
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:34
https://doi.org/10.1007/s10922-022-09641-z

1 3

CNS‑AOM: Design, Implementation and Integration
of an Architecture for Orchestration and Management
of Cloud‑Network Slices

André Luiz Beltrami Rocha1  · Celso Henrique Cesila2 ·
Paulo Ditarso Maciel Jr.3  · Sand Luz Correa4 · Javier Rubio‑Loyola5  ·
Christian Esteve Rothenberg2  · Fábio Luciano Verdi1 

Received: 29 January 2021 / Revised: 14 September 2021 / Accepted: 2 January 2022 /
Published online: 30 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Cloud-Network Slice (CNS) is defined as an end-to-end infrastructure composed by
computing, networking, and storage resources and it is expected to be a key enabler
for novel verticals such as Industry 4.0, IoT and Vehicular Networks. This paper
presents the design, implementation and integration of the Architecture for Orches-
tration and Management of Cloud-Network Slices (CNS-AOM), a modular archi-
tecture to orchestrate and manage slice resources and services in CNSs. The CNS-
AOM is designed and implemented considering three important characteristics: (i)
the business model called Slice-as-a-Service (SlaaS); (ii) the multiple administrative
and technological domains; and (iii) the slice elasticity, which means the capacity
of dynamically growing and shrinking the slice resources to improve service per-
formance. To prove the feasibility of our proposal, two Proofs of Concept (PoC) are
implemented in real environments to validate the CNS-AOM. First, an end-to-end
content distribution service (CDN) is deployed across three different cities in Brazil
to emphasize the multiple domains. Second, we present an IoT service using a fully-
featured commercial service platform called dojot, which is instantiated and orches-
trated by the proposed architecture. The dojot slice is instantiated overseas in four
cities across two countries. The evaluation for the CDN slice considers the appropri-
ate metrics that should be monitored and the actual services that should be instanti-
ated to meet the end-user’s requirements depending on its location. Moreover, in
the dojot slice, elasticity operations (vertical and horizontal) are tested and evalu-
ated along with the time taken to deploy the slice infrastructure and the service. The
main contributions of this paper are: (i) the design, implementation and integration
of the CNS-AOM; (ii) the orchestration control-loop of the slice resources; and (iii)
the execution of real proof-of-concept scenarios that demonstrate the feasibility of

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5633-8893
http://orcid.org/0000-0002-0732-752X
http://orcid.org/0000-0002-6307-036X
http://orcid.org/0000-0003-3109-4305
http://orcid.org/0000-0002-5455-8910
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09641-z&domain=pdf

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 2 of 40

the CNS-AOM to instantiate and orchestrate services across geographically-dis-
tanced cities.

Keywords  Cloud-network slicing · Cloud-network slice monitoring and
management · Cloud-network slice orchestration · NECOS project · Slice-as-a-
service · Orchestration closed-loop · Cloud-network slice elasticity

1  Introduction

The cloud-network slicing concept [1, 2] emerges from the need to dynamically pro-
vide end-to-end infrastructures supporting different services and verticals composed
of heterogeneous resources such as computing, networking, and storage. The main
driver behind this concept is to support those verticals across different slice parts
representing multiple administrative and technological domains. In the Slice-as-a-
Service (SlaaS) business model, a tenant makes a request to the slice provider so that
a slice is created. Once the slice is instantiated, the tenant must be able to access,
configure and manage the slice resources (physical or virtual), and also must be able
to perform the service deployment in this Cloud-Network Slice (CNS). These opera-
tions are isolated for each CNS, even when subletting those resources and services
to other tenants.

With the recent technological expansion of mobile networks (e.g., 5G), Inter-
net of Things (IoT), and smart city deployments, several entities and projects have
been considering the slicing concept as a potential enabler of these new technolo-
gies. Commonly in the literature [3–8], the concept of network slicing refers to a
shared infrastructure composed by only network elements, disregarding other types
of resources such as computing.

In the scope of this work, a cloud-network slicing is being formed by computing,
networking and storage resources [2]. Considerable efforts have been made to define
and standardize architectures that provide slices or network slices [9]. However,
important operations such as slice resource monitoring, management, and orchestra-
tion still have several important challenges that need to be addressed. According to
recent works [9–12], some of the most relevant open issues in the context of CNSs
are the Slice-as-a-Service (SlaaS) business model, services lifecycle management,
CNS orchestration, slice elasticity, and monitoring.

Despite all the efforts to create standards by entities such as 3rd Generation Part-
nership Project (3GPP) [13], European Telecommunications Standards Institute
(ETSI) [14], and Next Generation Mobile Networks (NGMN) [15], there is still
no specific proposal to deal with CNS orchestration control-loop. Under current
approaches, the orchestration of slice resources cannot be efficiently performed, as
they are not capable of managing and monitoring different resources that are allo-
cated across multiple administrative and technological domains. The Architecture
for Orchestration and Management of CNSs (CNS-AOM) was designed with this

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 3 of 40  34

purpose as part of an international project, called NECOS (Novel Enablers for
Cloud Slicing)1, a collaboration between Brazil and the European Union (EU). The
objective of the project was to study and present a slice provider platform respon-
sible for the life-cycle of the CNS; namely, from the CNS provisioning to the slice
resource and service management and orchestration, up to the slice decommission.
In this paper, we focus on the post-CNS provision. More details about the provision-
ing phase and other NECOS components can be found in [2].

To the best of our knowledge, the design and implementation of the CNS-AOM is
the first proposal intended to address the aforementioned challenges holistically. In
this paper, we present the design, implementation, integration and evaluation of the
CNS-AOM. The architecture was designed considering state-of-the art challenges,
and focusing on slice elasticity, a key feature in the context of CNSs that has not
been sufficiently explored in the literature.

