (Caddy) 1 hosting DASH video named Sintel
encoded in eight different resolutions. For emulation, we
used Mininet 2 and goDASH [7] an-open source DASH video
player. To change bandwidth on the link between switch 1
and switch 2 we use Linux traffic control (TC) 3 - a traffic
controller in the Linux kernel. Figure 1 illustrates all of the
methodological steps used during experiments.

We use 2-second segment duration x264 animated video
titled Sintel, sourced from a publicly available 4K DASH
video dataset [5]. Total video length is 14 minutes, however
we stream 2 minutes i.e, 2x60 (segments)=120s. We use three
different state-of-art ABS algorithms (i) Hybrid – Elastic, (ii)
Buffered – BBA, and (iii) Rate-based – Conventional, repre-
senting the different categories of ABS for QoE evaluation
and prediction. The network bandwidth values are based on
the 5G trace parameters [11]. We design a bash script that
read 5G trace value from excel sheet and changes downlink
bandwidth parameter after every 4 seconds using Linux TC
(Hierarchical Token Bucket) between switch 1 and switch
2. We design two cases of 5G mobility, i) case with low to
high bandwidth, ii) a combination of high and low bandwidth
traces.4. In static cases we keep bandwidth a combination of
both high and low bandwidth traces. The motivation to select
4s to change bandwidth is to analyze the behavior of two

1https://caddyserver.com/
2http://mininet.org/
3https://linux.die.net/man/8/tc
4https://github.com/razaulmustafa852/encrypted



consecutive segments downloaded. Moreover, the mobility
case with low bandwidth traces are used to observe stall,
quality switching and other objective KPIs.

V. QOE ANALYSIS

In this section, we present objective QoE (resolutions) and
QoS metrics (throughput in bits per second) analyses. it is
worthwhile noting that the throughput presented in Figure 3
is calculated by each time slot (0.5s) in a sequential manner.

In scenario (a) (smaller QoS), Conventional is a combi-
nation of different resolution fluctuations, as presented in
Figure 2 (a). In Elastic and BBA cases, we see a consistent
behaviour and less quality switching, as shown in Figure 2
(b, c). For all three ABS types in scenario (a) , Conventional
presents a better throughput. However, Elastic and BBA
present an opposite effect, i.e., less resources availability
driving to less throughput, while a higher resources level
allows better throughput, as we can see in Figure 3 (a, b).

For the other hand, in scenario (b), focused in higher
QoS, segments in Conventional prefer low resolution at
the beginning, leading into resolution increase over time.
Additionally, we have identified Conventional preference on
higher resolution settings, as presented in Figure 2 (d), and
high throughput, as shown in Figure 3 (b).

Finally, we can see in Figure 2 (d) that all segments
remained in 1920x1080 mode after (7-8 segments), while
the resolution pattern remained as the same in Elastic case,
as shown in Figure 2 (e). Accordingly, we see a lot of
consistency in the resolution for the BBA case, as we can
see in Figure 2 (f).

VI. RESULTS

For a comprehensive analysis of the dataset, requiring less
computational overhead during the pre-processing phases,
such as scaling and normalization, we selected Random
Forests (RF), k-nearest neighbors (KNN) and Artificial Neu-
ral Network (ANN) for classification. We show 5-folds —
ANN (best classifier) results in Table I for case static,
mobility and for case when we input both static and mobility
QoS features to model presented as All.

TABLE I: 5-folds accuracy for case Mobility and Static

K-folds Mobility % Static % All %
1st 0.96 0.91 0.91
2nd 0.96 0.88 0.91
3rd 0.95 0.91 0.91
4th 0.96 0.87 0.91
5th 0.95 0.89 0.92

VII. CONCLUSION

In this paper, we present a methodology for building a
prediction model on encrypted DASH video replaying 5G
traces. We consider state-of-art Adaptive Bitrate Stream-
ing (ABS) algorithms commonly found in HTTP Adaptive
Streaming (HAS) and stream video content by varying the

network quality-of-service (bandwidth) sampled from real
5G traces. We applied different machine-learning classifiers
on the dataset that can accurately estimate QoE classes (Poor,
Average, Good) derived from the ITU-T Rec. P.1203 QoE
standard mode 0 considering metadata only, bitrate, frame
rate, and resolution. We find that packet level statistics can be
effectively used to estimate QoE from QoS metrics. In future
work, we are interested to investigate stall prediction as well
as the impact of both bandwidth and throughput, i.e. when
both values change simultaneously. In addition, we would
like to investigate the performance of multiple DASH client
streaming from the same server. Finally, we intend to update
our publicly available DASH QoE evaluation framework [12]
featuring an interactive Jupyter notebook and Binder service
to reproduce the experiments presented in this work among
other related research results.
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Fig. 2: Bandwidth, scenarios a) (smaller) and b) (higher) QoS bandwidth: Resolutions change for 60 video segments
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Fig. 3: Throughput of 60 segments stream for both (smaller, higher) bandwidth scenario using three ABS
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