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Abstract—Fifth Generation (5G) networks provide high
throughput and low delay, contributing to enhanced Quality
of Experience (QoE) expectations. The exponential growth of
multimedia traffic pose dichotomic challenges to simultaneously
satisfy network operators, service providers, and end-user ex-
pectations. Building QoE-aware networks that provide run-time
mechanisms to satisfy end-users’ expectations while the end-to-
end network Quality of Service (QoS) varies is challenging, and
motivates many ongoing research efforts. The contribution of
this work is twofold. Firstly, we present a reproducible data-
driven framework with a series of pre-installed Dynamic Adap-
tive Streaming over HTTP (DASH) tools to analyse state-of-art
Adaptive Bitrate Streaming (ABS) algorithms by varying key
QoS parameters in static and mobility scenarios. Secondly, we
introduce an interactive Jupyter notebook and Binder service
providing a live analytical environment, which processes the
output dataset of the framework and compares the relationship
of five QoE models, three QoS parameters (RTT, throughput,
packets), and seven different video KPIs.

Index Terms—5G, QoE , QoS, ABS algorithm, DASH

I. INTRODUCTION

5G is expected to support significantly high bandwidth
content with speeds in excess of 10 GB/s, very low (i.e. 1-
millisecond) end-to-end over-the-air latency, real-time infor-
mation transmission, and lower network management opera-
tion complexity [1]. The key challenge of streaming video in
5G is soothing the juxtaposition of the increased growth of
multimedia traffic and user satisfaction. On average, multime-
dia users spend six hours a day watching different streaming
content1. Furthermore, the recent coronavirus (COVID-19)
pandemic has dramatically increased the amount of video
streaming in 2020 [2].

The impact of end-user QoE for multimedia traffic ulti-
mately depends on underlying network-level Quality of Ser-
vice (QoS) performance. QoE represents the user perception
on the quality of a provided service whereas QoS relates to
network quality indicators (e.g., latency, packet loss).

1https://www.nielsen.com/us/en/insights/report/2018/
q2-2018-total-audience-report/

In HTTP Adaptive Streaming (HAS), the choice of the
Adaptive Bitrate Streaming (ABS) algorithm plays a signif-
icant role in end-user satisfaction [3]. In recent years, the
goal of many ABS algorithms is to provide interrupt-free
videos and hence provide maximum achievable video quality.
These ABS algorithms works on the principal by calculating
network condition and utilize the maximum resources thus
provide better video quality during a video session. Com-
paring different ABS algorithms is a non-trivial task, some
algorithms focus on smooth streaming, resulting in lower
bitrate and fewer quality switching. Other algorithms aim
is to provide high quality content, utilizing more network
resources, irrespective to the number of stalls (freezing).
Ultimately, the main goal of all ABS algorithms is to provide
best the QoE to end-users.

With the exponential growth of mobile data and smart
devices, the investigation of 5G QoE in terms of video quality
assessment has become a research focus both in industry
and academia. Video perceived quality in 5G network is
critical thus various methods have been used to optimize
video delivery over 5G networks such as video compression
and better resource utilization [4], [5]. In 5G/future networks
QoE management is crucial as the estimation and resource
allocation for better video quality should be completed
quickly. Although 5G networks are still at conceptual stage,
it is necessary to understand the correlation between ABS
behaviour, its metrics for QoE and network-level QoS.

