
1

Take your VNF to the Gym: A Testing Framework
for Automated NFV Performance Benchmarking

Raphael Vicente Rosa, Claudio Bertoldo, Christian Esteve Rothenberg

Abstract—A Virtualized Network Function (VNF) is a software
entity to be run in diverse execution environments with variable
configuration options and capabilities (e.g., hardware accelera-
tion) impacting performance. Network Function Virtualization
(NFV) resource multiplexed infrastructures can impose hard-
to-predict relationships between VNF performance metrics (e.g.,
latency, frame loss), the underlying allocated resources (e.g. units
of vCPU), and the overall system workload. Characterized by
many-fold platform configuration and environment variables, the
evolving scenario of NFV calls for adequate testing methodolo-
gies embracing modern continuous development and integration
practices and leveraging open source tools and mindset. To this
end, we introduce Gym as our proposed testing framework and
methodology for automated NFV performance benchmarking.
We present our design principles and the outcomes from a prac-
tical validation on a vIMS scenario. A discussion on the lessons
learned and the overall NFV performance testing landscape are
further contributions of this article.

I. INTRODUCTION

As Network Function Virtualization (NFV) matures
through the realization of proof of concept implementations,
identified challenges towards wider roll-outs include the need
of carrier-grade testing and operational standards to match
service-continuity and performance predictability levels of
current physical infrastructures [1], [2]. Being pure software
entities, VNFs lend themselves for continuous deployment
and integration following agile DevOps methodologies. As
illustrated in Fig. 2, software-oriented processes applied to
NFV call for automated testing practices spanning platform
portability, functional correctness, and performance bench-
marking for each candidate VNF version before turning it
available for deployment. A single line of code change passing
all functional tests could also undermine the VNF performance
for specific workloads and platforms —a risk that calls for
standardized testing methods [3], [4], [5], [6] towards adequate
VNF benchmarks (e.g., [7], [8], [9]).

The heterogeneity of NFV Infrastructure (NFVI) environ-
ments include diverse virtualization options and system ca-
pabilities (e.g., HW offloading, kernel bypassing) for varying
workloads and diverse resource sharing conditions (e.g., co-
located VNFs trashing shared CPU memory caches) [1]. Such
a multi-dimensional testing landscape with multiple configu-
ration knobs (see Fig. 1) introduces unprecedented challenges
towards useful performance profiles delivering valuable assess-
ments for different stakeholders at different stages, e.g., during

The authors are with School of Electrical and Computer Engineering
(FEEC), University of Campinas (UNICAMP), Brazil

http://nfvwiki.etsi.org/index.php?title=PoCs_Overview - Accessed on 2017-
06-01

Figure 1. VNF under test scenario illustrating the multiple configuration
knobs and the diverse multiple system and platform variables involved.

VNF development, for pre-deployment NFVI validation, or
even for Service Level Agreement (SLA) compliance at run-
time.

In our initial work on VNF Benchmarking as a Service
(VBaaS) [3], we introduced the problem statement of VNF
benchmarking based on “trust, but verify” principles in seek
of standardized performance testing allowing proper evaluation
of candidate platforms and locations to host (chains of) VNFs
with respect to target Key Performance Indicator (KPI)s. In
this article, we revisit our functional and architectural vision
of VBaaS based on the prototype development and practical
evaluation of Gym, the proposed testing framework that allows
automated performance benchmarks of NFV embodiments.
We advocate for a framework that defines a minimum set of
standardized interfaces while allowing user-defined tests along
a catalogue of reusable VNF testing procedures and reports
with wide- and well-defined system configuration descriptors,
workload parametrization (linking to specific traffic genera-
tion tools and their parameters), KPI computation, along all
supporting code and data expected from a standardized and
reproducible benchmarking methodology.

