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ABSTRACT
Roll-outs of 5G Mobile Packet Core (MPC) rely on principles and
technologies of Software-Defined Networking (SDN) and Network
Function Virtualization (NFV). While the benefits of SDN and NFV
in terms of flexibility are well-known, how to guarantee data plane
performance for critical 5G services is less clear. Advances in pro-
grammable switch ASICs render an opportunity to offload data
plane virtual network functions (VNFs) running on x86 servers to
programmable hardware featuring strict performance guarantees.
In this work, we present the design and performance evaluation of
a critical element of 5G MPC, namely the virtual Evolved Packet
Gateway (vEPG). We describe the P4-based uplink and downlink
pipelines and evaluate a software and hardware implementation
based on a Barefoot Tofino hardware switch, the ONOS controller,
and P4Runtime support to manage match-action tables. The ob-
tained results show that vEPG hardware implementation runs at
line rate with low latency (<2 µs) and jitter, scaling up to 1.7 millions
active users.
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Figure 1: Performance bottlenecks in NFV infrastructure
and VNF offloading options inmulti-tenant environment to
accelerate packet-processing functions

1 INTRODUCTION
Next-generation mobile network (NGMN) describes twenty five
use cases for 5G [1], many of which require extremely low latency
and high data rates. To satisfy such performance targets and the
rapid traffic growth, next generation Mobile Packet Core (MPC)
calls for flexible, scalable, and cost-effective approaches [2]. To
this end, mobile operators are leveraging key technologies such
as Software-Defined Networking (SDN) [3] and Network Function
Virtualization (NFV) [4].

A network softwarization approach to the MPC provides agility
and flexibility [5] by decoupling the control and data planes, and
cost-effectively moving MPC network functions to computational
pools at strategic data centers [6]. As shown in Fig. 2, user plane en-
tities of MPC are being deployed in telco cloud infrastructures
as Virtual Network Functions (VNFs) on x86 servers, proving
adequate performance for some 5G services. However, for time-
sensitive applications like autonomous driving, robot control and

https://doi.org/10.1145/3359993.3366645
https://doi.org/10.1145/3359993.3366645
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Figure 2: MPC architecture implementation alternatives: (a) Traditional MPC appliances, (b) MPC using SDN and NFV with
full and partial virtualization, and (c) MPC user plane functions offloaded to programmable ASICs.

virtual/augmented reality (VR/AR), there is a need to avoid per-
formance bottlenecks [7] of NFV infrastructures and the non-
deterministic behavior of x86 software stacks [8, 9].

The advent of programmable switch ASICs and high-level
network-specific languages like P4 (Programming Protocol Inde-
pendent Packet Processors) [10] opens the door to offloading user
plane VNFs from x86 servers to the network infrastructure. Figure 1
illustrates VNF offloading options to accelerate packet process-
ing functions in programmable software (SW) or hardware (HW)
switches. Performance bottlenecks due to memory read/writes and
SW/HW resource sharing [9] can be avoided when directly running
network functions in a programmable Top-of-rack (ToR) switch.

In this paper, we investigate offloading MPC user plane func-
tions to P4-capable programmable switch ASICs. More specifically,
we present a P4 implementation of a virtual Evolved Packet Gate-
way (vEPG) that compiles in a Barefoot Tofino switch and uses
the ONOS1 controller to manage the match-action table entries
through P4 Runtime2. To analyze the performance gains when of-
floading the vEPG to a P4 switch ASIC, we also compile the vEPG
P4 pipeline to a high-end x86 using the MACSAD [11] compiler,
which leverages OpenDataPlane (ODP)3 APIs to run P4 applica-
tions on different target platforms (e.g., x86, ARM) at high-speed
(DPDK acceleration). Altogether, the contributions of this paper
are summarized as follows:

(1) vEPG user plane functions design in P44 featuring:
(i) GPRS tunneling protocol (GTP) (de)encapsulation;
(ii) VxLAN (de)encapsulation of GTP flows; (iii) IP routing
towards the Internet and eNodeB nodes; (iv) Management
of Tunnel Endpoint Identifier (TEID) for flow multiplexing
in GTP sessions; (v) Stateless firewall; (vi) Eth/IP forwarding
to/from datacenter gateways.