The contributions presented in this paper are divided
into two phases: Phase 1 presents a multi-user reproducible
framework containing (i) godash - an ABS video player [6],
(ii) Caddy - a WSGI web server hosting DASH video
content, (iii) Mininet-Wifi - a wireless network emulation
environment [7], (iv) Scripts - Bash scripts to apply the 5G
bandwidth values sampled from the 5G traces 2 at run-time;

25G traces taken from publicly available dataset that contains through-
put, channel and context information for 5G networks: https://github.com/
uccmisl/5Gdataset

https://www.nielsen.com/us/en/insights/report/2018/q2-2018-total-audience-report/ 
https://www.nielsen.com/us/en/insights/report/2018/q2-2018-total-audience-report/ 
https://github.com/uccmisl/5Gdataset
https://github.com/uccmisl/5Gdataset


Fig. 1: Phase 1 (Stage 1), DASH streaming environment,
Phase 2 (Stage 2), godash logfiles and per-segment QoS
processing, Phase 2 (Stage 3), Jupyter notebook interacting
with the processed dataset

and Python scripts to process the per segment QoE/QoS logs
created during experimentation.
Phase 2 receives as input the processed QoE/QoS dataset
from the first phase and demonstrates an interactive Jupyter
notebook to analyse the ABS algorithm with specific ob-
jective QoE KPIs, per-segment QoS features and the output
of five QoE models Claey [8], Dunamu [9], Yin [10], and
Yu [11] and ITU-T Rec. P.1203 standard [12], [13] (mode
0 considering metadata only, bitrate, frame rate, and resolu-
tion). The framework uses the pre-installed ABS algorithms
provided by godash [6]. The available algorithms are cate-
gorised as: Rate-based — Conventional [14] and Exponential,
Buffer-based — Logistic [15] and BBA [16], and Hybrid —
Arbiter+ [17] and Elastic [18].

The rest of the paper is structured as follows: Section II
presents background and related work. Section III describes
the proposed framework in Phase 1 followed by the dynamic
analysis of Phase 2 in Section IV. The experimental use case
is presented in Section V. Section VI concludes our paper
and discuses some future work.

II. BACKGROUND AND RELATED WORK

In adaptive streaming, video content is split into multiple
segments, typically with an individual segment duration of
between 2 to 20 seconds. Each segment is then encoded
with a different video bitrate. The ABS algorithm decides
on the quality of the segments to be downloaded based on
the network’s available resources. To ease access to video
content on the associated webserver, a Media Presentation
Description (MPD) file is created. This MPD file contains
general information such as clip length, segment duration,
DASH video profile, but more importantly the MPD file
contains metrics specific to each of the video representation
available. Each representation represents a different quality

level determined by video resolution, average encoding bi-
trate, thus offering an easy mechanism to permit the player
adapt video quality for the user. Once the player downloads
the MPD file, the ABS algorithm can adjust quality by
selecting the most appropriate segment for each video time
period.

The ABS algorithms are divided into three major cat-
egories i) rate-based [19], buffer-based [3] and hybrid-
based [17]. In rate-based, a decision is made on the delivery
rate of the previously downloaded segments. Buffer-based
algorithms monitor the state of the playback buffer, while in
hybrid both playback buffer and delivery rate are considered
for the choice of the next segment.

Many studies have been carried out to find the key
indicators for better video quality such as TCP slow-start
[20] and ”ON-OFF” status of HAS players [21]. Similarly,
Saamer et.al, [22] evaluated two major commercial play-
ers for their findings (Smooth Streaming, Netflix) and one
open source player (OSMF). Several QoE key factors have
been identified such as how long a video streaming player
take to converge to maximum bitrate, what happens when
two adaptive video players compete for available bandwidth
on a bottleneck link. The authors also point out how the
adaptive streaming perform with respect to live content. [23]
provides a comprehensive comparative study of state-of-art
ABS algorithms. Authors have concluded that buffer-based
ABS shows better QoE as compared to rate- and hybrid-based
algorithms. In another study that evaluated both objective
and subjective QoE, but the authors only consider throughput
based algorithms [24].