Outcomes of automated performance tests can be used
as inputs of Network Function Virtualization Orchestrator
(NFVO) embedding algorithms (cf. [4]) and/or parameters to
support business decisions such as pricing and allocation of
resources to fulfill SLAs. As noted by the vision behind NFV-
VITAL [9], standardized characterization of VNF performance
enables analyzing optimal sizing and configuration of VNFs
in order to automatically:

1) For a given resource configuration, estimate the VNF



2

Figure 2. Gym Motivation: Big picture of VNF benchmarks as part of rapid service processes though automation, regression and performance testing.

capacity.
2) For a given workload, determine optimal resource con-

figuration.
3) Evaluate different OS virtualization / HW alternatives

and compute system overhead associated to dynamic
scaling (up/out/down/in).

4) Fine-tune VNF implementation and performance debug-
ging (i.e. “if you cannot measure it, you cannot improve
it” – William Thomson, known as Lord Kelvin).

The article is organized as follows. Section 2 presents the
approach and design of the Gym framework and presents a
generic workflow to illustrate the main functionalities. Section
3 puts Gym into practice by performing benchmarking tests
on an open source IP Multimedia Subsystem (IMS) imple-
mentation. Section 4 is devoted to an open discussion on the
achievements and limitations, considering aspects from the
vIMS experiments as well as more general aspects and chal-
lenges on VNF testing framework design and implementation.
Section 5 discusses the vibrant related work before the final
remarks and conclusions of Section 6.

II. GYM: FROM DESIGN TO IMPLEMENTATION

Taking roots in the former design efforts of VBaaS [3],
our early envisioned abstractions evolved into the framework
implementation, baptized as Gym. Our approach is based
on the development of a skeleton of software components

delivering the abstractions and tool set in support of prac-
tical methodologies to validate, benchmark, and dimension
VNFs [6]. Gym is mainly characterized by:

• Modular architecture with stand-alone programmable
components

• Simple messaging system following generic Remote Pro-
cedure Call (RPC) guidelines

• Extensible set of testing tools and target metrics
• Rich test definition through dynamic compositions of

modules
• And flexible methods for output processing and results

visualization.

As shown in Fig. 2, Gym aims at introducing new opportu-
nities to different NFV actors. VNF developers can rely on the
framework to add automated, repeatable VNFs performance
profiling to their agile Continuous Integration and DevOps
practices. Service Providers might enhance offered Quality of
Service (QoS) with tested-deployed scenarios (e.g., varying
workloads in multiple sites), containing transparent sets of
operational VNF metrics, targeting Continuous Deployment.
Cloud/Infrastructure Providers, when extensively testing VNFs
in their execution environments, can use Gym to implement
SLA compliance methods to increase the infrastructure relia-
bility and operational efficiency (e.g. energy consumption).



3

Figure 3. The Gym architecture is based on four main components (Agent,
Monitor, Manager, Player), allowing flexible workflows and embodiments as
illustrated by the various message exchanges, interfaces, databases, and tools.

A. Conceptual Ideas and Guiding Principles

Design for modularity is one of the main guiding principles
of Gym to allow independent software components to be or-
chestrated on-demand based on well-defined testing objectives
without compromising customization and overall extensibility.
To address the heterogeneous and complex set of requirements
and capabilities of NFV instantiations, the framework offers a
high degree of freedom through user-defined composition of
sets of tools and evaluation models using simple description
formats. Gym overall principles, enunciated below, will come
later into further discussion when evaluating a VNF bench-
marking use case. The proposed guiding principles to design
and build a performance testing framework can be compound
in multiple practical ways for multiple VNF testing purposes.

• Comparability: Output of tests shall be simple to under-
stand and process, in a human-readable format, coherent
and easily reusable (e.g., inputs for analytic applications).

• Repeatability: Test setup shall be comprehensively de-
fined through a flexible design model that can be inter-
preted and executed by the testing platform repeatedly
but supporting customization.

• Configurability: Open interfaces and extensible messag-
ing models between components for flexible composition
of tests descriptors and platform configurations.

• Interoperability: Tests shall be ported to different envi-
ronments using lightweight components.

