
Data center networking with in-packet Bloom filters

Christian Esteve Rothenberg,1 Carlos A. B. Macapuna,1

Fábio L. Verdi, 2 Maur ı́cio F. Magalhães,1 Andr ás Zahemszky3

1FEEC – University of Campinas (Unicamp)
Caixa Postal 6101 – 13.083-970 – Campinas – SP – Brazil

2Federal University of São Carlos (UFSCar)
Campus Sorocaba – SP – Brazil

3Ericsson Research NomadicLab / HIIT
Helsinki, Finland

{chesteve, macapuna, mauricio}@dca.fee.unicamp.br

verdi@ufscar.br, andras.zahemszky@ericsson.com

Abstract. This paper describes a networking approach for cloud data center ar-
chitectures based on a novel use of in-packet Bloom filters to encode randomized
network paths. In order to meet the scalability, performance, cost and control
goals of cloud infrastructures, innovation is called for at many areas of the data
center environment, including the underlying switching topology and the packet
forwarding paradigms. Motivated by the advent of high-radix, low-cost, com-
modity switches coupled with a substrate of programmability, our proposal con-
tributes to the body of work re-thinking how to interconnect racks of commodity
PCs at large. In this work, we present the design principles and the OpenFlow-
based testbed implementation of a data center architecture governed by Rack
Managers, which are responsible to transparently provide the networking and
support functions to cost-efficiently operate the DC network. We evaluate the
proposal in terms of state requirements, our claims of false-positive-free for-
warding, and the load balancing capabilities.

1. Introduction

With the advent of Internet cloud services, the underpinning data center networks (DCN)
have become a matter of intense research to raise their scale, performance, and cost-
efficiency to unprecedented levels [Greenberg et al. 2009a]. In order to meet these goals
without sacrificing service quality, innovation is called for at many areas of the data center
environment, including the hosting infrastructure itself (e.g., energy management, wiring)
and the network and system engineering (routing, virtualization, monitoring, etc.)

Recent research in re-architecting data center networks has spurred creative de-
signs to interconnect servers at large, including shipping-container-tailored designs with
servers acting as routers and switches as crossbars (BCube [Guo et al. 2009]), com-
moditized fat-tree topologies [Al-Fares et al. 2008], forwarding on position-based pseudo
MAC addresses (Portland [Niranjan Mysore et al. 2009]), or load-balanced switching
clouds providing the illusion of a single virtual layer 2 (VL2 [Greenberg et al. 2009b]).
Traditional DCN architectures consist of a tree of networking elements (L2/L3 switches)

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 553

with progressively more specialized and expensive equipment moving up the network hi-
erarchy. Unfortunately, even when scaling up, resulting topologies may only offer a frac-
tion of the aggregate capacity available at the end hosts, with reported over-subscription
rates as high as 1:240 [Greenberg et al. 2009a].

While diverging in their architectural approach (e.g., server-centric vs. network-
centric), every next generation DCN design proposal aims at providing a scalable, cost-
efficient networking fabric to host Web, cloud and cluster applications. Many of these
applications require bandwidth-intensive, one-to-one (e.g., video coding/streaming), one-
to-several (e.g., distributed file systems), one-to-all (e.g., application data broadcasting),
or all-to-all (e.g., MapReduce) communications among servers. Non-uniform band-
width among data center nodes complicates application design and limits the overall
system performance, turning the inter-node bisection bandwidth the main bottleneck in
large-scale DCNs. Recent data center traffic characterization studies [Benson et al. 2009,
S. Kandula and Patel 2009] have shed some light on the nature of DCN traffic, conclud-
ing that traffic demands are unpredictable and highly bursty, two factors that hamper tra-
ditional traffic engineering solutions (e.g., VLAN QoS). A closely related issue is the
necessity of avoiding the fragmentation of resources (i.e., available servers and network
paths) throughout IP subnets and VLAN domains. In highly virtualized cloud DCs, net-
work agility is key to achieve high levels of server utilization and let virtual machines
(VM) be dynamically instantiated (and live migrated) in any available physical server. An
example of a job demanding agility might be to accommodate VMs on-demand to host
Web services dedicated to the World Cup football championship during two months. In
order to have an agile and unfragmented DCN, ideally, the underpinning interconnection
fabric should behave like a big Ethernet domain that exploits the path diversity and scales
sub-linearly to the number of addressable endpoints. Unfortunately, the flat routing na-
ture of Ethernet does not scale beyond certain boundaries due to the lack of aggregation
capabilities, the constraints of MAC-based forwarding tables, and the ARP flooding.