We have found that many studies that exist in the literature
lack a comprehensive comparison of HAS algorithms. Also,
many ABS algorithms are limited in their functionality as the
authors have not released their framework for reproducibility.
Additionally, in comparison to previous studies, much atten-
tion has been given to QoE evaluation’s rather than state-
of-art per-segment QoS to QoE mapping. The QoS to QoE
mapping is necessary to deliver more evidence-based higher
quality video content through understanding how limited
network resources can impact quality of experience of end-
users. To fill this gap, we provide a flexible framework for
analysis of DASH videos considering many combinations of
real 5G traces as mentioned in Section I. The framework
is equipped with many other options such as the ability to
change the video content for streaming, a range of different
ABS algorithms to compare QoS to QoE metrics, and a rich
set of different evaluations scenarios.

III. PHASE 1 - STREAMING FRAMEWORK

We present a re-producible DASH framework supporting
the evaluation of six state-of-art ABS algorithms through the
emulation of ten different real 5G traces to stream DASH
videos. The provided tools process seven objective Key Per-
formance Indicators (KPIs), five QoE models output (P.1203,
Yin, Yu, Duanmu, Clae), and three per-segment QoS features
extracted from trace files (RTT, throughput, packets). The
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Fig. 2: Exponential - Conventional: case a) and b); QoS (RTT), stalls, and QoE (P.1203) score per video segment for 60
video segments

TABLE I: Conventional: godash log file of first 5 video segments, Case Mobility (6-14) Mbps

Seg # Algorithm Seg Dur Codec Width Height FPS Play Pos RTT P.1203 Clae Duanmu Yin Yu

1 conventional 2000 H264 320 180 24 0 25.025 1.878 0.000 51.077 -5760.485 0.240
2 conventional 2000 H264 320 180 24 2000 78.83 1.878 0.480 46.477 -11520.970 0.24
3 conventional 2000 H264 384 216 24 4000 12.09 1.9 0.417 46.898 718.545 0.286
4 conventional 2000 H264 512 288 24 6000 16.86 2.106 0.314 47.826 1097.122 0.404
5 conventional 2000 H264 640 360 24 8000 74.93 2.287 0.302 48.77 1863.42 0.54

TABLE II: Processed dataset first 5 video segments of 2s for case (6-14) Mbps using Conventional ABS algorithm

Total Users Host Segment Stall Bitrate Buffer RTT Throughput Packets P.1203 Clae Duanmu Yin Yu

2 1 1 0 8 2000 0.14 7443037.97 2 1.87 0 51.07 -5760.48 0.24
2 1 2 0 329 4000 27.65 240702.88 30 1.87 0.48 46.47 -11520.97 0.24
2 1 3 0 720 4643 31.39 280181.47 64 1.9 0.41 46.89 718.54 0.28
2 1 4 0 1408 5212 10.33 465851.21 117 2.10 0.31 47.82 1097.12 0.40
2 1 5 0 1191 5277 27.68 325186.14 104 2.28 0.30 48.77 1863.42 0.54

framework encompasses a DASH streaming environment, the
pre-processing of network, video client logs and associated
scripts. For ease of use, the framework includes a Virtual
Machine (VM) [25] with all software and dependencies
installed as shown in Figure 1. The VM provides all tools and
the environment needed to stream DASH content in a multi-
user realistic 5G network. Currently, the VM showcases a
single combination of mobility, host competition, and link
bandwidth parameters to run the Mininet-WiFi emulated
topology, collect godash log(s), pcap file(s), and process the
raw video logs and network data. However, the framework

is versatile and can be easily modified to accommodate
additional DASH algorithms, 5G traces, etc. The proposed
framework provides a convenient mechanism to generate
multimedia traffic processed data. Video instructions on the
framework’s use within the VM are available online [26].
Note that we have released all remaining code 3 used for
processing the dataset for reproducibility. The computational
scripts and utilities are already available in the VM.

3https://github.com/sajibtariq/dashframework

https://github.com/sajibtariq/dashframework


IV. PHASE 2 - DYNAMIC ANALYSIS DEMO

In Phase 2, we provide the processed dataset collected by
running ten different combinations of real 5G traces across
six state-of-art ABS algorithms. We assess the impact of
concurrent video streaming clients (1,...,2), (1,...,3); with all
of the clients streaming from the same server.