B. Architecture

The system architecture of Gym is illustrated in Fig. 3 and
comprises the following four main modules:
Agent. Provides extensible interfaces for testing tools (e.g.,
iperf, ping), named probers, to create stimulus in order to
collect network and host performance metrics. Agents enable
both local (e.g., CPU and disk I/O benchmarks) and distributed

(e.g., end-to-end latency/throughput between Agents) mea-
surements, and expose modular APIs for flexible extensibility
(e.g., new probers). Agents receive instructions from a Man-
ager defining sets of actions to consistently configure and run
prober instances, parse the results, and send back snapshots
containing output evaluations of the probers’ actions.
Monitor. Performs internal and external instrumentation of
VNFs and their execution environments in order to extract
passive metrics using monitoring tools (e.g., top, tcpdump)
interfaces, named listeners. Monitors can work jointly with
Agents workloads, for instance, when the VNF throughput
shall be correlated with the vCPU utilization. Similarly to
the Agent, Monitors interact with the Manager by receiving
instructions and replying with snapshots. Different from the
generic VNF prober approach of the Agent, Monitors may
listen to particular metrics according to capabilities offered by
VNFs and their respective execution environment (e.g. CPU
cycles of DPDK-enabled processors).
Manager. Responsible for (i) keeping a coherent state and
consistent coordination of the managed components (Agents
and Monitors), their features and activities; (ii) interacting with
the Player to receive tasks and decompose them into a concrete
set of instructions; and (iii) processing snapshots along proper
aggregation tasks into reports back to the Player.
Player. Defines a set of user-oriented, north-bound interfaces
abstracting: (i) metric extraction descriptors, named Sketches,
according to the requirements and settings of probers/listeners;
and (ii) VNF testing Outlines containing one or more sketches
with their configurable parameters. Player might store different
outlines, and trigger their execution when receiving a testing
Layout request, that might reference one or more parametrized
outlines, which are decomposed into a set of tasks orchestrated
by Managers to obtain the reports. Interfaces are provided for
storage options (e.g., database, spreadsheets) and visualization
of the extracted reports into profiles.

Two relevant terms deserve further explanation:
Outline: Used as input by the Player module, it defines how
to test one or more VNF types following a particular syntax
in YAML to express structural settings (e.g., Agents/Monitors
topology) and functional properties (e.g., probers/listeners
parameters), named sketches. Profile: Refers to the formatted
outcome composed by the outputs of an outline execution
and the requested Layout scenario. A Profile represents a
mapping between virtualized resources (e.g., vCPU, memory)
in a given environment and VNF performance/benchmarking
metrics (e.g., throughput, latency between in/out or ports),
abstracting VNF allocation with certain resources to delivering
a unifying metric for a given (predictable/measured) perfor-
mance quality.

C. Messaging System and Workflow
Gym core components communicate through REpresenta-

tional State Transfer (REST) Application Programming In-
terface (API) using generic RPC calls with custom JSON
message formats. In the following, we describe a generic
workflow based on request-reply message exchanges and pair-
wise component interactions represented as numbered (1 to 7)
circles in Fig. 3.



4

1) The first step consists of a user defining the composition
of the VNF testing Outline through Sketches containing
the structural and functional requirements to express
target performance metrics to generate a VNF Profile.

2) The Player processes the parametrized Outline consid-
ering the features offered by the associated Manager(s).
The output is a workflow of tasks, in sequence or par-
allel, submitted to a selected Manager that satisfies (i.e.
controls a matching set of Agents/Monitors) the Outline
requirements. Based on input variables, an Outline can
be decomposed into different sets of tasks with the
corresponding high-level probers/listeners parameters.

3) The Manager decomposes tasks into a coherent sequence
of instructions to be sent to Agents and/or Monitors. In-
side each instruction, sets of actions define parametrized
execution procedures of probers/listeners. Sequential or
parallel tasks may include properties to be decomposed
into different sets of instructions, for instance, when
sampling cycles might define their repeated execution.

4) By interpreting action into a prober/listener execution,
an Agent or Monitor performs an active or passive
measurement to output metrics via a pluggable tool. A
VNF developer can freely create a customized prober
or listener to interface her tests and extract particular
metrics. An interface of such a tool is automatically
discovered by an Agent/Monitor and exposed as “avail-
able” to Managers and Players along the corresponding
execution parameters and output properties.