In this paper, we present SiBF (Switching with in-packet Bloom filters), a DCN
proposal motivated by the changes in networking driven by the advent of high-radix,
low-cost, commodity switches coupled with a substrate of programmability (e.g., Open-
Flow [McKeown et al. 2008]). Our design borrows characteristics from a few new
generation DCN designs, for instance building upon proven interconnection topolo-
gies (e.g., Clos networks) and reliance on logically centralized controllers in spirit of
4D [Greenberg et al. 2005]. Compared to related work, our key difference is the forward-
ing approach based on an in-packet Bloom filter (iBF) expedited by what we call a new
entity in the data center: the Rack Manager (RM). The RM follows a direct network
control approach to transparently provide the networking functions (address resolution,
route computation) and support services (topology discovery, monitoring, optimization)
to unmodified (physical and virtual) servers behind Top-of-Rack (ToR) switches.

Forwarding in SiBF takes on the idea of moving network state to the packet head-
ers in form of a compact, multicast-friendly source route representation amenable to
low-cost, high performance networking gear [Jokela et al. 2009]. Basically, SiBF effi-
ciently interconnects any pair of communicating nodes within the DCN by compactly
representing the packet’s source route into a Bloom filter carried in the Ethernet MAC
fields. Design goals include conserving the IP semantics and yield a false-positive-free

554 Anais

forwarding fabric by leveraging DC’s topological properties and exploiting the multiple
paths available. We address the issue of having a system with two mutually conflicting
requirements: 1) flat (non-hierarchical) L2 addresses, and 2) aggregation. Our approach
is to open another vector of the design space, namely potential efficiency penalties due
to false positives resulting in some packets using unnecessary links. The proposed solu-
tion makes better use of the 96-bit space of source and destination MAC fields, avoiding
thereby encapsulation and shim-header overheads, and at the same time, conserving the
nice plug and play properties of the Ethernet MAC addressing. The iBF-based fine con-
trol over the path traveled by packets enables multiple load balancing schemes to avoid
hot-spots, for instance, by bouncing off traffic flows to intermediate switches.

The rest of the paper is organized as follows. Section 2 introduces background
information on the rationale behind rethinking DCN architectures and outlines highlights
of related work. Section 3 presents the design principles adopted for our solution and
describes the key functional blocks. In Section 4, we detail the prototype implementation
and the testbed environment. Section 5 evaluates SiBF in terms of network state require-
ments, false positive performance, and load balancing capabilities. Finally, Section 6
concludes the paper and outlines the future work.

2. Background

Current efforts towards low-cost powerful computing facilities span from large-scale
(geo)-distributed application programming, innovation in the DC infrastructure, and re-
thinking how to interconnect commodity PCs at large. Our work is focused on the latter.
In this section, we first introduce networking requirements of the cloud, and then provide
a snapshot of two remarkable new generation DCN proposals. Finally, we present the
Bloom filter data structure, which is at the heart of our proposed forwarding mechanism.

2.1. Networking requirements of cloud data centers

The existing DCN literature seems to agree that efficiently networking the cloud DC
calls for re-thinking the underpinning architecture to meet a reviewed set of requirements,
which we have summarized as follows:

Resource Pooling:Offering the illusion of infinite computing resources available
on demand requires means for elastic computing and agile networking. Such degree of
DCN agility is possible (i) if IP addresses can be assigned to any VM within any physical
server, and (ii) if all network paths are enabled and load-balanced.

Scalability: Networking (dynamically) a large pool of location-independent IP
addresses (i.e., in the order of millions of VMs) requires a large scale Ethernet forwarding
approach. Unfortunately, ARP broadcasts, MAC forwarding table sizes, and spanning tree
limitations place a practical limit on the size of the system.

Performance: Available bandwidth should be high and independent from the end-
points’ location, which requires congestion-free routing for any traffic matrix in addition
to fault-tolerance (i.e., graceful degradation) to link and server instabilities.

Middlebox support: An ordered sequence of middlebox services (e.g., firewalls,
WAN optimizers, load balancers) is commonly required to be (transparently) placed on
the network paths of DCN traffic. Conventional solutions (e.g., SPT, VLAN, OSPF) turns

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 555

the overall configuration into a costly and tedious operation, besides unnecessary resource
and performance inefficiencies [Joseph et al. 2008].

2.2. Related work

There is a large body of work tackling the cloud DCN research issues resulting in a collec-
tion of customized architectural proposals. We briefly outline the essence of two proposals
which have inspired parts of our design.