The processed dataset generated in Phase 1 is imported
and examined using a Jupyter notebook, a well-known
Web-based interactive environment for data analyses. For
ease of use, the framework integrates the provided VM
with JupyterLab4. For each DASH video-segment, the
Jupyter notebook analyses the impact of five QoE models
(P.1203, Clae, Duanmu, Yin and Yu), seven video client
objective KPIs (arrival time (ms), delivery time (ms), stall
(ms), delivery rate of network (Kbps), segment size (bytes),
bitrate (Kbps) and buffer level (s) after the segment was just
downloaded, and three QoS features (derived from packet
captures).

Note that the data and the notebook hosted on Github are
in read-only (static) mode. However, a live Binder5 service
is available in our GitHub repository [27], allowing inter-
action with the read-only notebook in an executable dynamic
environment. In addition, we provide a video demonstration
on how to use the environment [26]. In the video, we
showcase how to modify the VM generated Jupyter static
notebook as an interactive notebook with the Binder service
and how to visualize changes in the data.

V. EXPERIMENTAL USE CASE

Figure 1 gives an overview of the two phases divided into
three stages: Phase 1 (Stage 1): data acquisition from the
network interface and godash player; Phase 1 (Stage 2):
data pre-processing from godash and the network and Phase
2 (Stage 3): where we use a Jupyter notebook to analyse
and visualise the processed dataset, as shown in Figure 3.

We begin in the VM with Phase 1 (Stage 1) - logs gener-
ation. In this stage, each experiment is performed using the
Mininet-WiFi [7] network emulator as shown in Figure 1,
using the setup detailed in Figure 3. To emulate the HTTP
streaming video, we use a lightweight DASH compatible
video streaming tool called godash [6] at the host node(s)
and Caddy, a WSGI web server, hosting a popular 2-second
segment duration x264 animated video titled Sintel6, sourced
from a publicly available 4K DASH video dataset [28].

To simplify dataset generation for the article, we asses
the impact of 2 and 3 concurrent clients streaming from the
same server. The network bandwidth values are based on
the 5G trace parameters [29]. We select ten combinations of
Mobility and Static (in Mbps); Mobility — (0.5 - 3), (6 -
14), (38 - 10) and (29 - 10); Static — (0.5 - 6), (8 - 57),

4https://jupyterlab.readthedocs.io
5https://mybinder.org
6http://cs1dev.ucc.ie/misl/4K non copyright dataset/2 sec/x264/sintel/

DASH Files/full/sintel enc x264 dash.mpd

(4 - 7.6), (52 - 0.5), (70 - 20) and (72 - 9)7. Note that the
bandwidth during each experiment is changed in real-time
between Switch 1 and Switch 2 link after every 4 seconds
as shown in Figure 1 using Linux Traffic Control (TC) and
Hierarchical Token Bucket (HTB) [30]. A python script is
used to collect per-run pcap by tcpdump8. Later, python
Scapy package is used to get per-segment QoS features from
pcap.

Table I illustrates an example of a godash log file for a
single client in the Mobility (driving) scenario using (6 to 14)
Mbps, with each line representing per segment metrics for the
conventional ABS algorithm. Detailed information on each
feature and ABS algorithms is available in godash [31].

In Phase 1 (Stage 2), a Python script is used to fetch
per segment QoS metrics (RTT, Throughput and Packets)
from the pcap files. We merged the QoS metrics and godash
logfiles output as a single CSV dataset (example presented in
Table II). The first two columns present network context for
each experiment, i.e, (Total Users, Host) indicated as total
users competing for video stream and host number. The next
column has Segments followed by three video KPIs (Stall,
Bitrate and Buffer level) of each corresponding segment. The
QoS features extracted from pcap traces of each segment is
indicated as (RTT, Throughput, Packets) and finally, the five
QoE models provided by godash.