(2) Implementation of vEPG on Barefoot Tofino hardware switch
using P4 Runtime APIs and the ONOS controller to manage
table entries.

1https://github.com/opennetworkinglab/onos
2https://github.com/p4lang/p4runtime
3https://opendataplane.org/
4https://github.com/intrig-unicamp/macsad-usecases/tree/master/p4-16

(3) Experimental evaluation of (i) performance of ASIC offloaded
vEPG compared to x86 server, (ii) scalability for increasing
active mobile users, and (iii) Barefoot Tofino hardware re-
source utilization.

(4) Memory efficient P4 match+action mapping methods deliv-
ering ~8x increase in table entry capacity (active users).

The remainder of this paper is organized as follows: Sec. 2 de-
scribes the background. Sec. 3 presents the vEPG design in P4 along
the target use case, and Sec. 4 discusses the implementation setup
and performance evaluation. Sec. 5 provides an overview of related
work. Finally, Sec. 6 offers concluding remarks and our future work
activities.

2 BACKGROUND
2.1 Mobile Packet Core (MPC) 101
MPC refers to the core functional components of modern mobile
networks. Figure 2(a) illustrates a traditional Long-Term Evolution
(LTE) MPC network, where the signaling gateway (SGW) routes up-
link and downlink IP traffic to radio network evolved Node B (eNB)
stations. SGWs handle multiple eNodeBs and provide handover
between eNodeBs or between LTE and other 3GPP technologies.
The Packet Data Network Gateway (PGW) connects the MPC with
external IP networks and performs packet filtering, charging, and
Quality of Service (QoS) enforcement as instructed by the Policy
and Charging Rules Function (PCRF).

Unlike the SGW, the PGW acts as anchor point for mobility be-
tween 3GPP and non-3GPP networks. Both SGW and PGWuse GTP
for the communication between eNodeB and PGW via SGW, which
maintains the GTP sessions between eNodeBs and the PGW. The
Mobility Management Entity (MME) is responsible for security pro-
cedure such as end-user authentication with the support of Home
Subscriber Server (HSS), terminal-to-network session handling, and
user tracking across the network.

The Evolved Packet Gateway (EPG) merges the functions of both
SGW and PGW and can be implemented as a physical (bare-metal
appliance) or a virtual node (vEPG VNF).

https://github.com/opennetworkinglab/onos
https://github.com/p4lang/p4runtime
https://opendataplane.org/
https://github.com/intrig-unicamp/macsad-usecases/tree/master/p4-16
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Figure 3: vEPG offloading use case : vEPG-U running on
(a) x86 server and (b) Barefoot Tofino ToR switch.

2.2 Programmable ASICs and P4
Programmable ASICs such as Intel Flexpipe, Cisco Doppler, Cav-
ium (Xpliant) and Barefoot Tofino are emerging networking tech-
nologies that allow developers to add new protocols and custom
packet de-parsing and match-action pipelines.

With growing support, P4 [10] simplifies the programmabil-
ity of datapath pipelines through high-level language constructs.
Programming ASICs with P4 allows implementing feature-rich
datapaths supporting high data rates at deterministic ultra-low la-
tency with less power consumption compared to x86 approaches.
Therefore, the rationale of offloading MPC user plane functions to
programmable ASICs.

3 VIRTUAL EPG P4 PIPELINE & USE CASE
Figures 2 (b) and 2 (c) show SDN- and NFV-basedMPC architectural
approaches with different candidate targets to run MPC gateway
functions. Our goal is implementing in P4 a vEPG combining both
SGW and PGW user plane functions. The target vEPG use cases are
presented in Fig. 3, where (a) vEPG user-plane (vEPG-U) and vEPG
control-plane (vEPG-C) run on the x86 server, and (b) vEPG-U is
offloaded to a programmable ASIC.

