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Abstract—Software Defined Networking (SDN) has entered
the networking scene opening new ways to design, deploy,
and operate networks by introducing new abstractions and
programmability of the network control and data planes. In
this paper, we take an SDN approach to embed virtual data
center networks supporting a Network-as-a-Service model. The
proposed architecture is built around a number of abstractions to
create virtual topologies using convenient BGP configurations that
allow an efficient mapping to a physical network of OpenFlow 1.3
switches. At the heart of the proposal is an algorithm designed
to perform efficient allocation of resources to virtual paths based
on network state data, such as allocated virtual networks and
resource utilization metrics. Requirements such as bandwidth
and resilience are used to define the tenants policies and construct
the virtual topology graphs. The experimental evaluation on an
emulated testbed shows that the proposed algorithm performs
efficient load balancing and altogether yields better utilization of
the physical resources under different tenant traffic patterns.

I. INTRODUCTION

By abstraction the underlying physical network away, net-
working virtualization has become a key enabling technology
of multiple-tenant cloud data center (DC). Server virtualization
enables physical server partitions into multiple isolated virtual
machines (VMs). Likewise, in the form of network virtual-
ization, the allocation and efficient use of network resources
(e.g., bandwidth, switches, addresses), have been widely im-
plemented in DCNs [1]. A virtualized data center provides
computational and network resources allowing tenants to apply
their own policies, define their address spaces, manage their
pool of VMs independently, and so on.

The effective management of virtual data centers (VDCs) is
a challenge in itself [2]. VDC tenants often have heterogeneous
network requirements such as performance isolation, flexible
traffic allocations, fault tolerance, load balancing, deployment
of new applications, and network innovation support [2]. Many
efforts are being devoted to deliver efficient solutions to the
problem of multi-objective resource optimization in VDCs
(e.g., [3], [4]) where the virtual network embedding task
becomes a challenging algorithmic issue [5]. These challenges
become less tractable in dynamic environments and often
involve vast amount of real-time data to perform centralized
analytics processing in order to keep the resource utilization
as high as possible without sacrificing SLAs (cf. [6].

In this paper, we explore the concept of Network-as-a-
Service (NaaS) [7] to build virtual data center networks fol-
lowing a Software Defined Networking (SDN) approach. The
proposed architecture allows dynamic allocation of virtual net-
works in data centers accordingly to bandwidth and resilience

requirements. We consider a scenario where a data center
Infrastructure Provider (InP) allocates physical resources to
multiple tenants which act as Service Providers (SPs) and
have their demands for VMs allocations well defined. In this
way, any addressing scheme, traffic communication pattern and
resilience parameter is used to embed virtual networks.

Our prototyping efforts leverage the RouteFlow plat-
form [8], which allows the execution of IP routing protocol
stacks over an arbitrary network of OpenFlow switches. We
define a virtual plane using the BGP routing protocol with
multipath support, following the premises of a recent pro-
posal [9] to operate with a folded-Clos network topology. In
the data plane, we use a physical infrastructure that supports
OpenFlow protocol version 1.3 [10]. In the virtualized control
plane of the platform, we build routing services that aggregate
information from the physical and virtual planes, and carry the
task mapping the virtual networks to the available resources.
We propose an allocation algorithm with the main task to
allocate bandwidth from the physical topology by mapping the
routes of the per-tenant virtual topology. Policies and account-
ing demands of tenants define the bandwidth and resilience
requirements, which are used by the mapping algorithm to
build virtual networks and configure the data plane routes to
provide resource isolation by features introduced in OpenFlow
1.3, such as group and metering tables.

The core contribution of this paper is the definition of
virtual network graphs as a service based on data-centric ab-
stractions to allocate network resources efficiently. We evaluate
our virtual networks embedding approach in terms of link
stress and utilization and compares it with existing proposals
in the literature. In this sense, this work is distinguished from
others by the following aspects: (i) proposes a SDN approach
to deliver virtual networks using the BGP protocol as an
operator-friendly means well-suited to data center networks
based on folded-Clos topologies; (ii) extends the RouteFlow
platform to support OpenFlow 1.3 and offer applications with
northbound APIs to express network policies such as reserva-
tion of bandwidth and multi-path routing; and (iii) define an
efficient algorithm for mapping virtual network that provides
load balance attached to resilience and bandwidth guarantees.