5) After computing the required metrics, a set of evalu-
ations (i.e. parsed action outputs) integrate a so-called
snapshot sent from an Agent/Monitor to the Manager.
A snapshot associated to a specific task is received
from the Agent/Monitor that received the correspond-
ing instruction. An evaluation contains timestamps and
identifiers of the originating prober/listener, whereas a
snapshot receives an Agent/Monitor unique identifier
along the host name information.

6) After processing all the instructions’ related tree of
snapshots, the Manager composes a report, as a reply
to each task requested by the Player. The Manager
can sample snapshots in a diverse set of programmable
methods. For instance, a task may require cycles of
repetition, so the correspondent snapshots can be parsed
and aggregated in a report through statistical operations
(e.g., mean, deviation, confidence intervals).

7) Finally, the Player processes the report following the
profile metrics definition, as established initially during
the outline decomposition. While the profile contains
filtered evaluation metrics and parameters, snapshots
can be aggregated/sampled into a report. Results can
be exported in different file formats (e.g., csv, json,
yaml) or saved into a database for further analysis and
visualization. For instance, in our current Gym proto-
type we integrate two popular open source components,
the Elasticsearch database and the Kibana visualization
platform —tools providing high flexibility in querying,
filtering and creation of different visual representations
of the extracted profiles.

III. A DAY IN THE GYM: VIMS PERFORMANCE TESTING

We now exercise the Gym framework in the case study
of IMS telecom network functions [10], in scope of ETSI
NFV ISG proof-of-concepts and also target of related work
on VNF benchmarking [9]. Understanding vIMS performance
for a given resource allocation can be relevant for NFVI
configuration and setting adequate system parameters in light
of potential price and SLA offerings in multi-vendor cloud
infrastructures. Throughout the practical evaluation of the
chosen use case, we assess Gym functionalities and further
discuss the development of testing methodologies following
the architectural design aspects introduced by Gym.

A. Prototype Implementation

Gym provides a framework for VNF testing and features
off-the-shelf Linux tools to generate generic metrics. More
specifically, the implemented Monitor component includes:
Host listener: A listener process to record resource metrics
such as the utilization of CPU, memory, disk and network.
Based on psutil cross-platform library, and parametrized by
interval (sampling rate) and duration, the host listener is able
to extract multiple host runtime metrics (approx. 80+).

User-defined, VNF-specific metrics are supported through
component extensions. For our vIMS benchmarking purposes,
the following prober was added to the deployed Agent.
SIPp prober: A prober integrated to interface the SIPp
open source SIP traffic generator used to stress the vIMS
deployment based on the four-step SIP registration proce-
dure [11], herein called transaction. The Gym Outline and
Profile describing the SiPp prober input parameters and output
metrics are shown in Fig. 4 and publicly available.

B. Scenario and Testbed

The vIMS under test is the Clearwater open source project,
which provides VM form factors for the different IMS network
functions, namely Edge Proxy / P-CSCF (“Bono”), SIP Router
I/S-CSCF (“Sprout”), and the HSS Cache (“Homestead”). We
opt for OpenStack as the Virtualized Infrastructure Manager
(VIM) to deploy and host the vIMS subject of the Gym
benchmarking experiments.

Figure 4 shows the experimental scenario featuring a total of
five Virtual Machine (VM)s interconnected through a layer 2
network. Gym and vIMS main components constitute a simple
topology: a Monitor instance runs (as an independent daemon)
inside each of the three vIMS main network function VMs;
one Agent interfaces the SIPp prober in another VM; and the
Manager and Player running in the fifth VM. The three Clear-
water vIMS network functions (Bono, Sprout and Homestead)
run on OpenStack compute nodes based on Linux Ubuntu

‘Multi-vendor on-boarding of vIMS on a cloud management framework”
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc - Accessed
on 2017-06-01

https://pypi.python.org/pypi/psutil - Accessed on 2017-06-01
http://sipp.sourceforge.net - Accessed on 2017-06-01
https://github.com/intrig-unicamp/gym - Accessed on 2017-06-01
http://www.projectclearwater.org/ - Accessed on 2017-06-01



5

Server 14.04.3 with different default flavors: m1.small (1-
vCPU/2GB-RAM), m1.medium (2-vCPUs/4GB-RAM) and
m1.large (4-vCPUs/8GB-RAM).