PortLand proposes a scalable Ethernet-like layer 2 routing and for-
warding protocol for data centers with three-tiered hierarchical topolo-
gies [Niranjan Mysore et al. 2009]. The approach to overcome the scalability limi-
tations of Ethernet is based on modifying the control plane of the network, leaving
the switch hardware and end hosts untouched. The main idea behind PortLand is the
locator/identifier split, where nodes are identified by their actual MAC (AMAC) address,
and located by a pseudo MAC (PMAC) address, which encodes hierarchical location
information in its structure. Mapping between the two addressing spaces is done by the
edge switches after querying a central fabric manager, which is responsible for tracking
each correspondence of IP to pseudo MAC address within the discovered topology. Edge
switches perform AMAC-PMAC rewriting for outgoing and incoming traffic.

VL2 provides a scalable Virtual Layer 2 to empower huge data centers with
uniform high capacity between servers, performance isolation, and Ethernet seman-
tics [Greenberg et al. 2009b]. Building upon existing technologies, in order to support
agility, VL2 uses flat addresses in the IP layer to separate names from locators. VL2
yields uniform high capacity and traffic fairness by virtue of Valiant Load Balancing to
randomize the traffic throughout the 3-tiered switching fabric using IP-in-IP encapsulation
and Equal Cost Multi-Path (ECMP). Address resolution (i.e., application IP to location
IP) is done modifying the end-systems and querying a scalable directory service.

2.3. Bloom filters

The Bloom filter is a popular data structure capable of answering questions of the form “is
elementx in setS?”, with some tunable probability of returning false positives, i.e., claim-
ing thatx belongs toS even when this is not true. A typical implementation consists of a
bit array of sizem andk independent hash functions used to set/check bit positions when
inserting/querying elements, which in our case are going to be switch MAC addresses
forming a source route. The probability of false positives after insertingn elements is
commonly approximated as (cf. [Bose et al. 2008]):

pk =

[

1−
(

1−
1

m

)k∗n
]k

(1)

3. Design

The data center, as an interconnection network to perform distributed processing tasks,
has three key dominant elements that determine its performance: (1) the network archi-
tecture (i.e. naming, address resolution, etc.), (2) the routing scheme, and (3) the inter-
connection topology. In this section we describe the design principles adopted to address
(1) and (2) which can be summarized as an identifier/locator separated approach where IP

556 Anais

addresses act solely as identifiers and oblivious routing is provided by forwarding based
on in-packet Bloom filters (iBF) encoding randomly selected routes between the com-
municating endpoints. As for (3), the interconnection topology, in line with the existing
literature, we assume a 3-tier topology with a lower layer of ToR switches, an intermedi-
ate layer ofp1-port Aggregation (AGGR) switches, and an upper layer ofp2-port CORE
switches (see Fig. 1). Our solution is not restricted to a particular topology, and works on
e.g., 3-level fat-trees with identical p-port switches (like Portland) or 3-tier 5-stage Clos
arrangements (withp1 6= p2 like VL2). Moreover, we note that other scale-out topologies
could be considered (e.g., DHT-like rings, Hypercubes, Torus, etc.), as long as they offer
large path diversity and low diameter.

Figure 1. A 3-tier fat tree using 4-port switches.

3.1. Design Principles

We adopted the following principles for the proposed data center network architecture:

Separating Names from Locations: Identifier-locator split is the fundamental
capability to enable resource pooling of IP addressable services, which can expand or
contract their footprint in the DC as required (agility). IP addresses are used to identify
physical servers (and VMs) within the DC. That is, no topological constraints are imposed
on how IP addresses are assigned or translated in case of communications towards external
networks (i.e., public Internet). In this context, IP addresses are not meaningful for packet
routing, which is solely based on a revisited source-routing capable Ethernet layer.

Source explicit routing with zero-overhead: Leveraging the small diameter
of data center topologies, our approach to meet the scalability goals is based onstrict
source routing. Routing in 3-tier DCN topologies is fairly simple, as any route be-
tween two ToRs, has an upward phase towards a common CORE switch and then a
downward path to one AGGR switch connected to the destination ToR. Forwarding is
based on an iBF containing only three elements, namely the Bloomed MAC identifiers
of 〈COREi, AGGRdown, T oRdst〉 switches. Source ToRs encode the iBFs in the MAC
fields of outgoing packets which are sent to a next hopAGGRup switch. Hence, three
iBF-based forwarding decisions are taken, one at the first AGGR, one at the CORE and
one at the down-path AGGR. The destination ToR needs to re-write the source and des-
tination MAC fields before delivering the packet to the destination server. By carrying
the iBF in the 96 bit space of the MAC fields and re-writing packets at ToRs, we avoid
encapsulation techniques or additional shim headers. Source routing not only minimizes
FIB requirements of intermediate switches but also eases the inclusion of middleboxes.

