P4 Programmable Patch Panel (P7): An Instant 100G Emulated Network on Your Tofino-based Pizza Box

Fabricio Rodriguez
University of Campinas (Unicamp)

Francisco Germano Vogt
University of Campinas (Unicamp)

Ariel Góes De Castro
Federal University of Pampa (Unipampa)

Marcos Felipe Schwarz
Brazilian National Research and Education Network (RNP)

ABSTRACT

Alternatives to run high-fidelity network experiments are traditionally based on virtual and emulation-based environments (e.g., Mininet). While extremely useful for teaching and in support of research practices, existing experimental platforms are commonly limited to transmission speeds of 10Gbps and suffer from performance-fidelity trade-offs as well as inherent scalability constraints. With the programmability that P4 brings to networking researchers and the capabilities of new generation P4 hardware supporting the PSA (Portable Switch Architecture) and TNA (Tofino Native Architecture), it is possible to realize packet processing pipelines that emulate certain network link characteristics and instantiate a network topology to run line-rate traffic using a single physical P4 switch (e.g., Tofino). This is the main contribution of the P7 (P4 Programmable Patch Panel) emulator. In this demonstration, we show how to generate different network topologies starting from a single link to more complex network scenarios featuring various devices and paths, including various link characteristics (e.g., latency, jitter, packet loss, bandwidth) and 100G traffic capacities.

CCS CONCEPTS

- Networks \rightarrow Intermediate nodes; Network simulations; Network experimentation;
- Hardware \rightarrow Emerging technologies.

KEYWORDS

P4, Software Defined Networking, Network Emulator

ACM Reference Format:


1 INTRODUCTION

With increasingly powerful and complex networking environments being worked out by the industry and academia research, notably fueled lately by network programmability advances and efforts

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
https://doi.org/10.1145/3546037.3546046

1Public available at https://github.com/intrig-unicamp/p7

Public available at https://github.com/intrig-unicamp/p7

Figure 1: P7 concept and P4 pipeline representation.

(e.g., P4 [1]), the demand for experimental validation before actual deployment becomes paramount. Accessible and affordable user-friendly testbeds providing line-rate and high fidelity performance for evaluation purposes are tricky to achieve. Researchers’ budgets are commonly limited and broadly impact the quantity and quality of networking devices. In this scenario, preparing and running experiments are frequently limited to small-scale environments (e.g., speeds, number of devices, complexity), emulation/virtualization environments (e.g., Mininet [7], Mininet-WiFi [4]) or simulation-based approaches. In the end, well-known trade-offs of networking experimentation hit the research roadmap and compromise different aspects such as realism, flexibility, scalability, and customizability of the experiments, among others.

In this demo, we present P7 (P4 Programmable Patch Panel)\(^1\) as a high-end yet affordable network emulation platform that overcomes shortcomings from traditional testbed approaches. P7 exploits the capabilities of P4-capable hardware to provide realistic emulation of network topologies using programmable hardware pipeline features such as packet recirculations, port configurations, match+action table abstractions, along with a simple path routing solution. Furthermore, the user/experimenter can connect physical servers to inject custom traffic flows (e.g., PCAP-based or Tofino-based) from a traffic or trace generator (e.g., [11]) to the emulated networking scenario (see Figure 1). Re-playing link performance behavior based on real trace data sets (e.g., 5G access links) is also on the P7 roadmap.

Our P7 efforts adhere to related work on network emulation platforms such as [7] (OS-level virtualization), [5] (OpenFlow-based), [9] (containers and VMs), [6] (virtualization), [8] (simulation framework), and [2] (isolated ports for each emulated switch). The latter is closest to P7 by also exploiting P4 programmable infrastructure and including control plane support in their scope.

2 P7 ARCHITECTURE & DEMO

With a design that prioritizes simplicity, P7 is a hardware-based emulation testbed that allows users to define a target network topology with annotated link metrics in a user-friendly manner. The user experience is very much similar to defining topologies using the
Figure 2: P7 example network topology.

Figure 3: P7 high-level architecture and workflow.

During the demo. Attendees will be asked to choose a topology with specific link metrics (e.g., latency, jitter, packet loss, background traffic, bandwidth). They will see how P7 produces all artifacts to embody the desired experimental environment. We will showcase the ability of P7 to instantiate effective network testbeds capable of reproducing the link metrics with high fidelity. Real-time visualization of network traffic will contribute to validate on-the-fly performance of the link metric and the emulation capabilities.

3 CONCLUSIONS AND FUTURE WORK

This demo shows how P7 contributes to the ecosystem of affordable 100G experimental platforms with a user-friendly, cost-effective 100G network emulator in support of traditional networking and advanced programmable networking research, as well as teaching purposes. Also supporting scenarios where the variation of metrics is required for the tests (e.g., [3]). Being a programmable high-fidelity testbed, P7 facilitates repeatable and reproducible research by sharing P7 topology files to be compiled and deployed, resulting in the same output anywhere (along with the specific Tofino target capabilities permit).

Future work. First, we want to formalize the performance & scalability limits of the topologies (i.e., #links, aggregated link capacities and latencies, etc.) depending on the memory, buffers, and stages available in the Tofino target. P7 can be scaled out beyond pizza box to distributed deployments. Also included in the P7 roadmap are: Building an open source community; Integration with Mininet to import and visualize user-defined topologies; Addition of In-band Network Telemetry (INT) features for fine-grained statistics of the emulated network (e.g., queue occupancy, device status); Time-varying link behaviors (e.g., Gilbert-Elliot packet loss model, jitter patterns, 5G access link traces) for further realism and dynamism; Embed P7 (e.g., adding P7 hardware-in-the-loop or compiling into P4 SmartNICs) into larger testbeds such as NSF Fabric and disaggregated network initiatives (e.g., RNP-CPQD, OpenRAN) to enrich their experimental toolboxes with tailored line-rate network emulation capabilities.

4 ACKNOWLEDGMENTS

This work was supported by the Brazilian National Research and Education Network (RNP), Brazil under the project “Evolução de Testbeds”. We also would like to thank Gergely Pongracz from Ericsson Research for his comments and feedback on this work. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.
REFERENCES