The structure of this paper is as follows. Section 2 intro-
duces relevant background. Section 3 presents the proposed
architecture leaving to Section 4 the details on proposed
algorithm to allocate virtual networks. Section 5 presents our
evaluation work. Section 6 discusses the results and relates
them to the existing literature and avenues for future work.
Finally, Section 7 concludes the paper .



II. BACKGROUND

This section describes the main components in a virtualized
data center, related proposals in the literature, as well as
the RouteFlow software-defined IP routing platform, a key
component of the proposed architecture.

A. Data Center Network Virtualization

A data center is made up of servers, network equipment
(e.g., switches/routers, cables) and power distribution and cool-
ing systems. The data center network is defined by the network
topology (e.g., BCube, Clos) and network protocols used for
communication between its components (e.g., Ethernet, IPv6).
A DCN is usually defined by the following configuration.
Servers are aggregated into racks and connected to a Top-
of-Rack (ToR) switch. This element connects the End-of-Row
switches (EoR), which are used as intermediates towards Core
switches. A VDC is defined as a set of virtualized resources
(e.g., VMs, virtual switches/routers) interconnected through
virtual networks that share the same physical network substrate
and are independently deployed and managed [2].

Vast amount of recent work on data center network vir-
tualization is being devote to address challenges such as:
virtualization mechanisms; cost-efficient topologies; perfor-
mance isolation; scalability; fault tolerance; packet forwarding
techniques, and so on. Basically, DCN resources are used in
two forms, (i) competition or (ii) allocation. In the first case,
we highlight Seawall [11], Netshare [12] and FairCloud [13],
which propose a fair share of network resources by statistical
multiplexing and minimum bandwidth requirements to VMs
—but no deterministic guarantees of network resources (e.g.,
latency, bandwidth). In the second case, remarkable propos-
als including Gatekeeper [14], SecondNet [15], Oktopus [6],
Proteus [16] and ElasticSwitch [3], perform the allocation of
minimum guaranteed bandwidth to sets of VMs (tenants) in
different ways, such as heuristics, network distributed flow
control and VMs temporal patterns communication analysis.

B. RouteFlow

RouteFlow [8] is an SDN routing platform that logically
centralizes network control, unifying the network information
state and decouple the logical routing from the configuration
of network equipment. The RouteFlow platform provides IP
routing protocol stacks defined in a virtual plane mapped to the
resources of a physical network infrastructure with OpenFlow
support services. This feature enables the provision of a plat-
form as a service concept to the networking [7] with flexible
resource mapping of a virtual topology on a physical network
infrastructure which can be distributed or shared. Consisting
of three planes, virtual, physical and control, RouteFlow has
respectively in each of these planes its main components:
rfclient, rfproxy and rfserver.

In the virtual plane, virtual routers, defined via Linux
operating system level of virtualization (Linux Containers -
LXCs), are interconnected by an OpenFlow switch. Inside the
virtualized Linux routers, the rfclient application captures
routes computed by a routing engine (e.g., Quagga, XORP,
BIRD) and sends them to the control plane. The data plane
is formed by OpenFlow switches connected to network con-
trollers running the rfproxy application. In the control plane,

Fig. 1: Architecture

the rfserver application stores all the configuration state
and defines the mapping between physical and virtual net-
works. It also manages the state of the virtual/physical mapping
maintained in a database (e.g., MongoDB) and performs the
formatting and exchange of messages between rfclient
and rfproxy applications such as IP routes and ARP tables
computed in the virtual plane.

III. ARCHITECTURE

The proposed architecture (see Fig. 1) results of putting to-
gether two recent pieces of work. On one side, RouteFlow [8],
as a means to create and execute virtual data center networks
based on programmable control of the network, the unification
of the information state from virtual and data planes, and
decoupling of logical routing and configuration from network
equipment. On the other side, the BGP-centric DC design by
Lapuhhov et al. [9] exploits basic configuration features of
the BGP protocol for intra-AS routing in DCNs. The basic
idea consists of employing a folded-Clos DCN topology upon
which BGP with multipath support is configured. Advantages
of this proposal include: practical routing design for large DCs;
simple protocol with low code complexity and easy operational
support; minimizing equipment and routing protocol failures;
and operating and capital costs reduction.