Direct network control and logically centralized directory: SiBF embraces the
4D [Greenberg et al. 2005] philosophy of simplifying the data plane and centralizing the

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 557

control plane to enforce the data center goals. We introduce the role of a Rack Manager
(RM) to take the routing decisions and program the state of programmable switches. In
order to construct source routes, two pre-requisites are required: (1)topology information,
and (2)server location. We surmise that a directory service to track host locations and
the underlying switching topology are implementable and able to scale to the envisioned
DCN demands as shown by related work (e.g., Tesseract, Bing‘s Autopilot, VL2).

Load Balancing through path randomization: The approach to provide load
balancing is based onoblivious routing, i.e., traffic independent randomized packet rout-
ing [Yuan et al. 2007]. More specifically, like VL2, we implement valiant load balancing
(VLB) using the routing iBFs to “bounce off” flows at random intermediate switches.

Unmodified endpoints and plug-and-play:The forwarding fabric does not rely
on end-host modifications. Legacy servers, operating systems and applications are sup-
ported off-the-shelf. Moreover, the plug-and-play behaviour of Ethernet is to be con-
served, with auto-configuration of end-hosts and switches being part of the solution.

3.2. False-positive-free forwarding on Bloomed MAC identifiers

The key innovation comes when “switching” in the AGGR and CORE layers. Forwarding
tables of switches are initially empty and get filled with one flow entry per neighboring
switch detected. A flow entry is wildcarded except for the 96 bits of the source and des-
tination MAC fields. However, instead of traditional exact matching of MAC fields, each
flow entry contains a 96-bit mask generated fromk hashes of the neighbouring switch
unique MAC address. Similar to Link IDs in [Jokela et al. 2009], aBloomed MAC IDis
a 96-bit vector where onlyk bits set, but with the key difference that it isnot directional,
i.e., generated on a network interface pair basis. Forwarding decisions are trivial. On
packet arrival, only thek 1s of each Bloomed MAC ID are checked for presence in the
Ethernet MAC fields carrying the iBF. Upon match, the packet is forwarded.

Generation of Bloomed MAC identifiers: Instead of makingk independent
hashes of the neighboring switch MAC address, we make only one hash using a crypto-
graphic function (e.g., MD5) and concatenate the output with the least significant 24-bits
of the MAC address (unique per Ethernet vendor). Thereby, we obtain a randomly gen-
erated128 + 24 bit vector, which we slice in 7-bit segments to obtaink “pseudo” hashes
that determine the bit positions in the 96-bit Bloom filter:

iBF [i] = (MAC24:48|MD5(MAC))[7i : 7(i + 1)]mod96 (2)

Bloomed MACs IDs generated this way are still statistically unique e.g.,m!/(m− k)! ≈
1013 for m = 96 andk = 10. The algorithm defined by Eq. 2 is a system wide parameter
that can be changed or optimized for a given set of MAC addresses (if required).

False positives:The well-known caveat of Bloom filters is the possibility of re-
turning false positives to set membership queries, i.e., returning true when a set element
was not inserted. In our case, this means that in addition to the explicitly inserted next
hop switch, additional switch(es) appear(s) as next hop candidate(s). The resulting con-
flict can be solved either (i) by multi-casting the packet along all matching interfaces,
or (ii) by picking only one. In any case, we requireiBF forwarding completeness, i.e.,
loop-free and guaranteed delivery of packets to the intended destination(s). After a care-
ful analysis of every false positive case of our implementation choice, we claim to have

558 Anais

a loop-free, high solution that circumvents any potential issue arising from false posi-
tives. The factors that contribute to this result are multi-fold, some of them are due to
an iBF-forwarding design tailored for multi-rooted tree topologies, and the remaining are
implementation-specific, i.e. forced/enabled by our OpenFlow implementation choice.
To start with, note that due to the high bit per element ratio (m/n ≈ 30 for m = 96 and
n = 3), false positives are extremely rare i.e. in the order of10−7 (see details in Sec. 5.2).

Our strategy to avoid the potential effects of false positives is to exploit the notion
of power of choicesalong two dimensions: (1) multiple paths, and (2) multiple iBF repre-
sentations. That is, we compute the iBFs of the multiple available paths, and for each we
generated additional candidates using different sets of hash functions. Using the topology
information, the routing service can easily checka priori whether any candidate iBFs is
prone to false positives along the path. If so, those candidate iBFs are discarded from the
random path selection. For the sake of brevity, we omit some details of the OpenFlow
implementation and the analysis of why some false positives are self-healed by virtue
of the multi-rooted topology. In a nutshell, false positives result in multiple flow entries
matching the wildcardedk bits in the iBF. Since only the actions associated to one entry
can be executed (per OpenFlow specification), a packet may be wrongly forwarded to a
switch not included in the source route. Such packets lacking of matching flow entries
are forwarded to the RM, which computes an alternative path and installs the required
flow entries to temporarily fix the issue. However, recall that our strategy to avoid false
positives is to detect themprior to their use. With knowledge of the topology, the RM
pre-computes and maintains a source to destination ToR matrix filled only with false-
positive-free iBFs for the multiple available network paths. In Sec. 5.3 we experimentally
quantify the penalties on path multiplicity, which we anticipate to be insignificant.