We divide the vEPG datapath in uplink and downlink sub-
pipelines where vEPG-UL indicates the traffic coming from user
devices (UD) and vEPG-DL refers to traffic from the Internet to-
wards the users. All implemented user plane functions are given in
Tab. 1. Fig. 4 presents all vEPG implemented functions in terms of
P4 match-action tables. The total size of the P4 program is around
750 lines of code.

Effectively occupying 100% of the available memory footprint
to maximize the amount of active UDs ultimately depends on the
P4 program structure in addition to potential program- and target-
specific compiler optimizations – a topic we scratch the surface of
later in the evaluation section. Next, we provide further details on
the vEPG pipeline.
Infrastructure Virtualization. VxLAN provides the isolation
capabilities among VNFs in multi-tenant environments. VxLAN
(de-)encapsulation of L2 frame within UDP header and handling
outer L2 forwarding and L3 routing towards data center gate-
ways (DCGWs) are common for both vEPG-UL and vEPG-DL. Outer

Table 1: User Plane Functions of vEPG Uplink (vEPG-UL)
and vEPG Downlink (vEPG-DL)

vEPG-UL vEPG-DL

Match Outer L2 and L3
VxLAN Decapsulation
Validate IPv4/GTP

Match vEPG IPv4 Match User Device IPv4
Apply Global Firewall rules

GTP Decapsulation GTP Encapsulation
IP Routing towards Internet IP Routing towards eNodeB

VxLAN Encapsulation
L3 Routing Towards DCGW

Outer L2 Forwarding
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Figure 4: P4-defined vEPG pipelines featuring the main Up-
link (UL) and Downlink (DL) tables

and inner IP and MAC addresses represent underlay and overlay
network, respectively.
L2/Ethernet. Incoming packets are parsed and then passed
through the L2 tables to execute two separate lookups for checking
source and destination outer MAC addresses.
Firewall. After successful key matches in L2 tables, outer IPv4
and GTP headers validity check is performed to select the packet
flow towards UL or DL pipeline. If GTP headers are valid, packets
follow UL, otherwise they pass through the DL pipeline. In both the
cases, the global firewall rule is applied to mitigate the unauthorized
access of servers or EPC network connected to the internet.
GTPDecap/Encap. In GTP (de-)encapsulation , the vEPG removes
or adds GTP headers. GTP encapsulation table lookup is responsi-
ble for checking UDs IP addresses, while GTP decapsulation table
matches vEPG IP address to apply the actions accordingly. Also,
this table manages inner L2/L3 MAC, the TEID, and routes inner IP
packets towards the eNodeB or DCGW.
IPv4 Routing. Outer IP routing towards DCGWs.

4 EVALUATION
Like any HW-SW system design, offloadingMPC gateway functions
to programmable hardware is subject to certain trade-offs. The fixed
memory resources of ASICs provide performance guarantees but
pose hard limits on the number of active UDs, which could be
‘arbitrarily’ large (e.g., 106 - 109) in vSwitch or VM/containers on
high-end x86 servers. Furthermore, in programmable ASICs, match-
action tables are assigned to stages containing limited amount of
resources following specific (fixed) allocation rules.
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Figure 5: Testbed for vEPG evaluation on HW and SW.

After describing testbed, we evaluate the performance of vEPG
in HW and SW targets. The objective is not to directly compare
both targets but to profile their performance behaviour. Finally, we
introduce two P4 code optimization methods to re-design match-
action tables to reach larger active UD capacity.

4.1 Testbed
Figure 5 shows the testbed featuring Open Source Network
Tester (OSNT) [12] as the traffic generator using NetFPGA-SUME
with 10G SFP+ interfaces connected to the device under test (DUT),
in our case (1) Edgecore Wedge 100BF-32X with Barefoot Tofino
ASIC5, or (2) x86 server with Intel Xeon D-1518 processor (4 CPU
cores, Cache 6M, 2,20 GHz) for the vEPG application generated
by the MACSAD compiler for ODP-DPDK x86 targets (cf. [13]).
Moreover, forwarding error correction (FEC) setting is disabled in
the Tofino interfaces.