C. Experimental Evaluation

We follow the experimental workflow shown in the method-
ology description of Fig. 4. For each VM flavor, ten 20 second
long benchmarking runs were executed with the Monitor
host listener capturing metrics every second. To analyze SIPp
prober versus host metrics and derive a benchmarking behavior
according to an IMS stress ladder workload [10], the following
SIPp Outline parameters were defined:

• Transaction rate increase step: 100 transactions/s.
• Interval of transaction rate increase step: two seconds.
• Maximum transaction rate: 1000 transactions/s.
• Maximum simultaneous transactions: 1000.
• Transport protocol: UDP.

Table I summarizes the observed results, with the first
grouped columns presenting the overall amount of transac-
tions Sent, Failed (vIMS could not answer/complete), and
Ack (completed) by the SIPp prober. Note the existence of
Delayed/Queued transactions, neither Ack nor Failed, cor-
responding to pending events vIMS could not provide an
answer during the experiments runtime. In terms of efficiency,
Table I presents the amount of transactions Sent by the SIPp
Prober divided by the transactions that could be completed in
theory, as well as vIMS efficiency, representing the amount
of completed transactions (Ack) over the amount of Sent. The
observed results point to performance issues when using a
m1.small VM configuration.

The explanation behind the systems limits faced by
m1.small is presented by the Monitor be observed by the
resource metrics collected by the Monitor. Figure 5 presents
the overall system CPU percentage usage, mean, and 95%
confidence intervals, of each monitored vIMS component.
The solid line represents the SIPp prober output in terms of
average transaction rate of SIP registration attempts following
the “Stressful Ladder” as per the Outline parameters. Note that
the SIPp tool follows a congestion-avoidance like behaviour
by automatically falling back according to the fail rate.

We can observe that in all three VM flavors, the I/S-CSCF
VNF (Sprout) accounts for the largest CPU consumption,
as expected from the central signaling function of the IMS
core network. In the case of the m1.small VM (Fig. 5(a))
configuration, Sprout suffers from CPU over-consumption and
saturates at around 500 transactions/s, whereas m1.medium
and m1.large reach round 800 to 900 transactions/s.

We may conclude that, in general, scaling up virtual re-
sources leads to higher vIMS efficiency. However, despite
running experiments in an arguably well-controlled environ-
ment with low background interference, the metrics present
high variability. Curiously, m1.large does not consistently
surpass m1.medium, as one may expect from a resource-
richer configuration. This observation only confirms the prac-
tical challenges behind VNF benchmarking.

Table I
EFFICIENCY OF VIMS AND SIPP PROBER PER OPENSTACK FLAVOR

Transactions EfficiencyVM
Flavor Sent Failed Ack SIPp Prober vIMS

m1.small 5433 206 4227 48% 77%
m1.medium 10924 49 10187 99% 92%

m1.large 10337 232 9170 93% 88%

IV. DISCUSSION

While the presented experimental work features a limited
combination of Gym, OpenStack, and vIMS using a simple
VM testbed, there are sufficient partial results for a rich
discussion and a critical analysis on different aspects.
VNF Testing Challenges. As exemplified by our vIMS bench-
marking efforts, designing and implementing a generic VNF
testing framework is subject to multiple challenges requiring
further investigation:

• Consistency: Naturally, our first insight goes to question
if a VNF, when deployed in a certain execution envi-
ronment, delivers a given performance described in its
extracted Profile; and, especially, when tested and put in
production using multiple virtualization technologies and
concurrent system workloads;

• Stability: VNF performance measurements need to
present consistent results over different scenarios. Con-
sequently, we would like to answer if test descriptors
transparently handle service/resource definitions and met-
rics of VNFs placed in heterogeneous environments;

• Goodness: A VNF might be tested with different al-
located resources and stimuli, unlike the possibilities
of production environments. Crucially, we would like
to comprehend how well testing results, and associated
stimuli, correspond to VNF measured performance when
running in execution environments under real workloads.