We leverage the RouteFlow platform to build a DCN
architecture where the virtual topology is defined in terms
of the BGP routing protocol, and the data plane is based on
OpenFlow 1.3 devices. The direct control capabilities of both
the virtualized control plane topologies and programmable data
plane are the enabling features to support the virtual networks
mapping algorithm proposed in this paper. To exercise the
outcomes from the mapping algorithm, we employ features
of OpenFlow 1.3 (e.g., group, metering, and multiple tables)
as commanded by the enhanced rfproxy application.

The following subsections, organized according to the
architecture planes (data, virtual and control), describe the
proposed approach to support the DCN requirements starting
by mapping the physical network infrastructure to aggregated
virtual topologies.



Fig. 2: Virtual and Physical Topology Aggregation Mapping

A. Data Plane

The data plane is based on folded-Clos topology of Open-
Flow 1.3 switches managed by OpenFlow controllers running
rfproxy application. Aided by a topology discovery appli-
cation, rfproxy captures addition and removal events of
switches and links in the physical topology sending them to the
control plane to construct the physical topology available for
mappings. OpenFlow 1.3 functionalities are used to support
the mapping of virtual networks, such as the use of group
forwarding tables similar to Equal-Cost Multipath (ECMP)
mechanism, bandwidth control implemented with metering ta-
bles, L2 addresses rewriting, MPLS encapsulation and tagging,
as arranged in a suitable multiple table pipeline.

Flow rules programmed in the physical topology use MPLS
tags as unique identifiers of a tenant virtual network. In Core
and EoR switches, traffic is forwarded only by matches on
these tags. At ToRs switches, four tables of the OpenFlow
1.3 pipeline are programmed. Table 0 matches MPLS tags
with traffic destined inside the rack and takes the actions to
withdraw the MPLS shim layer and go to table 1, where the
match occurs on IP network addresses, and have the actions
of rewriting MAC addresses and forwarding to the next table.
In Table 2, matches on previously rewritten servers MAC
addresses generates the action of traffic forwarding to their
proper connected ports. Table 3 handles traffic to be sent out of
the rack by actions of adding a shim MPLS layer and tagging
the traffic, defined on the route that was set to a particular
tenant in the control plane. All flow rules are installed with
hard timeouts to define the permanency of a virtual topology
in the data plane. Bandwidth limitation rules are programmed
in ToRs, delimiting rack traffic in and out by metering tables
associated respectively to the flow rules in tables 2 and 3.

B. Virtual Plane

The rfclient application In the virtual control plane has
been improved to support the detection of multipath routes.
The Quagga routing engine running the BGP protocol is
configured with the advantages for intra-AS DCNs in folded-
Clos topology as per [9]. As shown in Fig. 2, we mapped
the base topologies, physical and virtual, representing the data
and virtual planes by aggregating elements containing the
same ASN of a folded-Clos topology layer (e.g., Core, EoR).
Since elements of the same folded-Clos topology layer are not
interconnected, they have equidistant routes to all other ele-
ments of the topology, and routes with the same AS-PATH can
be computed to all network destinations. Initially, all control

messages transferred between the virtual and data planes are
passed via the network controller. To avoid overloading the
network controller, after mapping the base topologies, flow
entries are installed to keep all control messages in the real of
the virtual plane switch.

C. Control Plane

The control plane is formed by the rfserver application,
the database with the mapping state of the physical and virtual
planes, and the main components developed to perform the
virtual network embedding (see Fig. 3): Resource, Policy,
Configuration, Allocator, and Scheduler.

Resource performs the storage and management of informa-
tion obtained from the virtual (e.g., LXCs, interfaces, routes)
and data (e.g., switches, links) planes with the creation of
the PhysicalTopology and VirtualTopology classes along their
representative attributes. These two classes are inherited from
a Topology class which builds graphs for abstraction purposes.
This component also defines the Topologies class that has
as the required functions to instantiate physical and virtual
topologies, manage their mapping, configure their settings
(e.g., routes, links, switches, LXCs), and analyze the config-
uration and state of the physical and virtual topologies. In
addition, the Servers class represents all VMs in servers and
their correspondent racks.