Figure 2 takes information from both Table I and Table
II, and depicts the RTT, stalls and P.1203 score per video
segment for 60 video segments, i.e., 60 × 2s = 120s or 2
minutes of video, for both the conventional and exponential
algorithms in the Mobility (driving) scenario using (6 to 14
Mbps) and (0.5 to 3 Mbps) bandwidth. Note that in the
evaluation of the QoS impact on QoE in Figure 2, the length
of the video file in the experiment is 2 minutes, 2 hosts
competing for video stream considering 5G dynamic cases.
The bandwidth combinations we select gradually increases
from lower to upper limit and 1st user experience is shown
in Figure 2.

It is important to note in Figure 2 that both rate-based
algorithms select wrong segments to stream, which causes the
stalls to appear frequently and ultimately lowering the QoE
as in our case P.1203. We can also observe that Conventional
has slightly better QoE when compared to Exponential. The
QoS feature (RTT) for 60 segments is similar in both cases
(6-14), (0.5-3) Mbps, as presented in Figure 2 (a) and (d).
Exponential experiences more peaks of stalls see Figure 2 (b)
from (10 to 35) segments ultimately causing P.1203 score to
converge to lower values as shown in Figure 2 (c). However,
in less performing networks (0.5-3) Mbps, both algorithms
experience similar stall ratio, see Figure 2 (e), as well as
P.1203 scores with fewer jumps to higher scores, as shown
in Figure 2 (f).

710 5G real cases: https://github.com/sajibtariq/dashframework/tree/
master/Testbed/5g traces

8https://www.tcpdump.org

https://jupyterlab.readthedocs.io
https://mybinder.org
http://cs1dev.ucc.ie/misl/4K_non_copyright_dataset/2_sec/x264/sintel/DASH_Files/full/sintel_enc_x264_dash.mpd
http://cs1dev.ucc.ie/misl/4K_non_copyright_dataset/2_sec/x264/sintel/DASH_Files/full/sintel_enc_x264_dash.mpd
https://github.com/sajibtariq/dashframework/tree/master/Testbed/5g_traces
https://github.com/sajibtariq/dashframework/tree/master/Testbed/5g_traces
https://www.tcpdump.org


Fig. 3: An Ubuntu 18.04 VM including a DASH streaming environment containing: Mininet-Wifi, Jupyter lab and
notebook, godash player, Caddy server and DASH content, tcpdump, and scripts

Fig. 4: Binder, turns the Github notebook into an
interactive notebook in an executable environment for data
analysis

Fig. 5: First user experience (mobility) with Conventional
and Exponential ABS algorithms over (6-14) Mbps. Per-
segment QoS RTT on (y-axis), 60 segments on (x-axis)



Moving now to Phase 2, we use the CSV dataset and create
a Jupyter notebook. The Jupyter notebook and csv
dataset are uploaded from the VM to GitHub and through a
live dynamic Binder service, we can interact, analyse and
visualise the input dataset. To visualise your own data, the
easiest option is to fork our repository [27] and upload your
data to the forked version of it. Figure 4 highlights the outline
and design of the Binder service, while Figure 5 illustrates
some of the features that can be selected to update and revise
the output plots.

VI. CONCLUSIONS

This work presents a reproducible framework which gen-
erates a QoS and QoE metric dataset for DASH experi-
ments using different state-of-art adaptive bitrate streaming
algorithms. A convenient and interactive Binder notebook is
used to demonstrate live analytical environment processing
the dataset output of the framework. We observe the impact
of bandwidth variation on the adaptation strategies of each
category of ABS algorithm (Rate, Buffer and Hybrid), dis-
cerning the relationship between network QoS metrics, video
QoE models and DASH streaming KPI values. Future work
includes further analysis of the impact of other QoS metrics
(e.g., delay and packet loss) on HAS performance and the
support of machine learning research to correlate and predict
QoE based on the observed QoS features.
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