Resource Optimization and SLAs. Greatly facilitated by an
automated approach, our experimental evaluation unveils some
patterns that could be useful for optimized configurations by
sizing the VMs according to their resource demands (e.g.,
Sprout ⇒ m1.large, Bono ⇒ m1.small). Further optimiza-
tion and resource allocation strategies (e.g., CPU pinning)
should be also investigated to derive more complete scalability
recommendations in addition to wider experimentation with
realistic workloads, altogether yielding more reliable vIMS
performance profiles. We look for a better understanding on
how much VNF testing profiles could be part of network SLAs.
For instance, complementing continuous monitoring, or an
optimized process in terms of performance and cost reduction.
Comparability, Repeatability, and Interoperability All re-
sults are extracted based on the vIMS Profile by the Gym
Player. The obtained metrics can be exported in different file
formats or committed to a database for comparison purposes.
The same Outline can be used by Gym to run performance
tests in other virtual environments and extract the same type
of metrics. This allows Gym users to continuously execute
the same pattern of benchmarking in their own deployments
with the ability to customize and debug their tests. Gym
can be deployed in heterogeneous environments as the main
requirements sit on plain Linux and Python support. All



6

Figure 4. Testbed, SIPp prober outline parameters / profile metrics, and experimental methodology.

components, together with the developed SIPp prober, can be
re-used to perform benchmarking tests in case of alternative
virtualization (e.g., containers) or bare metal deployments.
Customization and Configurability. Gym provides a skeleton
of components well-suited for customized development of
arbitrary VNF testing methodologies. Using Sketches and
Outline to benchmark the vIMS offered unfettered choices
for customized methodologies based on specific topologies,
workloads, metric extractions, and so on. The composition of
an Outline is a recipe that, when interpreted by the Player com-
ponent, guides the architectural and functional definitions of
VNF tests leveraging Agent/Monitor features. The presented
use case exemplifies Gym extensibility by showing a SIPp
prober easily integrated to drive the vIMS benchmarks.
NFV Orchestration. In line with our initial VBaaS vision [3],
Gym was developed agnostic to any particular NFVO. We
envision life cycle management interfaces in Gym to provide
workflows for flexible VNF testing. NFVO would consume
APIs exposed by Gym to extract desired VNF Profiles and
explore them in decision making processes of VNF allocation
in terms of target host and resource allocation.

V. RELATED WORK

In line with our initial theoretical vision on VNF bench-
marking [3], [7] proposes a structured approach to develop
benchmarking methodologies tailored to VNF. The use of
performance profiles in support of NFV DevOps workflows
has been recently proposed [8] to support management and
orchestration decisions leveraging offline profiling of complex
service chains.

While developing Gym, we sought alignment [4], [5] with
ongoing work at the IETF/IRTF, where under the umbrella of

“Considerations for Benchmarking Virtual Network Functions
and Their Infrastructure” [12], relevant guidelines are being
discussed towards standardized VNF benchmarking. Likewise,
Gym was influenced by related efforts at the ETSI ISG NFV
Testing Group [6] defining requirements and recommendations
for VNFs and NFVI validation. Gym shares similarities to
NFV-VITAL [9] with regard to the overall problem statement
and framework approach as well as our so-called vIMS effi-
ciency metric, which could be used in auto-scaling strategies
after detecting saturation in vIMS transactions per unit of time.

A number of open source projects sprint common abstrac-
tions for benchmarking VNFs and the underlying infrastruc-
tures. Closest related to Gym, OPNFV incubated projects
include (i) Yardstick, targeting infrastructure compliance when
running VNF applications; (ii) QTIP, providing definitions
towards platform performance benchmarking; and (iii) Bottle-
necks, proposing a framework to execute automatic methods
of benchmarks to validate VNFs deployment during staging.
Compared to Gym, these efforts are very much tied to their
choice of technologies, compromising portability and repeata-
bility due to the focus on supporting OPNFV developments
without broader aspirations of generic VNF testing tools.