The same vEPG pipeline functions (Tab. 1) written in P4166 are
used as an input P4 code for the Barefoot andMACSAD compilers to
generate the target images for the TofinoHWand x86 SWplatforms,
respectively. P4Runtime through ONOS controller (version 2.1.0)
REST APIs is used to manage the table entries in the Barefoot
Tofino DUT. From the vEPG P4 code, we create the required java
files such as the pipeline interpreter for mapping between ONOS
known headers/actions to P4 specific entities among other files to
create an ONOS application.

The BB-Gen [14] tool is used to generate the JSON file for the
required table entries to be populated by ONOS and the PCAP
packet traces to feed OSNT to generate the test traffic.

4.2 Performance
We analyze the vEPG performance in terms of latency and through-
put on the hardware switch (Barefoot Tofino HW) and the x86
server (MACSAD SW) for various traffic patterns and packet sizes.
We measure latency under two different load scenarios. Firstly,
OSNT sends packets at 10% of line rate, and, secondly, packets are
transmitted at line rate.

Latency is measured one way end-to-end by OSNT (see Fig. 5)
and includes propagation, transmission, queuing, and processing de-
lays (cf. [12]). OSNT hardware measurements add 16 bytes headers
to the original packet for TX/RX timestamps.

5https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
6Minor differences in P416 code are due to target architecture specificities
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Figure 6: vEPG performance on HW and SW targets.

Throughput is calculated in million packets per second (mpps).
Minimum packet sizes are 140 and 104 bytes for vEPG UL and DL,
respectively. Since 36-byte headers are added/removed during GTP
(de-)encapsulation, the received packet size is modified accordingly.

https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
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For table key matching, we consider 1k unique IP addresses to
apply firewall rules for each Firewall UL and DL table. Since the
number of table entries in the GTP Encap table depends on the
number of UDs, we use 1k, 10k, and 100k unique table entries (UD
IP). A single entry is considered for each of the remaining tables in
the vEPG pipelines.
Performance for different workloads. Due to the Tofino HW
line rate packet processing, the observed performance of vEPG-UL
and vEPG-DL is not influenced by the traffic rate. The latency of
the vEPG on Tofino HW (Fig. 6(a)) remains below 2µs with the
packet size being responsible for the transmission and serialization
delays [15]. Compared to x86 (see Fig. 6(b)), the observed latency
is about 2-4x lower than in case of 10% line rate and 20-40x at line
rate – an evidence of the non-deterministic behavior (cf. large jitter)
of x86 packet processing due to cache misses, branch mis-predicts,
long latency instructions and exceptions, etc. [16].
Increasing active user devices. We now measure latency and
throughput as number of active user devices increases. As shown
in Fig. 6, except for smallest packet sizes (104 bytes), vEPG achieves
line rate on the Tofino HW for all packet sizes when increasing user
devices from 1k to 100k. The throughput is 2-8x higher on the Tofino
hardware compared to x86. Increasing user devices does not affect
the vEPG performance on either platforms due to the deterministic
nature of the hardware ASIC, and the use of hugepages by DPDK to
efficiently handle the TLB (Translation Lookaside Buffers) in case
of x86 servers [9].
Pipeline complexity. As a baseline performance experiment, we
run a simple L2 use case on both platforms and analyze the impact
of the vEPG pipeline complexity (Tab. 2). As one would expect from
the HW implementation, we do not see any significant performance
difference between L2 and vEPG. In contrast, latency and through-
put in the x86 are impacted by the increased pipeline complexity.
These outcomes confirm that, in addition to overall total packet
processing capacity requirements (e.g., 3.2 Tbps of 32x100G inter-
faces), for increasing user plane functions complexity and whenever
strict performance guarantees are required, programmable ASICs
become the candidate design choice.