Policy is responsible for managing requests for virtual net-
work allocations and include requirements such as bandwidth,
resilience, IP and MAC addresses of hosts that constitute
the virtual topology to be established, or any related feature
that constitute the requirements for any data transfer property
between VMs/servers or applications. When a policy is con-
structed and the mapping is performed, the virtual network
topology is stored and associated with a specific identifier
which is programmed in flow rules by MPLS tags in the data
plane. Within this component, a class named Policies performs
registration, management and storage of policies created with
their respective built and mapped virtual topologies.

Configuration embodies the mapping algorithms that perform
both the association between topologies as the routes mapping
from the virtual base topology to create virtual topologies.
Moreover, within this component are algorithms that assist
in major mapping functions, which deal with the changes of
virtual and physical topologies resources to better meet the
policy mapping requests. Basically the algorithms defined in
this component comply the policies to determine routes, links
and bandwidth allocations in resources of the base physical
topology defined by the Resource component. The outcome
from the configuration algorithm is a virtual topology graph
annotated with the compliant policy attributes.

Allocator performs all configuration interface between virtual
topologies and the data plane. It is through the allocation
process that virtual topologies are configured, mappings are
carried based on the Configuration component, and the actual
mapping to the physical topology is executed by commands
sent to rfproxy application. Hence, the main function of
this component is the translation of abstracted virtual topology
graphs properties into OpenFlow-like data plane messages. In
addition, it also performs the configuration of virtual switch
routes in the virtual plane.



Fig. 3: Control Plane Components

Scheduler is the component responsible for managing the
overall operation of the above components. Through it, policies
are created, established and configured and virtual and physical
mapping topologies are defined as policy constraints to be
dynamically allocated and deallocated. That is, this component
performs all the interface communication with the rfserver
application and handles the main configuration features and or-
chestrates the operations of all components of the architecture
.

D. Proof of Concept Execution

Next we illustrate the operation of the proposed architec-
ture elements by initializing the components in the follow-
ing order: LXCs and rfclient applications; virtual plane
switch; database; rfserver application; network controller
and rfproxy application; physical topology switches. The
rfserver application initiates all components aforemen-
tioned as RouteFlow platform services.

After physical topology discovery and virtual plane conver-
gence, the scheduler component creates a default policy which
defines the mapping of the base, physical and virtual, topolo-
gies. At first, the objects representing these topologies are
instantiated to be used in subsequent mappings. Furthermore,
the object that represents rack servers is created for policies
instantiation. Then, three threads are executed to perform the
tasks of: (i) creating mapping demands and policies (e.g.,
triggered by OpenStack, Hadoop, and the like applications);
(ii) allocation of policies to create virtual topology graphs; and
(iii) policy deallocation as mapping duration times expires.

The first thread, based on a traffic matrix between VMs,
servers or applications, performs the representation of these
communication pattern in servers using the object Servers and
creates a traffic matrix between racks. This information is
aggregated and defined into a policy, which is placed in a queue
to be allocated. Any VM allocation or application abstraction
technique (e.g., [17], [18]) can be programmed in this thread
to produce a data communication pattern. The allocator checks
this queue and performs the allocation of policies on the
base physical topology via the proposed mapping algorithm.

Depending on the allocation time set for each policy, the
deallocation thread removes virtual topologies from the base
physical topology.

IV. ALGORITHMS

The Configuration component has two main algorithms: (i)
the resource bookkepping algorithm manages the information
state of the physical topology resources to the (ii) mapping
algorithm build and allocate virtual topology graphs.

A. Resource Bookkepping Algorithm

In each switch of the base physical topology object of
the control plane, two attributes stand out. The first defines a
bw port table containing the available bandwidth percentage
on each switch port/link. Each time a link has its resource
properties changed, such as a virtual route allocation, the
percentage of available bandwidth on this link is computed and
stored in bw port tables of its adjacent switches in the form
{adjacent link port : percentage of available link bandwidth}.
The other attribute concerns the bw table, which defines the
percentage of available bandwidth to destination addresses of
switch routes. Each time a route is mapped to a link, its
adjacent switches update their bw tables as the destination
address of the mapped route, providing inputs in the form
{destination address : [port of destination route address :
percentage of bandwidth available for the route]}.