The extensible and modular approach of Gym through Out-
lines and Profiles allows embracing such standalone projects
by integrating them as new probers and listeners along user-
defined metrics and testing workflows. One such a candidate
open source tool we intend to support in the Gym framework
through Agent extensions is NFPA (Network Function Per-
formance Analyzer) [13], which was also born to address the

https://wiki.opnfv.org/display/yardstick - Accessed on 2017-06-01
https://wiki.opnfv.org/display/qtip/Platform+Performance+Benchmarking -

Accessed on 2017-06-01
https://wiki.opnfv.org/display/bottlenecks - Accessed on 2017-06-01



7

(a)

(b)

(c)

Figure 5. Average Transaction Rate (transactions per sec) vs. CPU Usage (%).
(a) VNFs over m1.small flavor – Raw data at https://plot.ly/˜bertoldo/848.
(b) VNFs over m1.medium flavor – Raw data at https://plot.ly/˜bertoldo/830.
(c) VNFs over m1.large flavor – Raw data at https://plot.ly/˜bertoldo/856.

frustrating landscape of benchmarking comparison of network
functions over varying SW/HW systems. A last but not least
inspiring independent related open source effort is ToDD,
which walks in the direction of an on-demand extensible
framework for distributed testing of network capacity and
connectivity but without focus on NFV or complex workflows.

VI. CONCLUSIONS AND FUTURE WORK

The software nature of VNFs and the multi-dimensional
and time-varying aspects of heterogeneous virtualized environ-
ments call for adequate methods to assess the infrastructure
capabilities with regard to target performance levels. As an
evolution of our initial VNF benchmarking vision [3], this
article introduced the Gym testing framework along the prin-
ciples behind our open source implementation.

The vIMS test deployment served as a practical validation
of the current Gym prototype, illustrating both its potential
and the wider open challenges of automated performance
benchmarking in NFV. In spite of the identified limitations, we
conclude that Gym offers a meaningful apparatus to express
VNF testing abstractions that can be certainly explored in
continuous development and integration methodologies. On a
recent proof-of-concept evaluation of Gym [14], we used Open
vSwitch (OVS) as the VNF under test.

Multiple directions overtake our future work, many of
them driven by 5G realization efforts leveraging NFV and
Software Defined Networking (SDN) [15]. Examples include
benchmarking tests using OpenAirInterface components and
NFPA [13] as traffic generator and metric collector. As an
architectural framework and an open source project, Gym is
still very much in its infancy. We expect Gym to keep evolving,
not only in terms of low-level debugging but broadly driven
by the community. We envision user-contributed extensions in
Gym to support different testing tools, to evaluate newborn
VNFs, and to allow users to build and replicate tests by
reporting profiles and maintaining common repositories for
reproducible research practices involving VNF testing and
analytics. Furthermore, we foresee multiple research oppor-
tunities when applying a Gym-like approach to NFVs at run-
time in support of resource orchestration and business-oriented
decisions.

ACKNOWLEDGMENTS

This research was partially supported by FAPESP grant
#14/18482-4 and by the Innovation Center, Ericsson S.A.,
Brazil, grant UNI.58.

REFERENCES

[1] P. Veitch, M. J. McGrath, and V. Bayon, “An Instrumentation and
Analytics Framework for Optimal and Robust NFV Deployment,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 126–133, Feb. 2015.

[2] R. Mijumbi et al., “Network Function Virtualization: State-of-the-Art
and Research Challenges,” IEEE Communications Surveys Tutorials,
vol. 18, no. 1, pp. 236–262, Firstquarter 2016.