3.3. Tree and Role Discovery Protocol

Topology knowledge is a prerequisite to allow source routing. A point which is not so ev-
ident and trivial is how to correctly infer the tree topology and the role of each switch (i.e.,
ToR, CORE or AGGR.), more critically at bootstrap time, since one of our requirements
is to mimic the Ethernet plug & play behavior to avoid any manual intervention. This fea-
ture does not only reduce operational efforts to e.g., replace misbehaving switches, but is
critical for the correct (and optimized) routing of packets. To this end, we have designed
a Role Discovery Protocol (see Algorithm 1) that automates the inference of the switch-
ing tree by simply extending the link layer discovery protocol (LLDP) with an extension
TLV to include the discovered role. We note that Portland faced a similar challenge in
order to switches discovering their specific location within the DCN hierarchy to form a
pseudo MAC address of the formpod.position.port.vmid. Our protocol is fairly simpler
and requires only to identify the layer in which it is located.

4. Prototype implementation and testbed

Implementation of the iBF-forwarding mechanism is based on OpenFlow
switches [McKeown et al. 2008], and the Rack Manager (RM) has been implemented
as an application on top of the NOX controller [Gude et al. 2008]. In the following, we
describe the key issues of the implementation work and the testbed environment. For
details on the prototype implementation and on how to replicate our testbed we refer to

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 559

Algorithm 1 : Role Discovery Protocol.

beginswitch join
ROLE← UNDEFINED;
SendAllPorts(llpd, ROLE);

end

beginarpreceiveserver
if ROLE ! = TORthen

ROLE← TOR;
end

end

begin lldp receiveneighbors
NBROLE← neighbors.ROLE;
if NBROLE= (COREor TOR)then

ROLE← AGGR;
else ifNBROLE= AGGRthen

ROLE← CORE;
end

end

the publicly available source files and how-to instructions.1

4.1. OpenFlow

An OpenFlow (OF) switch separates the fast packet forwarding (data path) from the high
level routing decisions (control path) of a router or switch. While the data path portion
still resides on the switch and runs using the same underlying hardware, high-level packet
handling decisions (i.e. routing) are moved to a separate controller. OF-enabled devices
and the controller(s) communicate via the OF protocol, which defines messages, such as
packet-received, send-packet-out, modify-forwarding-table, and
get-stats.

The disruptive aspect of OF is to define a clean interface in form of a flow table
abstraction with entries containing a set of packet fields to match from the 10-tuple:
〈inport, Ethsrc, Ethdst, V LAN, EthType, IPproto, IPsrc, IPdst, TCPsrc, TCPdst〉, and
a list of hardware-supported actions, i.e.,send-out-port, modify-field, or
drop. When an OF switch receives a packet for which it has no matching flow entry,
it sends this packet to the controller, which in turn decides on how to handle the packet.
The decision is sent to the switch, which can be instructed to cache the decision for some
period of time by adding a flow entry to handle upcoming packets at line rate.

In order to support the iBF-based forwarding, only a minor modification was re-
quired to the current OpenFlow reference implementations (v.0.89rev2 and v.1.0). The
key of iBF-based forwarding is the Bloomed MAC identifier which is a wildcardedbit-
maskwith only k arbitrary bits set to one. Thus, we needed to add this special behav-
ior support to the OpenFlow datapath implementation. Fortunately, this required only
changes in two lines of code2 of the fast path flow matching function.

1To be published in http://www.dca.fee.unicamp.br/ chesteve/dcn/
2function flow fields match in openflow1.0.0/udatapath/switchflow.c or

openflow0.9.0/datapath/flow.c

560 Anais

Figure 2. Component Architecture.

4.2. Rack Manager

The Rack Manager acts as a controller of OF switches, and as such, the natural im-
plementation is as an application on top of the open source OF controller named
NOX [Gude et al. 2008]. In a nutshell, NOX’s programmatic interface is built upon
events, triggered by NOX core components, thrown by user-defined applications, and gen-
erated directly from OF messages likepacket-in,switch join,switch leave,
etc. Figure 2 depicts our implementation of the RM functionality, which we have divided
into three separate NOX user components.