Elasticity in CNSs refers to the ability to increase or decrease resources allo-
cated in order to improve service performance or optimize the use of resources. For
CNSs, two types of elasticity have been studied, vertical and horizontal elasticity,
as presented in [16]. In brief, vertical elasticity considers the addition/removal of
resources (hosts, network elements, etc.) in a slice part that is already allocated to the
slice. By contrast, horizontal elasticity represents the addition/removal of an entire
administrative domain (slice part). Elasticity operations are detailed by a tenant
defining policies that will be interpreted by an orchestrator capable of periodically
checking the metrics being monitored. When a policy is violated, the orchestrator
initiates an elasticity operation. An elasticity operation changes the slice infrastruc-
ture leading to readjustments in services as well as the monitoring and management
of subsystems. Therefore, the main responsibilities of CNS-AOM are as follows:
(i) deployment of the management and monitoring components after slice provision-
ing; (ii) instantiating services; (iii) reflecting the slice elasticity operations in the
services, as well as in the management and monitoring subsystems; (iv) monitoring
the infrastructure and services; and (v) managing the services and virtual resources
of a CNS.

The PoCs presented in this paper are a key aspect since they show the complex-
ity and challenges introduced by providing and orchestrating services across multi-
ple administrative and technological domains. The PoCs are designed considering
the geographical and technological heterogeneity and demonstrate the challenges
explored by the CNS-AOM, such as the CNS orchestration control-loop in real sce-
narios. We evaluate the proposal by presenting two PoCs. The first PoC is a con-
tent distribution (CDN) service running on a CNS located in three different cities in
São Paulo state, Brazil. The purpose of this service is to deploy edges dynamically
according to the end-user’s geographic location based on the subnet IP address. The
second PoC shows the orchestration and management of a complex IoT service plat-
form called dojot. The results obtained for the dojot slice are from a detailed analy-
sis of the elasticity operations being carried out in a real environment implemented
in different countries. One of the most important aspects to be highlighted is the
CNS-AOM capacity to instantiate and manage (including monitoring) services, even

1  http://​www.​h2020-​necos.​eu/.

http://www.h2020-necos.eu/

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 4 of 40

across different cities or countries, always considering technological heterogeneity
and slice elasticity.

The remainder of this paper is organized as follows. Section 2 presents a litera-
ture review. Section 3 describes the CNS-AOM architecture, specifically discussing
the management, monitoring, and orchestration functionalities. Section 4 details the
components implementation and shows two workflows representing the main meth-
ods implemented. Section 5 presents the CDN and dojot PoCs used for validating
the architecture. Finally, Sect. 6 concludes our paper, presenting the final remarks
and possible future work.

2 � Background and Related Work

CNS management involves managing the lifecycle of slice resources and services.
To this purpose, slice monitoring is of paramount importance for the efficient
orchestration of the requested resources and services by providers and tenants. Sev-
eral works address such aspects in a variety of contexts. However, to the best of our
knowledge, no previous work has tackled these areas in the context of CNSs. We
divide this section into three subsections. First, we present the efforts of EU projects
and the initiatives from different standardization bodies. Then, we show the main
characteristics of the NECOS project. Finally, the last subsection comprises a dis-
cussion of papers related to CNS-AOM.

2.1 � Projects and Initiatives

This subsection summarizes a set of relevant network slicing standardization efforts
and research projects. We present a qualitative comparison of selected projects con-
sidering the following (non-exhaustive) list of seven key characteristics:

1.	 E2E - the end-to-end connectivity of the slice resources2 to provide services;
2.	 Multi-domain - the support of multiple administrative and/or technological

domains;
3.	 Slice lifecycle management - the slice realizes lifecycle management of resources;
4.	 Tenant slice management - the tenant manages the slice resources;
5.	 SlaaS - the slice is provided as a service, similar to the business models for

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), etc;
6.	 Virtual Infrastructure Manager (VIM)/WAN Infrastructure Manager (WIM) on

demand - the tenant is able to request specific VIMs or WIMs on demand for each
slice part;

2  Slice resources mean the slice parts, i.e, the components that make part of the infrastructure of the
slice. Features such traffic steering, load balancing, caching and others may be deployed by the tenant
and are beyond the scope of the slice resources.

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 5 of 40  34

7.	 Marketplace for slices - the slice resources are negotiated in a marketplace com-
posed of different infrastructure providers that offer their resources as part of a
requested slice.

Table 1 relates the aforementioned seven characteristics to six slicing standardiza-
tion initiatives (lines 2 to 7), seven European 5G Infrastructure Public Private Part-
nership (5GPPP) projects (lines 8 to 13), and the NECOS project. The positive ticks
indicate that the corresponding work considers the applicable slice characteristic in
its scope.

The initiatives considered in this analysis were as follows: (i) ITU Telecommuni-
cation Standardization Sector (ITU-T), (ii) NGMN, (iii) Internet Engineering Task
Force (IETF), (iv) 3GPP, (v) ETSI, and (vi) Open Networking Foundation (ONF).
The EU 5GPPP projects studied were as follows: (i) 5GEX3, (ii) 5G-SONATA​4,
(iii) 5G-NORMA5, (iv) 5G-Transformer6, (v) 5G-PAGODA7, (vi) 5G-Slicenet8,

Table 1   Summary of key characteristics for slicing initiatives, European projects and the NECOS project

Source: Adapted from NECOS deliverable 3.1.[40]

Initiatives/ EU
Projects

E2E Multi-
domain

Slice lifecy-
cle manage-
ment

Tenant slice
management

Slice as
a Service
(SlaaS)

VIM/WIM
on demand

Market-
place for
slices

ITU-T [21, 22] × × × × × × ×

NGMN [23,
24]