4.3 Scalability / HW Resource Utilization
We now turn the attention to the scalability properties by analysing
the average ASIC hardware resource utilization for an increasing

Table 2: L2 and vEPG on Tofino HW (highlighted rows) and
x86 (PS: Packet Size in Bytes; 10% of Line Rate; 1k Entries)

PS Average Latency (µs) Throughput (Mpps)
L2 vEPG- vEPG- L2 vEPG- vEPG-

DL UL DL UL
156 5.01 6.17 5.42 5.24 1.98 1.87
156 0.97 1.04 1.04 7.10 5.89 6.02
256 5.52 6.23 6.10 4.20 1.92 1.80
256 1.04 1.10 1.09 4.52 4.00 4.25
512 5.90 7.10 6.23 2.26 1.76 1.85
512 1.24 1.25 1.25 2.34 2.20 2.34

amount of active user devices. We focus the HW resource consump-
tion analysis on the vEPG-DL where the UD IP exact-match lookup
is performed and SRAM becomes the critical resource. We analyze
the resource utilization of different implementation alternatives,
from our initial naive one to more optimized table designs.
Naive Implementation. We use our very first P4-based vEPG
pipeline design for 100k UDs as a baseline to evaluate the SRAM
consumption. As shown in Fig. 7, up to 220k entries could be com-
piled. We observed that large amounts of memory were occupied
by GTP Encap action data (including constant values – hence the
naiveness of the implementation). Under these circumstances, to
scale up the total number of entries, we identified some P4 code
optimization methods based on minimizing the action data per table
entry and memory efficient match+action table splits. The basic
idea is to execute the UD IP lookup on a table with less action data,
reducing the memory consumption and, therefore, allowing for an
increased number of table entries.
Method 1. The UD IP lookup is performed with an action to set the
TEID and destination IP (i.e. eNB address) for downlink sessions,
whereas the remaining actions are executed independently. Under
this arrangement, the GTP Encap table becomes narrower and can
scale up to 850k UDs. For 100k UDs, this method consumes 43% of
SRAM when compared to the naive implementation.
Method 2. The GTP Encap table is divided into two tables, one
for UD’s IP lookup with an action to set the corresponding eNB
ID, and a second table to execute the actions using the eNB ID as a
key to index the eNB 32-bit IP to forward the packets. This method
allows up to 1.73 million(m) table entries for 8k eNBs (13-bit eNB
ID), and 1.29 m entries for 65k eNBs (16-bit eNB ID) – an arguably
over-provisioned design of eNBs in scope of a single vEPG node.
For 100k UDs, compared to the naive approach, 35% and 85% of
SRAM is occupied for 8k and 65k eNBs, respectively. The increased
scale obtained through such a table split method is explained by
the action data bits (16 or 13) saved per entry in the larger GTP
Encap table at the cost of an extra table with fewer entries (65k or
8k) of 32-bit action data (eNB IP) each.

More details about both the methods can be find in the given
reference P4 code.4 Lessons learned from these initial P4 pipeline
design optimization methods suggest that different levels and types
of code optimization techniques should be investigated to achieve
higher scalability by effectively using the target HW resources.
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5 RELATEDWORK
Approaches to re-design MPC [17] include (i) NFV-based [18], (ii)
SDN-based [19], and (iii) SDN/NFV-based-MPC architectures [20].
MPC approaches based on SDN/NFV are prevailing due to flex-
ibility [5] and backward compatibility among other factors [17].
Decoupling the control and user planes of MPC allow them to scale
separately in a cost-effective manner.

In [2, 21, 22], authors propose MPC architectures implementing
SGW and PGW user-plane functions in OpenFlow switches with
GTP tunneling support and MPC control functions executing in the
cloud. [13] and [15] point to P4 programmable switches as capable
of defining complex forwarding pipelines with high performance.

