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Abstract: We demonstrate a soft-failure localization framework using SDN-based
network-wide telemetry. Soft failures are generated in a small-scale laboratory environ-
ment and collected in an SDN architecture. Failure localization is accomplished by ML
algorithms. © 2021 The Author(s)

OCIS codes: (060.1155) Software-defined optical networks, (200.4260) Neural networks.

1. Overview

In optical transport networks, effective failure localization is an essential task to ensure proper network operation
and avoid service disconnections. Failure localization has typically been carried out by correlating alarms gener-
ated in several network layers. Recent advances in telemetry features of software-defined networking (SDN) archi-
tectures enable a new range of functionalities, such as early anomaly detection and soft-failure localization [1–5].
Soft failures are network anomalies that affect the network parameters but are not severe enough to trigger alarms.
The detection and localization of soft failures have the potential to speed up the failure repair and mitigate service
interruptions. While soft-failure detection is a local process, soft-failure localization is a network-wide process,
as failures in certain network elements can generate anomalies in network parameters distributed over the entire
network. A possible solution to failure localization is to operate on the network telemetry and directly localize the
root-cause using if-else rules based on a dependence tree. However, particularly in disaggregated scenarios, part
of the telemetry data may not be available or may not be even implemented. This can impair failure localization
and require the development of more complex if-else rules. Alternatively, ML algorithms can automatically learn
the rules and interpolate missing data, re-adapting its parameters to the available telemetry data set [6].

In recent work, we have developed an ML-based soft-failure localization framework shown in Fig. 1 as pre-
sented in [7], where the proposed technique was evaluated through simulations and experiments in an emulated
scenario. A telemetry collector retrieves telemetry data from network elements. The telemetry data is stored in
an SDN information base and sent to an artificial neural network (ANN) that processes the data and eventually
locates the failure. The proposed ANN architecture has three layers: input, output, and one hidden layer. The input
layer corresponds to all telemetry data collected in the network, and the output layer corresponds to all network
elements that may fail. The output layer has nonlinear neurons using the Softmax activation function [3, 8]. The
outputs add to one, representing an indicator about the probability that an element has failed. The ANN is trained
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Fig. 1. ML-based soft-failure localization framework.
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Fig. 2. OFC demonstration experimental setup for soft-failure generation and localization. SDN telemetry data retrieved from
the physical testbed is stored in the time series InfluxDB database for ML-based soft-failure identification.

through a pipeline that constructs a mirror of the network. The mirror replicates the network topology, lightpaths,
and telemetry data based on analytic models for power propagation. Although we use analytic models in our first
studies, ML-based models for quality of transmission (QoT) estimation are also a promising approach.
Demonstration details. The focus of the demonstration is to showcase the proposed ML-based failure local-
ization framework with SDN telemetry in a small-scale experimental network setup, as depicted in Fig. 2. The
experimental testbed consists of four nodes (N1, N2, N3, and N4), three of them equipped with fixed optical
add-drop multiplexers (N1, N3, and N4), and the fourth one equipped with a reconfigurable add-drop multiplexer
(ROADM) with broadcast and select (B&S) architecture (N2). Nodes are interconnected by optical links with
optical fibers and/or attenuators. The network is loaded with three bidirectional lightpaths, interconnecting nodes
N1-N2, N1-N3, and N1-N4. Additional unmodulated unidirectional lightpaths are generated by a comb-generator
in N1, with part of the lightpaths ending in N2, N3, and N4. The transponders are Padtec boards at 100 Gb/s and
200 Gb/s modulated with the QPSK, 8-QAM, and 16-QAM formats. Transponders are connected to the ONOS
SDN controller by means of NETCONF/YANG interfaces. Amplifier and wavelength-selective switch (WSS)
telemetry is carried out via an optical line system (OLS) domain controller. All telemetry data collected by the
OLS Domain Controller and the ONOS SDN controller are stored in the InfluxDB time series database. Fig. 3
shows the telemetry time series collected from the InfluxDB and displayed with Grafana. In regular operation,
both telemetry data retrieval and ML-based soft-failure localization are carried out continuously in real-time. For
the OFC demonstration, we will store the telemetry data generated by the optical setup in an information base and
replicate this telemetry data during the OFC demo. The demonstration will feature real-time retrieval of the stored
telemetry data using SDN interfaces, the storage of the data in the InfluxDB database, and the ANN processing of
the received telemetry data for soft-failure localization. Training of the ML application will run in a public cloud
(Amazon Web Services). Soft and hard-failure generation will be carried out by attenuating segments of fiber, the
transponder output power, and the gain of amplifiers. OFC demo attendees will be able to visualize the real-time
operations of the different components (ONOS, InfluxDB, ML) by inspecting the available GUI, dashboards, and
user terminals.

2. Innovation

The demonstration contains several innovative features. Firstly, we present a testbed experimental validation of
a novel method for soft-failure localization leveraging state-of-the-art SDN telemetry. Secondly, we demonstrate
how public cloud facilities can be used to run machine learning workloads using an ANN trained with analytic
network propagation models. Thirdly, and probably most innovative, we verify the capabilities of an ML-based
algorithm to localize failures not only in scenarios of full telemetry but also in the cases of partial telemetry, where
certain network elements do not expose the full telemetry data.

M2B.5 OFC 2021 © OSA 2021

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on September 09,2022 at 17:16:46 UTC from IEEE Xplore.  Restrictions apply. 



LOA4C211AYAHA#75
LOA4C211AYAHA#75
LOA4C211AYAH#2414
LOA4C211AYAH#2414
EOA2-HA-E21211-GW#445
EOA2-HA-E21211-GW#445
LOA4C211AYAH#1480
LOA4C211AYAH#1480

PreAmp_2_1      
PreAmp_2_1      
PreAmp_2_3      
PreAmp_2_3      
PreAmp_2_4
PreAmp_2_4
PreAmp_1_2      
PreAmp_1_2      

                                            PIN:
                                        POUT:
                                            PIN:
                                        POUT:
   PIN (IN_LINE_IN_POWER):
POUT (OUT_DATA_POWER):
                                            PIN:
                                        POUT:

1613754717073000000
1613754717073000000
1613754642194000000 
1613754642194000000
1613754723886000000
1613754723886000000
1613754415466000000
1613754415466000000

-0.640000
19.300000

-11.840000
13.180000

-14.938000
7.037000

-6.490000
10.520000

Fig. 3. InfluxDB telemetry data displayed with Grafana (top). Data preparation to be inserted into ANN (bottom).

3. OFC Relevance

Machine intelligence and SDN-based telemetry are active discussion topics within the broader networking com-
munity and OFC specifically. Taming OPEX related to failure handling is paramount to any network operator. Our
work contributes to the vision that the extensive analysis of telemetry data collected by programmatic interfaces
will offer novel features beyond the current state of affairs in networks, such as, but not limited to, quality of trans-
mission and advanced failure management. This demo represents a step forward to the applicability of machine
learning to network-wide telemetry data for proactive failure handling by means of smart soft-failure localization.
We expect that the demo will be of interest both to network operators and equipment manufacturers interested in
exploring the possibilities of the combination of rich, up-to-date telemetry and data analytic techniques on their
network to reduce OPEX and improve customer satisfaction. Academia and research-centric OFC participants will
certainly value insights of our demonstration work and potentially trigger fruitful discussions to impact the OFC
community roadmaps ahead.
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