× × × × × × ×

IETF [3, 4, 18,
25–31]

√ √ √ √

× × ×

3GPP [5,
32–37]

× ×
√ √

× × ×

ETSI [6, 7, 38]
√

× ×
√

× × ×

ONF [39] × × × × × × ×

5G-EX ×
√ √ √ √

× ×

5G-SONATA​ × ×
√ √

× × ×

5G-NORMA × ×
√

× × × ×

5G-Trans-
former

× ×
√ √

× × ×

5G-PAGODA × ×
√ √

× × ×

5G-SliceNet × ×
√

×
√ √

×

NECOS
√ √ √ √ √ √ √

3  http://​www.​5gex.​eu/.
4  http://​sonata-​nfv.​eu/.
5  http://​www.​it.​uc3m.​es/​wnl/​5gnor​ma/.
6  http://​5g-​trans​former.​eu/.
7  https://​5g-​pagoda.​aalto.​fi/.
8  https://​slice​net.​eu/.

http://www.5gex.eu/
http://sonata-nfv.eu/
http://www.it.uc3m.es/wnl/5gnorma/
http://5g-transformer.eu/
https://5g-pagoda.aalto.fi/
https://slicenet.eu/

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 6 of 40

and (vii) the NECOS project. Our main goal was to compare the NECOS project
that originated this work with relevant slicing initiatives and similar projects. More
details of the architectural survey on network slicing is available in [17].

Most projects and initiatives use the network slicing concept, however, in the lit-
erature we have different definitions for this term. Therefore, in the context of the
NECOS project and in this article, we adopt the term cloud-network slicing as a set
of networking, computing and storage resources. Currently and still in definition,
IETF is the only standardization body that defines the term network slicing compris-
ing networking, computing and storage resources [18].

The closest related project is the 5G-EX, which considered four of the key char-
acteristics. An important aspect, the marketplace for CNSs is only considered in
the NECOS project. The authors in [19, 20] present use cases in this regard. The
analysis presented in Table 1 conveys a more flexible conceptualization of slicing,
which goes beyond the peer-to-peer orchestration and management interactions of
most of the presented initiatives. The proposed architecture, CNS-AOM, is based on
this conceptualization, introducing and designing components that allow for a slic-
ing approach that covers the highlighted characteristics, such as management, moni-
toring, and orchestration.

2.2 � Cloud‑Network Slicing and the NECOS Project

Figure 1 based on [41], shows six slices of three different verticals (V2X in red,
Massive IoT in green and Critical Communications in blue). The slices on the left
side are network slices and the infrastructure is composed only by network elements
(switches and routers) and network functions (e.g. firewall, load balancing) [8]. On
the right side, there are CNSs divided into two administrative domains (slice parts)
with cloud computing, storage resources, and network elements [2, 40, 41].

The NECOS project [1, 2] was envisioned during the Fourth EU-BR Collabo-
rative Call by the European Commission and the Brazilian National Network for
Education and Research (RNP)9. The consortium was devoted to study, propose, and
implement a platform to enable the concept of cloud-network slicing. Therefore, the
objective of NECOS is to provide CNSs for tenants with features such as the auto-
matic configuration of the infrastructure across multiple federated domains, service-
independent operation, and slice adaptation to service needs. Additionally, it has to
provide an autonomous platform for managing, monitoring, and orchestrating the
slice resources and the internal components without depending on any action from
the tenant.

In NECOS, the lightweight slice defined cloud (LSDC) architecture is proposed
to showcase the concept of cloud-network slicing, under a SlaaS business model that
uses readily available cloud platform features and functions. LSDC introduces a new
way to automate the cloud configuration process by being able to deploy CNSs split

9  http://​www.​h2020-​necos.​eu/.

http://www.h2020-necos.eu/

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 7 of 40  34

into slice parts across all the providers as a set of federated data centers, providing
uniform management of computing, network, and storage resources.

During the NECOS project, we designed and implemented a subsystem called
Infrastructure and Monitoring Abstraction (IMA) responsible for the monitoring and
management of services and infrastructure (physical and virtual). We also designed
and implemented a minimalist version of a slicing resource orchestrator (SRO) that
was responsible for orchestration operations, such as verifying the monitored met-
rics and testing them against tenant policies in order to trigger elasticity operations,
if necessary. In this paper, we present an entirely coupled solution between IMA and
SRO called CNS-AOM. The design of our architecture is divided into three subsys-
tems: resource & service (R&S) management, R&S monitoring, and the SRO. The
rest of this paper presents an in-depth discussion of the CNS-AOM and implementa-
tion, highlighting the challenges in creating a monitoring and management abstrac-
tion layer as well as the integration of these layers with the SRO.

2.3 � Related Work

In the 5G-SONATA project [42], the authors describe a prototype version of the
service programming and orchestration for virtualized software networks, an orches-
trator that allows programmability for 5G networks. This proposed orchestrator uses
an open-source monitoring model that presents several desirable features, such as

Critical
Communications

Massive
IoT

V2X Vehicular-
to-X

Network
Slicing

Cloud Network
Slicing

Slice Part A Slice Part B

Physical Infrastructure

Switch Router Firewall Mobile
Devices Resources Cloud

Computing
Storage

Resources

Caption

Fig. 1   Network slicing and cloud-network slicing concepts

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 8 of 40

flexibility to operate on different microservice platforms, scalability, and customiza-
tion. However, it does not consider a multi-domain environment and cannot label
metrics or group them in ways required by business models.

Lattice10 is an intelligent monitoring system presented by Tusa et al. [43]. This
tool proposes a monitoring framework for virtualized resources, services, and net-
work elements, geared toward cloud computing systems. The framework monitors
a cloud computing environment by collecting metrics and detecting increases or
decreases in traffic, with configurable setup parameters such as the interval at which
metrics are collected and sent to an orchestrator. However, this framework does not
support all the roles of a monitoring solution in the context of CNSs, such as the
multiple technological domains and the ability to communicate with several moni-
toring tools.