Algorithm 1 (Resource Bookkepping Algorithm): Updates
switches bw tables of base physical topology
Require: Information of base physical topology resources state (topo phy base)
Ensure: All switches bw tables updated from (topo phy base)

1: for all switch ToR in topo phy base do
2: SwitchesQueue.addItem(ToR, ToRNetworkAddressPrefix, ToR.bw table, port=1)
3: end for
4: while SwitchesQueue not empty do
5: (switch, NetworkAddressPrefix, switch. bw table, port)

← SwitchesQueue.popItem()
6: if (switch, NetworkAddressPrefix, port) in QueuedSwitches then
7: switch. bw table ← QueuedSwitches(switch, NetworkAddressPrefix, port)
8: QueuedSwitches.removeItem(switch, NetworkAddressPrefix, port)
9: end if

10: VisitedSwitches.addItem(switch, NetworkAddressPrefix, port)
11: bw usage list ← list of all bandwidth values in switch.bw table addressed to

NetworkAddressPrefix
12: bw usage mean ← Higher value to be equally allocated in all bw usage list

entries of NetworkAddressPrefix
13: if port in links to neighbor switches then
14: switch bw table[NetworkAddressPrefix][port]

← min(bw usage mean, switch. bw port table[port])
15: end if
16: for all ports not in adjacent switch links do
17: if (link.neighborSwitch, NetworkAddressPrefix, link.neighborDestinationPort)

not in QueuedSwitches and VisitedSwitches then
18: SwitchesQueue.addItem(link.neighborSwitch, NetworkAddressPrefix,

switch bw table, link.neighborDestinationPort)
19: end if
20: if (link.neighborSwitch, NetworkAddressPrefix, link.neighborDestinationPort)

in QueuedSwitches then
21: QueuedSwitches(switch, NetworkAddressPrefix, port)← switch bw table
22: end if
23: end for
24: end while

It is important to note that a bw table comprises the end-
to-end available route bandwidth, while the bw port table
defines the local available bandwidth, i.e., only in adjacent
switch links. Also, ToRs have in their bw table registries of
available bandwidth of its interconnected servers, thus defining
all the bandwidth available in racks. Based on these attributes,



the key point of the Algorithm 1 (Resource Bookkepping) is
the update of bw tables of all the base physical topology
switches, so that they are consistent with the state of the
mapped policies and switches bw port tables, and can be used
in the mapping algorithm. This update occurs only on the base
physical topology, every time a policy is created, allocated and
deallocated. There are no restrictions to extend this algorithm
to server virtual switches, since it is based on the a Breadth
First Search over the base physical topology graph.

B. Mapping Algorithm

This algorithm is also defined by a Breadth First Search
over the base physical topology graph. Likewise, ToR switches
are the input nodes, representing a policy with a traffic matrix
between them. The output of the algorithm is a virtual topol-
ogy built on route information of the base virtual topology
and available bandwidth of the base physical topology. The
mapping occurs by bandwidth annotations, defined by policies
unique identifiers, made on base physical topology links. These
markings are performed according to the selected routes of the
base virtual topology and two requirements, bandwidth and
resilience, defined in the policies created.

Algorithm 2 (Mapping Algorithm): Maps virtual topologies in
base physical topology
Require: base physical topology (topo phy base), base virtual topology

(topo virt base), policy
Ensure: virtual topology mapped

1: for all ToR switches in policy traffic matrix do
2: for all NetworkAddressPrefix in policy traffic matrix 6= network address range

of ToR switch do
3: lxc ← lxc of topo virt base mapped to ToR
4: SwitchesQueue.addItem(lxc, ToR, NetworkAddressPrefix)
5: SwitchesFeatures(lxc, ToR, NetworkAddressPrefix) = ToR bandwitdh to Net-

workAddressPrefix in policy traffic matrix
6: end for
7: end for
8: while SwitchesQueue not empty do
9: (lxc, switch, NetworkAddressPrefix) = SwitchesQueue.popItem()