4.3. Message sequence

The packet flow diagram of Fig. 3 shows how communications happen in the prototype
implementation. Regular arrows are single data packets and the dotted arrows represent
OF protocol messages. A server’s network activity starts by sending an ARP request to
some destination IPx (Step 0), for instance, to resolve the address of the DNS server. The
ARP request reaches the ToR, which has no matching entry and informs the controller.

Figure 3. Packet flow sequence in an OpenFlow-based SiBF insta ntiation.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 561

The packet-inevent is passed to all the modules which have expressed interest in ARP
packets. The RM learns the server location and registers it as being attached to a port of
the OF switch triggering the event (Action A). It then sends aflow-modcommand to in-
stall a semi-permanent flow entry for future incoming packets containing the destination
IP equal to the server IP, and the associated actions set to (i) re-write the MAC fields with
the ToR and server original MAC addresses, and (ii) forward to the attached port. The
Tree Discovery identifies the switch as a ToR and updates the state of the Role Discovery
Protocol (Action T). The ARP replier responds with a “fake” ARP reply containing the
ToR MAC (Action R). In Step 1, a server sends an ARP request for a destination IP, and
like any originating ARP, it acts as a trigger for the server discovery actions described in
Step 0. After receiving the ARP reply (Step 2), the source node sends a TCP SYN packet
which hits the ToR switch and is accordingly forwarded to the controller (Step 3). The
RM picks one iBF towards the destination ToR (Action C), and orders the installation
of an OF entry (10 sec. soft-expiration) to re-write packets belonging to the fully spec-
ified 10-tuple flow. Packets within this flow description get the iBF written in the MAC
fields and are forwarded at line rate across the AGGR and CORE layers based on the iBF
source route (Action F). When the iBF-labeled packet hits the destination ToR, it matches
the flow entry installed in Step 0 (Action A) and is delivered to the destination server after
re-writing the MAC headers (Action D). In Step 4, the destination server replies with a
TCP SYN ACK which lacks of a flow entry and is delivered to the RM (Action C). After
iBF selection and the installation of the flow entry (Action C), the TCP SYN ACK is for-
warded based on the iBF. Upon reception at the originating server, the 3-way handshake
can be completed (Step 5) and both entities can exchange data at line rate.

4.4. Testbed

The testbed consists of 5 physical nodes, one hosting the NOX controller with the RM
components and the remaining 4 were partitioned into 9 virtual machines: 5 instantiating
an OF switch each, and 4 hosting linux-based VMs. Figure 4 shows the testbed envi-
ronment, where the solid lines represent direct links between virtual machines and the
dashed lines represent the connections between VMs from different physical machines.
The topology on each physical machine is configured with OpenFlowVMS, which in-

Figure 4. Testbed environment.

562 Anais

Table 1. Evaluation of the state requirements in terms of entr ies at switches.
Physical hosts 2.880 23.040 103.608

Racks 144 1152 5184
Aggr. Switches 24 (p1 = 24) 96 (p1 = 48) 144 (p1 = 144)
Core Switches 12 (p2 = 24) 24 (p2 = 96) 72 (p2 = 144)

VL2 Portland SiBF VL2 Portland SiBF VL2 Portland SiBF
Entries at ToR 200 120 120 1292 120 120 5420 120 120

Entries at AGGR 180 24 24 1272 48 48 5400 144 144
Entries at CORE 180 24 24 1272 96 96 5400 144 144

cludes a useful set of scripts to automate the creation of networked VMs using QEMU
and VDE. Additional scripts were developed to distribute the environment across different
physical machines usingsshconnections and virtual dumb-switches based on VDE. Our
extended script set enables to quickly define a target topology and automate the bootstrap-
ping of the virtual nodes and OF switches, including the IP configuration, the creation of
data-paths, the start-up of OF modules and the connection to the controller.

5. Evaluation

After validating the prototype implementation by verifying the full connectivity among
the pool of servers (16 VMs), the next question is to evaluate the iBF-based forwarding
fabric in terms of (i) state requirements, (ii) potential effects of false positives, and (iii) the
load balancing capabilities. Due to the limitations of a virtualized testbed, performance
aspects like goodput and flow completion times are left out of scope here.