The authors in [44] unify components developed within the 5GEX and
5G-SONATA projects to orchestrate the deployment and management of Virtual
Network Functions (VNF) services using the Very Lightweight Network & Ser-
vice Platform [45] (VLSP) as a VIM, allowing multi-domain orchestration of slices.
Despite this being a proposal in the context of slices, we can identify the following
differences between our work and the one described. (i) The architecture presented
by the authors encompasses only the VLSP as a VIM; it does not deal with hetero-
geneity in terms of different VIMs and/or WIMs in the same end-to-end infrastruc-
ture. (ii) Our architecture considers not only the management of the infrastructure
and services but also presents the monitoring of both physical and virtual resources
per slice.

This paper is a natural evolution of the work presented in [16]. The previous work
only includes the monitoring subsystem, presenting the design and evaluation of
each sub-component. The main differences between the previous and this work are
as follows: (i) the addition of the management subsystem and orchestration to the
CNS-AOM, (ii) the inclusion of the service monitoring, and (iii) the presentation of
two actual services instantiated across different cities and countries using the pro-
posed architecture.

Cloud computing management has been widely explored in the literature. How-
ever, it is necessary to map these studies to the concept of CNSs, which demands
the analysis of several topics, such as cloud computing, network, and storage. Two
surveys found in the literature helped in the development of the proposed architec-
ture. The first one presented in [46] focuses on the broad study area of cloud man-
agement as well as its main challenges. The authors classify eight functional areas
in the field: global scheduling of virtualized resources, resource demand profiling,
resource utilization estimation, resource pricing and profit maximization, local
scheduling of cloud resources, application scaling and provisioning, workload man-
agement, and cloud management systems. In the second survey [47], the authors
also classify different functional areas in the field, identifying several works in the
literature for each of them, and raising open research questions. The theoretical basis

10  http://​clayf​our.​ee.​ucl.​ac.​uk/​latti​ce/.

http://clayfour.ee.ucl.ac.uk/lattice/

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 9 of 40  34

of these surveys was used by adapting some of the characteristics presented specifi-
cally for cloud computing to the context of the cloud-network slicing concept.

We would like to highlight three papers published in previous editions of the
Journal of Network and Systems Management (JONS). The first work [48] pre-
sents how to provisioning and maintenance 5G services over network slices with a
focus on network elements and Network Function Virtualization (NFV). The second
paper [49] focuses on a techno-economic analysis to provide a cost allocation model
to network slices. Finally, the authors in [50] propose an architecture responsible
for creating network slices to use in the context of wireless networks. The work pre-
sented in this paper goes deeply into the cloud-network slicing topic and presents
the CNS-AOM design with contributions such as the slice elasticity, the multiple
administrative and technological domains and the PoCs on real environments.

3 � Architecture

In this section, we present the CNS-AOM architecture describing the subsystems,
interfaces, and components. The proposed archicteture covers the CNS post-provi-
sion phase, being responsible for the slice resource management, monitoring and
orchestration. The architecture was designed in a way to support the technological
diversity between slice resources, dealing with multiple administrative domains,
performing the orchestration and adapting the slice resources when an elasticity
operation is performed.

The CNS-AOM is divided into three subsystems: Resource & Service (R&S)
Management, Resource & Service (R&S) Monitoring, and Slicing Resource Orches-
trator (SRO). A brief description of their main features is presented below.

–	 The SRO is responsible for starting the CNS post-provision phase and create the
R&S management and monitoring components according to a given CNS. It is
the main entity for performing CNS elasticity operations, dynamically growing
or shrinking the slice resources, in case the monitored metrics break any pol-
icy. It also supports the policy creation, deletion, and modification. Finally, SRO
must adapt the R&S management and monitoring components according to the
new CNS configuration after an elasticity operation occurs.

–	 The R&S management subsystem is responsible for providing the CNS resources
management, which means the capacity to manage the slice resources and ser-
vices for each slice part. It also performs the lifecycle management of instanti-
ated services at run-time, including operations such as the service deployment,
reconfiguration and stop.

–	 The R&S monitoring subsystem collects and stores the infrastructure and service
metrics for each slice part. Those metrics will be checked for the SRO to perform
the slice elasticity operations.

The CNS-AOM is presented in Fig. 2, showing the R&S management subsystem in
yellow, the R&S monitoring subsystem in green, and the SRO subsystem in purple.

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 10 of 40

3.1 � Slicing Resource Orchestrator

The SRO subsystem is divided into three components, as shown in Fig. 2. The
focus of this paper is on post-slice provisioning and the interaction of the SRO
with the management and monitoring subsystems. Generally, the CNS provision-
ing component is responsible for instantiating the CNS infrastructure interacting
with each resource provider. This component also binds the slice parts in order to
provide an end-to-end slice. After CNS infrastructure instantiation, the CNS pro-
visioning component communicates with the CNS-AOM orchestration component
to start the subsystems’ instantiation on-demand.

The CNS-AOM orchestration component is the core component of the archi-
tecture and is responsible for interacting with the monitoring and management
subsystems. These interfaces are omitted from Fig. 2 for sake of simplification.
The main responsibilities of each interface are presented bellow.