Efforts in [23, 24] are closest to our work on MPC data planes
embracing P4 to overcome well-known limitations from Open-
Flow on protocol flexibility, extensibility, and full hardware support.
[23] presents a P4 implementation of a Broadband Network Gate-
way (BNG) compiled into P4-NetFPGA, Netronome P4-SmartNIC,
and Barefoot Tofino switch. The performance evaluation against
x86 targets provide similar insights compared to our work sustain-
ing the potential gains of hardware offloading approaches. [24]
outlines a VNF offloading approach of S/PGW functionality into a
data center fabric solution for MPC where GTP headers are encap-
sulated in HW switches. The S/PGW pipeline design in P47 follows
the Method 1 implementation described in our work.

6 CONCLUSIONS AND FUTUREWORK
Our research on hardware offloading of MPC user plane gateway
functions running at line rate suggests a promising outlook, featur-
ing low and bounded latency, with the potential to scale to over 1.5
millions of active users in a commercial P4 switch. P4 programs,
as code written in any other programming language, are quite
amenable to optimization. The design of the P4 pipeline tables
may have a very high impact on the final system scalability, as we
observed in our alternative designs and optimization methods.

In future work, we will devote efforts to implement some missing
features of vEPG, such as charging functionality and rate limiting,
in addition to more elaborated traffic management features per user
or service type in spirit of network slicing. In parallel, different P4
code optimization techniques will be studied and generalized to
scale the resource usage of ASIC for stateful applications. Another
research strand towards a highly scalable vEPG approach includes
a hybrid design that dynamically spreads P4 match action tables
and user state across multiple HW switch ASICs and SW servers.

ACKNOWLEDGEMENTS
This work was supported by the Innovation Center, Ericsson Tele-
comunicações S.A., Brazil under grant agreement UNI.63. We would
like to thank the Barefoot FASTER program and Vladimir Gurevich
for the insightful discussions that contributed to our understanding
of memory allocation in the P4 code optimization methods.

REFERENCES
[1] NGMN Alliance 5G Initiative team. Ngmn 5g white paper. White paper, pages

1–125, 17 February, 2015.

7https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/
main/resources/include/spgw.p4

[2] M. Ylianttila. O.L.PerezM.U. Itzazelaia E.M. de Oca J. Costa-Requena, I.A.M. Liyan-
age. SDN and NFV Integration in Generalized Mobile Network Architecture.
IEEE European Conference on Networks and Communications (EuCNC), June 2015.

[3] D. Kreutz, F. M. V. Ramos, P. E. VerÃŋssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76, Jan 2015.

[4] Yong Li and Min Chen. Software-defined network function virtualization: A
survey. IEEE Access, 3:2542–2553, 2015.

[5] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer. Flexibility in softwarized
networks: Classifications and research challenges. IEEE Communications Surveys
Tutorials, 21(3):2600–2636, thirdquarter 2019.

[6] S. Pettersson H. Luning J. Kempf, B. Johansson and T. Nilsson. Moving the mobile
Evolved Packet Core to the cloud. Wireless and Mobile Computing, Networking
and Communications (WiMob), 103:784–791, Oct, 2012.

[7] C. Maciocco K. B. Ramia S. Kapury A. Singhy J. Ermanz V. Gopalakrishnanz
A. S. Rajan, S. Gobriel and R. Janaz. Understanding the bottlenecks in virtualizing
cellular core network functions. Proc. 21st IEEE Int. Workshop Local Metropolitan
Area Netw. (LANMAN), pages 1–6, 2015.

[8] A. S. Rajan A. Mohammadkhan, K. K. Ramakrishnan and C. Maciocco. Consid-
erations for re-designing the cellular infrastructure exploiting software- based
networks. In ICNP, pages 397–413, 2016.

[9] L. Linguaglossa, S. Lange, S. Pontarelli, G. RÃľtvÃąri, D. Rossi, T. Zinner, R. Bifulco,
M. Jarschel, and G. Bianchi. Survey of performance acceleration techniques for
network function virtualization. Proceedings of the IEEE, 107(4):746–764, April
2019.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[11] G. Patra, C. E. Rothenberg, and G. Pongracz. Macsad: High performance dataplane
applications on the move. In 2017 IEEE 18th International Conference on High
Performance Switching and Routing (HPSR), pages 1–6, June 2017.