10: if NetworkAddressPrefix not in QueuedSwitches then
11: VisitedSwitches.addItem(lxc, switch, NetworkAddressPrefix)
12: end if
13: RequestedBandwidth = SwitchesFeatures(lxc, switch, NetworkAddressPrefix)
14: switch selected routes ← SelectRoutes(switch, lxc,

NetworkAddressPrefix, RequestedBandwidth)
15: RoutesBandwidth ← RequestedBandwidth equally divided between

switch selected routes
16: for all route in switch selected routes do
17: if RoutesBandwidth[route] allocated in topo phy base link defined by route

then
18: Adds switch, route in switch and link in VirtualTopology
19: Defines DestinationLXC and DestinationSwitch as lxc and switch associ-

ated in link defined by route
20: SwitchesQueue.addItem(DestinationLXC, DestinationSwitch, NetworkAd-

dressPrefix)
21: SwitchesFeatures(DestinationLXC, DestinationSwitch,

NetworkAddressPrefix) ← RoutesBandwidth[route]
22: else
23: Mapping ← False
24: Stop execution loops
25: end if
26: end for
27: end while
28: if Mapping 6= True then
29: Undo all policy mappings done so far in topo phy base
30: end if

In option “SelecRoutes Agreg” in Algorithm 3, the re-
silience policies criteria are defined by percentages, which
express the amount of routes that will be selected for the
evaluation of all available mapping paths. Furthermore, in
this option, the use of route selection, average minus twice

Algorithm 3 (Select Routes): Select routes to be mapped
Require: (switch, lxc, NetworkAddressPrefix, RequestedBandwidth)
Ensure: Selected routes for mapping

1: switch routes ← lxc.get routes(NetworkAddressPrefix)
2: Select switch routes with higher switch.bw port table capacity that satisfy resilience

policy requirements
3: if Option SelectRoutes Agreg then
4: Calculate mean, standard deviation, higher and smaller values from

switch.bw port table with ports defined by switch routes
5: Select combination of routes from switch routes which satisfy RequestedBand-

width divided between them and that have switch. bw port table higher or equal
to the mean less two times standard deviation of switch.bw port table

6: From previously selected routes, select those with less difference between
the higher and smaller values in case of their selection and definition in
switch.bw port table

7: Return routes previously selected
8: end if
9: if Option SelectRoutes Traditional then

10: Return route from switch routes that satisfy RequestedBandwidth of NetworkAd-
dressPrefix in switch.bw table

11: end if

the standard deviation allows the selected routes within two
percentiles of the average values of bw port tables. This
parameter ensures that there is load balancing on the ports on
a switch, unlike the option “SelecRoutes Traditional” where
only one route with less available bandwidth is selected and
no criterion for switch ports load balancing is employed.

V. EVALUATION

The experimental testbed was assembled using Route-
Flow code base with the aforementioned modifications. The
rfproxy application was built using the Ryu controller,1 with
OpenFlow 1.3 upgrades.2 We use an OpenFlow 1.3 software
switch (ofsoftswitch13)3 both in the data and virtual
planes and defined 12 and 48 switches folded-Clos topologies
using Mininet [19]. We consider the physical topology and the
control plane connection between each switches to have 10,000
units of bandwidth and 1,000 between servers and switches.
Furthermore, we assume 20 and 40 servers per rack, in the
12- and 48- switch topologies, respectively, and each server
hosting up to 20 VMs. All experiments were used with two
virtual machines, one running all control and virtual planes (6
Cores and 12 GB RAM), and another executing the data plane
(2 Cores and 4 GB RAM).

A. Analytical Evaluation

We start our evaluation by analyzing the architecture con-
structed using BGP virtual routers defined by the aggregation
mapping of the physical topology. We seek to observe a com-
parison between the folded-Clos topologies with and without
aggregation, respectively referenced as Clos and ClosAgreg.
As shown in Table I, we can observe that as the number of
physical switches increase, the virtual topology aggregation
requires fewer connections between virtual routers, smaller
amount of TCP/BGP connections, and a lower number of
control messages exchanged on each BGP update event.