–	 CNS provisioning interface: after CNS infrastructure provisioning, the CNS
provisioning component calls the CNS-AOM orchestration component to start
the deployment of the R&S monitoring and management subsystems;

Resouce
Adapter 1

Resouce
Adapter 2

Resouce
Adapter N

Resource
Controller

Monitoring Controller

Aggregator & Collector

Adapter N Adapter 2 Adapter 1

DB

CNS-AOM

Resource &
Service

Management

Resource & Service Monitoring

[V/W]IM N Mon.
Entity N

[V/W]IM 2 Mon.
Entity 2

[V/W]IM 1 Mon.
Entity 1

Slice Part N
DC/NET

Slice Part 2
NET

Slice Part 1
NET

Agent Agent Agent

Management
& Monitoring
Abstraction

Layer

Resource
Control

Interface

Monitoring Control
Interface

Monitoring
Report Interface

Management
& Monitoring
Abstraction

Layer

CNS
Provisioning

CNS-AOM
Orchestration

Infrastructure
Orchestration

Slicing Resource Orchestrator

Fig. 2   CNS-AOM architecture

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 11 of 40  34

–	 Tenant interface: once the slice and the CNS-AOM subsystems are running,
the tenant is able to request certain operations such as to obtain the infrastruc-
ture topology, change the configuration of the monitoring subsystem, service
deployment and service deletion. It is the responsibility of the CNS-AOM to
interpret these operations and trigger the monitoring and management subsys-
tems;

–	 Infrastructure orchestration interface: after the infrastructure orchestration
component triggers an elasticity operation (the capacity of growing or shrink-
ing the slice resources), it is necessary to reflect the infrastructure changes in
the monitoring and management subsystems. For example, if a new slice part
is added to the slice (horizontal elasticity), the monitoring and management
subsystems need to deploy the components necessary to interact with this
new slice part. In addition, the service could be (re)deployed to consider this
new infrastructure. Therefore, to perform these adaptations, the infrastructure
orchestration component uses this interface to communicate with the CNS-
AOM orchestration component.

Finally, the infrastructure orchestration component is the “brain” of the SRO, per-
forming the elasticity operations based on previously established policies, and con-
sidering the infrastructure or services metrics being monitored by the R&S Mon-
itoring. As already described, the SRO through the monitoring report interface is
capable of obtaining the monitored metrics and checking periodically if the policies
defined by the tenant are being adhered to.

The component could use different algorithms to trigger elasticity operations,
such as simple threshold-based algorithms or (reinforcement) learning-based algo-
rithms, which are described in Sect. 4.3. When an elasticity operation is performed,
the infrastructure orchestration calls the infrastructure orchestration interface to
adapt the management and monitoring subsystems and, if necessary, to (re)deploy
the service.

3.2 � Resource & Service Management

The R&S Management subsystem aims to abstract the communication between
a slice provider (or a tenant) and the CNS infrastructure. It is also responsible for
managing the lifecycle of the virtual resources and services that are instantiated in a
slice over multiple administrative and technological domains. This component uses
resource adapters to communicate with different VIMs and WIMs. The resource
adapters are implemented specifically to request actions for a specific VIM or WIM
and include actions to deploy a new virtual machine or service. Examples of well-
known VIMs/WIMs are OpenStack, Kubernetes, Docker Swarm, and OpenFlow
controllers. This allows infrastructure providers and tenants to use the technology
that best suits them.

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 12 of 40

The resource controller component is responsible for managing the adapters and
virtual elements of the slice at run-time. Additionally, this component performs the
following functionalities:

–	 Adapter lifecycle management: start, stop, update, and configure the resource
adapters;

–	 Virtual elements (virtual machine or container) management: start, stop,
update, configure, and retrieve information;

–	 Service management: start, stop, update, configure, and obtain information
about the services.

In Fig. 2, we show the R&S Management components in yellow and also highlight
their two interfaces: the resource control interface and the management & monitor-
ing abstraction layer. The former is responsible for sending requests from the SRO
to the resource controller. The latter is the interface responsible for abstracting the
communication between the adapters and the VIMs/WIMs. The abstraction layer is
only used by the resource control interface in response to a request.

The resource adapters are specific wrappers for different VIM or WIM implemen-
tations, whose aim is to provide basic platform-agnostic wrapping services for com-
mon slice provider platform functions. In other words, the adapters can be imple-
mented and used according to the VIM/WIM chosen by the tenant for that slice part.
To accomplish end-to-end management for each CNS, it is necessary to instantiate
one adapter per slice part. Therefore, the right adapter has to be instantiated by the
resource controller based on the VIM/WIM for each slice part to perform the afore-
mentioned operations. The design of this component is very important as it sup-
ports the CNS characteristics in the CNS-AOM, such as the heterogeneity of VIMs/
WIMs, the elasticity operations, and the concept of SlaaS. For example, in elasticity
operations, when a new slice part is added to the slice infrastructure, a new adapter
is instantiated by our mechanism.

3.3 � Resource & Service Monitoring

The R&S Monitoring subsystem is responsible for monitoring the infrastructure and
services for a given slice. It needs an abstraction layer that supports distinct monitor-
ing entities and the ability to aggregate metrics from different resource types (com-
puting, networking, storage, and services). The details of this subsystem and each
component are presented in green on the right side of Fig. 2.

The communication in this subsystem is divided into two planes. The control
plane, represented by red arrows, supports the lifecycle management of monitoring
components (instantiation, configuration, and deletion). The data plane, represented
by green arrows, represents the path of collected metrics through the components
until they are stored in the database. This division in control and data planes brings
agility as well as isolation to the monitoring solution.

The monitoring controller is the component responsible for instantiating the
elements required to monitor a slice and its resources or services. It manages the

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 13 of 40  34

aggregator & collector, agents, and adapters. In addition, the aggregator & collec-
tor component multiplexes the monitoring information from different parts of an
end-to-end slice. It receives the measurements collected by adapters and aggregates
them to generate the metrics for an end-to-end CNS. As shown on the right side of
Fig. 2, the aggregated metrics are stored in a database, from where they could be
queried at any time by the infrastructure orchestration component.