5.1. State analysis

We start by comparing analytically the state requirements of SiBF with VL2 and Port-
land. The network setup is a 3-tier Clos topology, with ToRs connecting to 20 servers via
1 Gbps ports and to two AGGRs via 10 Gbps links. Thep1 ports of AGGRs are used to
connect top1/2 ToRs andp1/2 COREs equipped withp2 high speed ports. In line with re-
lated work [Tavakoli et al. 2009], we assume an average of 10 concurrent flows per server
(5 in and 5 out). Table 1 presents the scalability requirements for different switch config-
urations. By virtue of strict source routing, SiBF requires minimal state at COREs and
AGGRs, namely only one entry per interfacing neighbor. Moreover, scaling-out the DCN
does not impact the number of flow entries in the switches which is constant and equal to
the number of neighbors. At ToRs, the amount of flow entries grows with the number of
concurrent outgoing flows plus a constant amount of entries, one for each hosted server in
order to re-write terminating flows. By comparison, VL2 requires forwarding entries in
proportion to the total number of switches in order to route packets along the two-levels of
IP encapsulation:〈LACORE , LAToR〉. On the other hand, Portland has the same state re-
quirements as SiBF, namely only one forwarding entry per interface, sufficient to perform
the hierarchical forwarding on PMACs.

5.2. False positives

Now, we turn our attention to the practical false positive performance of small 96-bit
Bloom filters when holding only 3 elements, namely the three Bloomed MAC addresses.
More than the theoretical estimates (i.e., Eq. 1), what practitioners are really interested is
in the observed false positive rate (fpr) after the iBF is queried for elements. Therefore,

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 563

Table 2. Evaluation of the false positive rate of the 96-bit iB F.
k 5 6 7 8 9 10 11 13 15 17 19 21
Theor. Eq 1 (·10−6) 64.89 25.7 11.68 5.95 3.33 2.03 1.32 0.68 0.42 0.31 0.25 0.23
fpr (·10−4) 2.41 1.81 1.5 1.7 1.83 2.23 3.09 4.92 7.17 11.46 16.09 21.07
fprmin (·10−6) 0.93 0.58 1.74 1.85 2.78 5.56 9.72 28.6 95.1 182 355 591

from a pool of 1M unique, randomly generated 48-bit values, oneach experiment round
(10.000 in total) we randomly insert 3 of them into a 96-bit BF using the Bloom MAC ID
algorithm (Eq. 2) and test for presence of 432 (= 144 * 3 hops) randomly selected MACs.
Table 2 shows the observedfpr for basic BFs constructs and when the power of choice
optimization (withd = 4, m′ = 94) is used (fprmin). In theory, the optimal number of
hash functions (kopt = m

n
ln2) that minimizes the false positive probability would be as

many as 22. However, in our practical setup, the lowestfpr was obtained fork around
7. The deviation from the theoretical estimates can be explained by the accurate equation
and bounds for small size Bloom filters by Bose et al. [Bose et al. 2008, Theorem 3].
Even without the d-candidate extension, only a few false positives per 10.000 queries
were observed in plain 96-bit iBFs, which suggests that the effect of a false positive (if
any) could be easily handled on a per-case basis.

5.3. False-positive-free forwarding on large-scale DCN topologies

We now evaluate the viability and efficiency of our false positive avoidance strategy based
on discarding false-positive-prone iBF candidates prior to their use. Our thesis is that,
given the lowfpr of the 96-bit iBF data structure, there are plenty of false-positive-
free paths between any two communicating nodes. In this experiment, we use an ns-3
implementation to explore thefpr performance on large-scale DCN topologies by send-
ing an iBF for each of the available path between every ToR. Following the approach
described in Sec. 5.1, we generate a topology with 48-port AGGRs and COREs to inter-
connect 576 ToRs, enough to host 11.520 physical servers. Testing every combination
of 〈ToRsrc − ToRdst〉 (i.e., 331.200 ToR pairs) along each available path, results in over
30M iBFs sent and accounted for false positives. The summary results are as follows:
74% of the ToR pairs were false-positive-free for every available shortest path. Among
those with some false positive (26%), the average number was 3 out of the 96 multiple
paths. The maximum number of false positive paths for any ToR combination was 10. As
a result, only 0.92% of all network paths exhibited some false positive and should be kept
out of the pool of iBFs used for load balanced routing. Based on these results, we may
conclude that false-positive-free forwarding comes at an affordable cost (less than 1%) in
reduced path multiplicity. Moreover, considering the d-candidate optimization with e.g.,
d = 4, we could, with very high probability, get rid of the remaining 1% of false-positive
iBFs by choosing alternative bit representations, and thereby utilize every available path.