[3] R. V. Rosa, C. E. Rothenberg, and R. Szabo, “VBaaS: VNF Benchmark-
as-a-Service,” in 2015 Fourth European Workshop on Software Defined
Networks, Sept. 2015, pp. 79–84.

https://github.com/toddproject/todd - Accessed on 2017-06-01
http://www.openairinterface.org/ - Accessed on 2017-06-01



8

[4] ——. (2015) VNF Benchmark-as-a-Service. Internet draft. Accessed on
2017-06-01. [Online]. Available: https://www.ietf.org/archive/id/draft-
rorosz-nfvrg-vbaas-00.txt

[5] ——. (2016) VNF Benchmarking Methodology. Internet draft. Accessed
on 2017-06-01. [Online]. Available: https://tools.ietf.org/id/draft-rosa-
bmwg-vnfbench-00.html

[6] ETSI GS NFV-TST, “ETSI GS NFV-TST 002 V1.1.1 - Report on NFV
Interoperability Testing Methodology,” Oct. 2016, accessed on 2017-
06-01. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
TST/001_099/002/01.01.01_60/gs_NFV-TST002v010101p.pdf

[7] J. Blendin et al., “Towards a Structured Approach to Developing
Benchmarks for Virtual Network Functions,” in 2016 Fifth European
Workshop on Software Defined Networks, Oct. 2016.

[8] M. Peuster and H. Karl, “Understand your chains: Towards performance
profile-based network service management,” in Proceeding of the Fifth
European Workshop on Software Defined Networks (EWSDN)., Oct
2016.

[9] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), Nov 2015, pp. 93–99.

[10] D. Thißen, J. Miguel, and E. Carl, “Evaluating the
Performance of an IMS / NGN Deployment,” Proc.
2nd Work. Serv. Platforms, Innov. Res. new Infrastructures
Telecommun. SPIRIT, 2009, accessed on 2017-06-01. [Online].
Available: http://subs.emis.de/LNI/Proceedings/Proceedings154/gi-proc-
154-224.pdf

[11] ETSI, “ETSI TS 186 008-2 V2.1.1 - IMS Network
Testing,” 08 2013, accessed on 2017-06-01. [Online].
Available: http://www.etsi.org/deliver/etsi_ts/186000_186099/18600802/
02.01.01_60/ts_18600802v020101p.pdf

[12] A. Morton. (2016) Considerations for benchmarking virtual network
functions and their infrastructure. Internet draft. Accessed on
2017-06-01. [Online]. Available: https://datatracker.ietf.org/doc/draft-
ietf-bmwg-virtual-net/

[13] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “Nfpa: Network function
performance analyzer,” in 2015 IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN), Nov 2015,
pp. 15–17.

[14] R. V. Rosa and C. Rothenberg, “Taking Open vSwitch to the Gym: An
Automated Benchmarking Approach,” To appear in IV Workshop pre
IETF/IRTF, Jul. 2017.

[15] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, p. 63, 2015.

BIOGRAPHIES

Raphael Vicente Rosa (raphaelvrosa@dca.fee.unicamp.br)
currently pursues his thesis on multi-domain distributed NFV
as a PhD student in University of Campinas, Brazil. During
the last two years, he worked as a visiting researcher in
Ericsson Research Hungary, where he contributed to EU-FP7
Unify project and developed activities within H2020 5G
Exchange project. His main interests sit on state-of-the-art
SDN and NFV research topics.

Claudio Bertoldo (bertoldo@dca.fee.unicamp.br) is a
fresh post-graduated (M.Sc.) by the University of Campinas,
Brazil. He has been involved with next generation fixed
and mobile broadband networks since 2007, working at
telecommunications companies such as Telefónica and
Huawei, and also at several startups. His research interests
include Network Functions Virtualization and Next Generation
Mobile Networks.

Christian Esteve Rothenberg is an Assistant Professor in
the Faculty of Electrical & Computer Engineering (FEEC)
at University of Campinas (UNICAMP), Brazil, where
he received his Ph.D. and currently leads the Information

& Networking Technologies Research & Innovation Group
(INTRIG). His research activities span all layers of distributed
systems and network architectures and are often carried in
collaboration with industry, resulting in multiple open source
projects in SDN and NFV among other scientific results.