To provide an abstraction layer, the agent and adapter components jointly collect
measurements across the different monitoring entities instantiated in each slice part.
The agent manages the adapters’ requests and controls their activation. In addition,
each agent is responsible for aggregating the measurements collected by the adapt-
ers and sending them to the collector component.

The adapter is the main component responsible for providing the monitor-
ing abstraction, similar to the resource adapter described in the previous subsec-
tion. The role of adapters is to interact with different monitoring entities to collect
metrics. Each adapter communicates with a single monitoring entity and intends
to establish real-time monitoring of resources. The monitoring entity is, in turn, a
monitoring tool (e.g., Prometheus, Zabbix, Netdata, and Nagios) that runs within the
slice part and is responsible for collecting on-site resource metrics.

During the slice provision, important artifacts are deployed in each slice part,
such as the VIMs/WIMs and the monitoring entities responsible for gathering the
metrics for that infrastructure. The adapters are instantiated after the slice provision
by the interaction between the CNS-AOM Orchestration and the Monitoring Con-
troller. By using the information of each monitoring entity, the Monitoring Control-
ler is capable of instantiating the corresponding adapters present in that slice. Then,
the R&S Monitoring components will abstract the different infrastructures and tech-
nologies to store the metrics in terms of slice and slice parts. More details will be
explained in Section 4.

An important characteristic of CNS-AOM is that the components are deployed
for each managed and monitored slice. This is depicted in Fig. 2, with blue rectan-
gles indicating the individual slices. For the R&S Management, each slice has their
own resource adapters. Similarly, for the R&S Monitoring, each slice has their own
adapters, agents, and an aggregator & collector.

Communication between the monitoring subsystem and external components is
an important point in this proposal. To satisfy this need, two communication inter-
faces are created. These interfaces enable communication between the monitoring
subsystem and the SRO. The monitoring control interface is responsible for receiv-
ing the start, update, and delete requests to manage the monitoring elements. The
monitoring report interface allows the SRO to access the metrics stored in the data-
base to orchestrate the resources and/or services. Therefore, the SRO can pool or
push the metrics to check them against the SLOs/SLAs defined by the tenant in order
to trigger elasticity operations. In this paper, we implement the SRO to pool the met-
rics since our focus at this moment is not on optimizing the performance. However,
we intend to implement and test the pushing mechanism to check the SLOs/SLAs in
future work. The monitored metrics can be accessed by the tenant also; however, a
discussion on this is not in scope of this paper.

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 14 of 40

4 � Implementation Details

In this section, we present the implementation details of each CNS-AOM subsystem
(management, monitoring, and orchestration)11 as well as two workflows explaining
the four most important methods. These include the methods to start the compo-
nents for infrastructure and service monitoring, the method to start the components
for management of the CNS, and the method to (re)deploy services. Aspects such
as the management and orchestration of network elements and security are not the
focus of this paper and will be explored as future work. The description will start
with the Resource & Service components, since the SRO is responsible for invoking
all the methods of those components.

4.1 � Resource & Service Management Implementation

The main scope of R&S management is to provide an abstraction layer for multiple
VIMs/WIMs deployed across a multi-domain environment, which mainly includes
the deployment and reconfiguration of services. All the components are imple-
mented in Python, but given the generic purpose of the architecture, it is possible to
add adapters written in any other language.

The Resource Controllers and Monitoring Controllers are responsible for start-
ing, configuring, and managing relevant adapters in the management & monitoring
abstraction layer, to hide implementation details of a specific VIM/WIM or moni-
toring entity. The CNS-AOM orchestration component interacts with the resource
controller through the resource control interface to provide methods for each VIM/
WIM present in a slice. Five main methods are implemented in the resource control-
ler to enable management operations and are all available in the CNS-AOM orches-
tration component, namely:

–	 start_management: responsible for instantiating specific adapters for each VIM/
WIM present in the slice. The parameter to call this function is a YAML file
containing information about the slice parts and VIMs/WIMs and can be seen in
Fig. 3;

–	 stop_management: responsible for removing all the resource adapters instanti-
ated for a specific slice. The input parameter for this method is a Slice Id, pro-
vided by the tenant;

–	 update_management: responsible for instantiating/removing resource adapters
on demand, as the result of elasticity operations such as adding or removing slice
part(s) or resources;

–	 deploy_service: responsible for instantiating a service requested by the tenant.
The parameter for this method changes according to the set of VIMs/WIMs used.
More specifically, it changes for each service, depending on the slice resources

11  All the source code used in this paper is available at https://​gitlab.​com/​necos/​demos/​musts.

https://gitlab.com/necos/demos/musts

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 15 of 40  34

requested by the tenant and the VIMs/WIMs deployed by the resource providers.
An example of the YAML file used for the tenant to request the service deploy-
ment is shown in Fig. 5;

–	 delete_service: responsible for removing a service running in a slice. Again, the
input parameter for this method changes according to the set of VIMs/WIMs
used.

Figure 3 illustrates an example of a YAML file received by the CNS-AOM
orchestration to call the start_management method. This YAML contains all the
data needed to start the components properly such as the VIM and host information.
For the VIM, the following parameters must be defined: the VIM name, the entry
points (IP address and ports), and the credentials needed to call the VIM methods.
The host information is specific to each VIM. In Kubernetes, for example, we need
to define the role type (master or worker) of each host instantiated in the slice part
and the corresponding IP addresses. This structure can be expanded to adjust for any
VIM/WIM. All information is filled by the Slice Builder component [2] right after
the slice provision phase. The Slice Builder handles all the slice provision phase and
interacts with the SRO after the slice provision to provide information such as the
details about the VIMs/WIMs, monitoring entities, and the slice parts for both R&S
subsystems.