B. Experimental Evaluation

1) Time Performance of Mapping Operations: In order
to get performance criteria of the proposed architecture and

1https://github.com/osrg/ryu
2https://github.com/routeflow/ryu-rfproxy
3https://github.com/CPqD/ofsoftswitch13



Fig. 4: Mapping timers

algorithm, we conducted experiments to evaluate the mapping
time as the size of virtual network requests grows up. We
discriminate the following operation time windows: (i) check-
ing of pre-configuration and topologies; (ii) virtual network
mapping and graph building; and (iii) configuration of routes
in the data plane. We performed experiments varying the size
of the mapping policies from 1 to 16 racks in 48 switches
folded-Clos topology. As we can observe in Fig. 4, the pre-
configuration time is practically constant and does not depend
on the policies size. The mapping and configuration time
increase as the policies size because the amount of routes to
be analyzed, selected, mapped and configured in ToRs. In the
case of the analyzed topology, we note that there are small
jumps of time as a policy uses racks non-interconnected by
the same EoR switches, which is due to the need of routes
mapping in Core switches.

2) Bandwith Gains and Link Stress: Next we evaluate the
Algorithm 2 and compare the performance of SelecRoutes
Traditional and SelecRoutes Agreg strategies of Algorithm 3.
We perform the creation of mapping demands in a Poisson
process with VMs being allocated orderly as the availability
of servers bandwidth. We established the following parameters
for this experiment: arrival of demands by a Poisson process
with an average of 30 requests per minute. Each request
contains, respectively, for topologies with 12 and 48 switches:
number of virtual machines uniformly distributed between 10
and 30 and between 30 and 70; traffic demand between VMs
uniformly distributed between 1 and 10 units of bandwidth,
defined by all-to-all traffic pattern; mapped virtual networks
with residence network time uniformly distributed between

TABLE I: Comparison of base and aggregated topologies.

Topology Switches
Data Plane

Virtual
Routers

Router
Sessions

Control
Messages

Clos 12 12 16 32
ClosAgreg 12 7 6 12

Clos 48 48 64 128
ClosAgreg 48 9 8 16

Clos 96 96 256 512
ClosAgreg 96 11 34 68

Clos 128 128 1024 2048
ClosAgreg 128 35 68 136

(a) Bandwidth used per link

(b) Link stress

Fig. 5: 12 switches folded-Clos topology

180 and 300 and between 540 and 660 seconds; and total
experiment time set in 6,000 and 18,000 seconds.

We evaluate the proposed algorithms in terms of average
bandwidth and its variation (link stress) in physical network
links to understand the load balancing behaviour on data plane
topologies with 12 (Fig. 5) and 48 (Fig. 6) switches. The results
obtained show that independent from the number of switches
in the physical topologies, the SelecRoutes Agreg option excels
with a minor link stress and using a higher mean bandwidth per
link, which can be explained due to the network load balancing
capabilities of the proposed algorithms.

3) Performance for Varying Traffic Patterns: In order to
obtain a sensitivity analysis on different traffic patterns, we
carry an experiment in the 48-switch folded-Clos topology
with the same parameters initially used, but following different
patterns of communication between VMs: all-to-one and one-
to-all. Again we observe in Fig. 7 the same behavior showed
in all-to-all traffic communication pattern (Fig. 5). In both
experiments, all-to-one (Fig. 7(a)) and one-to-all (Fig. 7(b)),
we obtain a lower link stress using the (SelecRoutes Agreg)
strategy. In all experiments, Figs. 5, 6 and 7, we obtain the
same average number of policies allocated for both algorithms,
and zero ratio of denied mapping policies.



(a) Bandwidth used per link

(b) Link stress: All-to-all traffic communication pattern

Fig. 6: 48-switch folded-Clos topology

VI. DISCUSSION AND FUTURE WORK

The high degree of freedom in creating virtual data center
networks by aggregating information from both physical and
virtual planes provides an insight yet unexplored in related
work. Firstly, high-level goals can be easily implemented in
terms of policies for virtual networks allocation demands both
in the data and control planes, either by programming rules
into the routes selection process or by setting BGP configu-
ration knobs as proposed by [20]. Secondly, the information
aggregated from the physical and virtual topology graphs into
the logically centralized control plane enables a variety of op-
portunities to network control and virtual networks mappings.
These features foster the main goals of this work, because
they propose new data discrimination operations, Fundamen-
tally, the proposed architecture allows meeting different policy
requirements in support of efficient DCN sharing objectives.
Next, we review a selection of topics sparing discussions on
related and future work.