[12] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington, M. Bruyere, N. Mck-
eown, N. Feamster, B. Felderman, M. Blott, A. W. Moore, and P. Owezarski. OSNT:
Open Source Network Tester. IEEE Network, 28(5):6–12, Sep. 2014.

[13] G. Patra, F. E. Rodriguez, J. S. Mejia, D. L. Feferman, C. E. Rothenberg, and
G. Pongracz. Towards a sweet spot of dataplane programmability, portability and
performance: on the scalability of multi-architecture P4 pipelines. IEEE Journal
on Selected Areas in Communications, 36(6):3–14, 2018.

[14] F. Rodriguez, G. Patra, L. Csikor, C. Rothenberg, P. Vörös S. Laki, and G. Pongrácz.
Bb-gen: A packet crafter for p4 target evaluation. In Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos, SIGCOMM ’18, pages 111–113,
New York, NY, USA, 2018. ACM.

[15] R. Joshi P. G. Kannan and M. C. Chan. Precise time-synchronization in the
data-plane using programmable switching ASICs. ACM Symp. SDN Res, (2):8–20,
2019.

[16] S. Moore V. M. Weaver, D. Terpstra. Non-Determinism and Overcount on Modern
Hardware Performance Counter Implementations. IntâĂŹl Symp. on Performance
Analysis of Systems and Software, 2013.

[17] K. Grinnemo V. Nguyen, A. Brunstrom and J. Taheri. SDN/NFV- based Mobile
Packet Core Network Architectures: A Survey. IEEE Communications Surveys &
Tutorials, 19(3):1567–1602, 2017.

[18] P. Loureiro F. Z. Yousaf, J. Lessmann and S. Schmid. SoftEPC: Dynamic instantia-
tion of mobile core network entities for efficient resource utilization. Proc. IEEE
Int. Conf. Commun. (ICC), pages 3602–3606, 2013.

[19] Z. Mao L. Li and J. Rexford. Toward software-defined cellular networks. Software
Defined Networking (EWSDN), pages 07–12, 2012.

[20] A. S. Rajan A. Mohammadkhan, K. K. Ramakrishnan and C. Maciocco. CleanG:
A clean-slate EPC architecture and control plane protocol for next generation
cellular networks. ACM CoNEXT Workshop Cloud Assist. Netw. (CAN), pages
31–36, 2016.

[21] G. Hasegawa and M. Murata. Joint bearer aggregation and control- data plane
separation in LTE EPC for increasing M2M communica- tion capacity. IEEE Glob.
Commun. Conf. (GLOBECOM), pages 1–6, 2015.

[22] J. Kaippallimalil and H. A. Chan. Network virtualization and direct Ethernet
transport for packet data network connections in 5Gwireless. IEEE Glob. Commun.
Conf. (GLOBECOM), pages 1836–1841, 2014.

[23] R. Kundel, L. Nobach, J. Blendin, H.J. Kolbe, G. Schyguda, V. Gurevich, B. Kold-
ehofe, and R. Steinmetz. P4-BNG: Central Office Network Functions on Pro-
grammable Packet Pipelines. IEEE International Conference on Network and Server
Management (CNSM), pages 21–25, October 2019.

[24] C. Cascone and U. Chau. Offloading VNFs to programmable switches using P4,
March 2018.

https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/main/resources/include/spgw.p4
https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/main/resources/include/spgw.p4

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Mobile Packet Core (MPC) 101
	2.2 Programmable ASICs and P4

	3 VIRTUAL EPG P4 Pipeline & Use Case
	4 EVALUATION
	4.1 Testbed
	4.2 Performance
	4.3 Scalability / HW Resource Utilization

	5 RELATED WORK
	6 CONCLUSIONS AND FUTURE WORK
	References