Adapters are wrappers for different VIM/WIM implementations, providing a
basic service agnostic-platform for common CNS-AOM functions. In practice, the

VIM
information

Host
information

Fig. 3   Example of a YAML file used for starting the components for management

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 16 of 40

adapters should translate generic calls into commands or methods for specific VIMs
and WIMs. Given the context of CNSs, five main types of adapters can be listed:
cloud adapters (e.g., OpenStack, Kubernetes, Docker Swarm, and VLSP), transport
adapters (SDN controllers such as Opendaylight and Floodlight), VNF adaptors
(e.g., OpenMano, Open Baton, and OPNFV), RAN adapters, and edge adapters.

Currently, three cloud adapters were developed in the PoCs: Kubernetes, Docker
Swarm, and SSH adapter. The Kubernetes and Docker Swarm adapters are cho-
sen because the container technology is an enabler for several use cases in mobile
networks (e.g., 5G) [51] and it is widely used in different verticals. Those adapters
support most of the functionalities provided by the Kubernetes and Docker Swarm
APIs, such as deploy service, get pods, list services, get service, and stop service.
Conversely, the SSH adapter is based on the SSH protocol and abstracts the execu-
tion of commands remotely on physical hosts that belong to a specific slice part.

4.2 � Resource & Service Monitoring Implementation

In order to monitor a multi-domain CNS environment, some challenges need to
be addressed, such as the monitoring of infrastructure and services, the monitor-
ing of different resource types (e.g., hosts, virtual machines (VMs), and contain-
ers, network elements), and the abstraction for different monitoring entities (e.g.,
Prometheus and Netdata). To overcome these challenges, we present in this paper
the R&S Monitoring as described in Sect. 3.3. The components are represented in
Fig. 2 and are detailed in the remainder of this section, from an implementation
perspective.

The monitoring controller, similar to the management subsystem, is the compo-
nent that implements the functionalities for starting, configuring, and controlling
relevant end-to-end slice components, such as agents and adapters, responsible for
gathering measurements from the slice parts and forwarding them to the aggregator
& collector component. These components are instantiated on-demand by the moni-
toring controller, which acts as a measurement aggregator for an end-to-end slice.

The CNS-AOM orchestration sends a request to the monitoring controller with a
YAML descriptor as a parameter through a REST API. The monitoring controller
receives the requests through the monitoring control interface and wraps the actions
to start the monitoring components correctly. The content of the YAML file is con-
verted to JSON for parsing and extracting the information needed (e.g. name, IPs
and port numbers of the monitoring entities, metrics to be monitored/stored) to cre-
ate slice monitoring components. A control table is used to store the IDs of each
monitoring component that had been started. The management of these components
is possible in the case of requests to update or delete the monitoring environment.

The monitoring control interface allows the CNS-AOM orchestration to trigger
the on-demand instantiation of the monitoring subsystem components that deploy
the abstraction mechanisms required for collecting measurements from end-to-
end slice infrastructure and services. In addition, this interface implements the
lifecycle management of all the monitoring subsystem components, including the

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 17 of 40  34

infrastructure and service monitoring. The CNS-AOM Orchestration communicates
using this interface, which supports the following API methods:

–	 start_monitoring: responsible for instantiating an aggregator & collector com-
ponent, a specific agent for each slice part, and a specific adapter for each moni-
toring entity. The parameter for this function is a YAML file (Fig. 4) contain-
ing monitoring information about all slice parts (e.g., name, IP address and port
numbers of each monitoring entity). Also this YAML includes parameters, such
as the metrics that will be monitored, represented by the field "metrics" (e.g.,
CPU, memory, and network) and the polling frequency to collect those metrics,
represented by the field "granularity-secs";

–	 start_service_monitoring: responsible for instantiating an adapter-and-agent
pair capable of collecting the service metrics for each slice part. The input
to this function is a YAML file that contains monitoring information about
the service, such as the service metrics to be monitored (frame per seconds,
latency, etc.) and the polling frequency to collect those metrics;

–	 delete_monitoring: responsible for removing the infrastructure and service
monitoring components instantiated for a specific slice. The input parameter is
a YAML file that contains a slice identifier;

–	 update_monitoring: responsible for instantiating or removing end-to-end
monitoring components on demand, as the result of elasticity operations such
as adding or removing slice part(s).

Figure 4 represents an example of a YAML file used by the CNS-AOM orches-
tration to call the start_monitoring method. In this file, the tenant must define

Fig. 4   Example of a YAML
file to start the infrastructure
monitoring components

Monitoring
Information

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 18 of 40

the monitoring parameters for each slice part. The required parameters are the
name of the monitoring entity (“tool” in Fig. 4) used for collecting the resources
metrics, the IP address (“measurements-ip” in Fig. 4) and port number (“meas-
urements-port” in Fig. 4) to interact with the monitoring entity, the interval for
pooling the desired metrics (“granularity-secs” in Fig. 4), and the names of the
desired metrics (“metrics” in Fig. 4). The YAML file is used for triggering the
start_service_monitoring method. In comparison to the YAML file presented in
Fig. 4, this file contains the desired metrics related to the service instead of the
infrastructure. Examples of service metrics include frames per second, latency,
HTTP requests per second, and transactions per second.

We implement two adapters, allowing the abstraction for the open-source moni-
toring tools, Prometheus and Netdata. Those tools are under the Cloud Native Com-
puting Foundation12 initiative and are being used widely in the community and
cloud projects, such as shown in the works presented in [16, 52]. If different moni-
toring tools or VIM/WIMs technologies are required by the tenant, new adapters or
resource adapters need to be implemented by the slice provider.