Data-centric policy abstractions: As noted in the ex-
perimental results, the proposed algorithm performs efficient
load balancing in the network when compared to the algo-
rithm SelecRoutes Traditional option, commonly seen in the
literature (e.g., [6] and [16]). The focus in data-centric policy
features brings out the main aspects of load balancing of the
algorithm proposed. The network knowledge base established
in the Resource Bookkeeping Algorithm brings a topology
graph perspective with a consistent view of physical network

(a) Link stress: All-to-one traffic communication pattern

(b) Link stress: One-to-all traffic communication pattern

Fig. 7: Link stress for varying traffic patterns.

resources to be used by the Mapping Algorithm. Building upon
this feature, the traffic granularity available in the SelecRoutes
Agreg option could be dynamically adjusted to efficiently select
routes for different applications, based on their traffic char-
acteristics and priority (e.g., Hadoop, backup traffic). These
properties define an important field of future work where
online data measured statistics and energy consumption related
features are correlated to the degree of DCN load balancing.

Hose model: So far, related work (e.g., [3], [6], [11]–
[16]) explicitly deals with the allocation/competition band-
width trade-off and its bandwidth isolation and queue shar-
ing requirements. The bandwidth allocation scheme used in
this paper handles different traffic patterns being adequate to
support data center load balancing for different application
communication patterns which can be implemented as policy
definitions. The Policy component does not forbid statistical
multiplexing in traffic allocation analysis to be also built into
the control plane of the architecture, to yield, e.g., work
conserving [3] traffic allocations. [21] include discernments
that meet the traffic communication abstractions implemented
in our work. For example, policy definitions can easily be
implemented according to the VOC [6] or TAG [18] models
for traffic applications abstractions and their attributes (e.g.,
bandwidth, addresses, resilience, priorities).

Limitations: Centralized solutions often involve scalability
concerns. As in our case, the aggregated state information in
a centralized control plane is subject to known performance



issues –a matter of ongoing research within the SDN com-
munity. In a different perspective, we focused in the virtual
mapping aggregation of physical folded-Clos topologies with
the advantages identified by [9] using RouteFlow to orchestrate
the virtual control plane. An interesting research topic would
be whether any multi-path topology could be used even with
non-uniform load balancing across paths (e.g., Jellyfish). In
this case, for example, a controller-based routing engine could
be used instead of a virtual topology routing plane. And finally,
fault tolerance inserted in virtual networks reconfiguration is
a work possibility already observed in WANs that can be a
simple extension of the proposed mapping algorithm.

OpenFlow: Unlike existing proposals in the literature, our
architecture and proof of concept prototype is built using
OpenFlow version 1.3 and handles load balancing require-
ments through multi-path traffic management and fine gran-
ularity. OpenFlow 1.3 features allow all necessary properties
to program virtual topology graphs in different ways, for
example by setting the filtering of data path virtual traffic
only by matching on TCP/IP ports/protocols (e.g., NVGRE,
VXLAN). Likewise, according to recent results on packet
spraying techniques [22], OpenFlow 1.3 queue definitions
could also be used to prioritize various traffic communication
aspects, such as isolation and QoS. The evaluation criteria of
performance and scalability in DCNs using new translation
addressing schemes and other OpenFlow 1.3 features, are
research topics that are already underway and emerge as a
prominent SDN research topic.

VII. CONCLUSION

In this paper, we sought to evaluate the allocation of
virtual networks in data centers using the NaaS model with
the application of SDN concepts. We built an architecture
using the RouteFlow SDN control platform to shape the entire
virtualized data center network environment. We explore the
mapping to the physical data center network infrastructure
from a virtual topology where routes from the BGP protocol
–configured specifically for this environment– are obtained
upon the allocation of virtual data center topologies. Through
algorithms implemented on the control plane of the RouteFlow
platform, we were able to show efficient allocation of virtual
networks considering bandwidth, load balancing and routing
protocol overhead. Therefore, issues related to both forms of
addressing, network flexibility, development and creation of
new network applications, among others, can be made with
total freedom on the proposed architecture. This fact allows to
address several DCNs problems by the extension of this work,
considering different operational and practical requirements for
these type of networks.
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