5.4. Load balancing capabilities

Now, we investigate the load balancing capabilities of implementing VLB with iBFs over
our testbed environment. Given a traffic matrix (TM), the goal is to evaluate how well
the traffic is spread among the available links. We compare the link utilization of our
VLB implementation with a vanilla Spanning Tree (SPT) implementation over the same
topology. Two types of TMs were tested, one to mimic the all-to-all characteristics of DC

564 Anais

applications like MapReduce, and one with random communicating endpoints. We used
ITG [Avallone et al. 2004] as the traffic generator configured with TCP flows to last for
10s, with exponentially distributed payload sizes around 850 Bytes, which are reasonable
assumptions for the majority of the reported DCN traffic. Figure 5 shows the normalized
link utilization after ten experiment runs. As expected, SPT under- and over-utilizes the
network links, whereas SiBF spreads traffic remarkably well, with the maximum and
minimum normalized utilization of any link deviating only around 20% from the ideal
value, i.e., 1. In the case of randomly chosen endpoints (Fig. 5(b)), the conclusion is
the same, VLB using iBFs achieves a nice utilization of the available links in a TM-
independent manner. The distribution of the normalized link utilization is comparable to
the numbers reported in the VLB implementation of VL2, with min values (0.78 vs. 0.46)
and max values (1.23 vs 1.2) [Greenberg et al. 2009b, Fig. 15]. The divergence of the
min values can be explained by the nature of the operational traffic in VL2 compared to
our synthetic TMs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
er

ce
nt

ile
 r

an
k

Normalized link utilization

 SiBF
 naive STP

(a) All to all.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
er

ce
nt

ile
 r

an
k

Normalized link utilization

 SiBF
 naive STP

(b) Random.

Figure 5. Evaluation of the load balancing behaviour. CDFs of the link utilization.

6. Conclusion

We have presented SiBF, a data center network architecture based on a simple data plane
layer below IP that forwards packets based on the contents of an in-packet Bloom filter.
SiBF embraces the (upcoming) category of commodity switches leveraged with a flow-
oriented API extending the next frontier in data center networks from “commoditization”
to “customization.” The DCN proposal presents many appealing characteristics such as
not requiring any modification of end-hosts, reusing the Ethernet packet header bit space,
minimal FiB consumption, and a fine control over the packet routes across the data cen-
ter. The evaluation on a small-scale virtualized testbed implementation not only provides
a proof of concept that helped to feedback the design cycles, but also shed light on the
actual capacity of providing load balancing with randomized iBFs. In future implemen-
tation rounds, the prototype will be improved (e.g., to handle failure cases) and extended
with additional features like distributed database management (e.g., topology and host
directory) and transparent middlebox traversal, making it all together a real candidate to
be deployed as an in-house cloud DCN playground.

Acknowledgements

This work is partly funded by CNPq, Capes, FAPESP and Ericsson Research.

XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 565

References

Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A scalable, commodity data center
network architecture.SIGCOMM CCR, 38(4):63–74.

Avallone, S., Guadagno, S., Emma, D., Pescape, A., and Ventre, G. (2004). D-itg dis-
tributed internet traffic generator. InQEST ’04. IEEE Computer Society.

Benson, T., Anand, A., Akella, A., and Zhang, M. (2009). Understanding data center
traffic characteristics. InWREN ’09. ACM.

Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., and
Tang, Y. (2008). On the false-positive rate of Bloom filters.Information Processing
Letters, 108(4):210–213.

Greenberg, A., Hamilton, J., Maltz, D. A., and Patel, P. (2009a). The cost of a cloud:
research problems in data center networks.SIGCOMM CCR, 39(1).

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. (2009b). VL2: a scalable and flexible data center network.
SIGCOMM CCR, 39(4):51–62.

Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G., Yan, H.,
Zhan, J., and Zhang, H. (2005). A clean slate 4D approach to network control and
management.SIGCOMM CCR, 35(5):41–54.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S.
(2008). NOX: towards an operating system for networks.SIGCOMM CCR, 38(3).

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu, S.
(2009). Bcube: a high performance, server-centric network architecture for modular
data centers. InSIGCOMM ’09. ACM.

Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., and Nikander, P. (2009).
LIPSIN: line speed publish/subscribe inter-networking. InSIGCOMM ’09. ACM.

Joseph, D. A., Tavakoli, A., and Stoica, I. (2008). A policy-aware switching layer for data
centers.SIGCOMM CCR, 38(4):51–62.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008). OpenFlow: enabling innovation in campus net-
works. SIGCOMM CCR, 38(2):69–74.

Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan,
S., Subramanya, V., and Vahdat, A. (2009). Portland: a scalable fault-tolerant layer 2
data center network fabric. InSIGCOMM ’09. ACM.

S. Kandula, Sudipta Sengupta, A. G. and Patel, P. (2009). The nature of data center traffic:
Measurements and analysis. InACM SIGCOMM IMC.

Tavakoli, A., Casado, M., Koponen, T., and Shenker, S. (2009). Applying NOX to the
datacenter. InProc. of workshop on Hot Topics in Networks (HotNets-VIII).

Yuan, X., Nienaber, W., Duan, Z., and Melhem, R. (2007). Oblivious routing for fat-tree
based system area networks with uncertain traffic demands.SIGMETRICS PER, 35(1).

566 Anais