The Prometheus adapter is responsible for communicating with the tools to moni-
tor the resources of a slice part through REST API calls. To be effective, this call
must contain the Prometheus interface address (IP and port) and the appropriate
search query for the desired metric. A database is created to link the desired met-
ric with the query used in the search. The Prometheus entity receives a call with a
query to collect metrics and then replies in a JSON format, which is converted by
the adapter to a standard model as presented next in Listing 1 and Listing 2. The
formats shown in Listing 1 and Listing 2 show how all the metrics are stored follow-
ing an information model capable of supporting different monitoring entities, and
the resource technologies namely, cloud computing, networking and storage.

Listing 1 Common format to store all the metrics.

Measurement A:
timestamp : <Integer >,
r e s o u r c e i d : <Integer >,
s l i c e i d : <Integer >,
s l i c e p a r t i d : <Integer >,
va lue : <Float>

Listing 2 Example of common format to store all the metrics.

Measurement CPU UTILIZATION:
timestamp : 1599921848 ,
r e s o u r c e i d : 5 ,
s l i c e i d : 1 ,
s l i c e p a r t i d : 1 ,
va lue : 49 .5

12  https://​www.​cncf.​io.

https://www.cncf.io

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 19 of 40  34

Similarly, the Netdata adapter uses a REST API to communicate with the moni-
toring entity. The call must contain the Netdata host address (IP and port number)
as well as the appropriate query. As in the previous case, a set of queries linked to
the requested metrics are created. The measures returned by the Netdata REST API
are in a JSON format, which are converted to the format presented in Listing 1 and
Listing 2. Both adapters are implemented to collect service metrics in containerized
environments (e.g., Docker and Kubernetes) as well as well-known infrastructure
metrics (e.g., CPU, memory, and disk usage).

More examples of metrics can be added, however, the tenant must be aware of
which metrics can be collected for each monitoring entity and select the best suit-
able option of the monitoring entities to improve the SLOs checking. An ongoing
work in this line is to make use of NLP (Natural Language Processing) so that the
tenant may be able to define the requirements using flat text and these would be con-
verted into infrastructure and service metrics through well-defined algorithms.

The aggregator & collector component is responsible for writing the metrics con-
verted as time-series measurements to a time-series database (InfluxDB instance),
from where the infrastructure orchestration could access the metrics through a
REST API. For each end-to-end slice, a suitable and isolated adaptation layer is cre-
ated to collect and send per-tenant measurements to a time-series database, while
ensuring the proper degree of isolation between different slices and tenants.

4.3 � Slicing Resource Orchestrator

This subsection presents the implementation details of the CNS-AOM’s orchestra-
tion and infrastructure orchestration components. The components are minimally
implemented to perform the proofs of concept (PoCs) of this paper. Most of the
CNS-AOM’s orchestration responsibilities are already covered in the previous sub-
sections. Therefore, we will present the service operations and the elasticity algo-
rithms here. Both components are implemented in Python from scratch, and the
interfaces are implemented using REST architecture.

The SRO can delegate the deployment and interactions with the service to the
tenant. It should be capable of deploying, deleting, and updating a service by calling
CNS-AOM orchestration through the tenant interface. In Fig. 5, we show a YAML
file needed to deploy a specific service through the CNS-AOM orchestration. Such
an operation has already been described in the deploy_service method presented in
Sect. 4.1; here we focus on the communication between the SRO and the tenant.

When the CNS-AOM orchestrator receives a YAML file, it must be able to
identify information such as the slice part the service must be instantiated
(parameter “name” in “dc-slice-part”), the host and VIM that will be instantiated
(parameters “host” and “VIM”), and the commands (parameter “commands”) that
must be executed by the resource adapter in the slice part. After identifying all
these parameters, the CNS-AOM orchestration calls the resource controller to
deploy the requested services. In Sect. 4.4, we present the workflows describing
the main methods of our solution, including the deploy_service method.

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 20 of 40

As mentioned before, the brain of the SRO is the infrastructure orchestration
component that has four main responsibilities: (i) interpreting the policies sent by
the tenant; (ii) periodically checking the metrics being monitored; (iii) trigger-
ing the elasticity operations based on elasticity algorithms; and (iv) adapting the
CNS-AOM subsystems and services after an elasticity operation. The tenant can
define infrastructure policies for their slice. To do this, the infrastructure orches-
tration provides a simple interface to retrieve policies and information such as
metrics to be monitored periodically, slice parts to be monitored, operations to be
triggered when needed, elasticity algorithm to be used (threshold, learning-based,
reinforcement learning-based, statistic), and thresholds needed to trigger the elas-
ticity operation when using the threshold algorithm. With this information, the
infrastructure orchestration is able to gather the monitored metrics through the
monitoring report interface and check if the policy requirements are being satis-
fied or not.

If the policy requirements are not satisfied, the infrastructure orchestration per-
forms the elasticity operation previously defined in the policy. After the elasticity
operation is performed, the infrastructure orchestration requests the CNS-AOM
orchestration to check whether it is necessary to adapt the CNS-AOM subsystems
or the services. The CNS-AOM decides on whether or not to adapt the subsystems/
services based on the type of elasticity operation. The infrastructure orchestration
triggers this adaptation in the CNS-AOM orchestration, calling the update_manage-
ment and update_monitoring methods.

We will present the elasticity operations in Sect. 5.2, where we explain the IoT
slice PoC. In this work, after a vertical elasticity operation is performed, no adapta-
tion of the subsystems and services is needed. Conversely, when a horizontal elas-
ticity operation is performed, the subsystems and the services are adapted or (re)
deployed. We assume this because horizontal elasticity always occurs on a slice-part
level. Because the CNS-AOM components (resource adapters and adapters) have a
1:1 relationship with the slice part’s technologies such as VIMs/WIMs and monitor-
ing entities, adding or removing a slice part would always result in adaptation or (re)
deployment of the components and services.

Fig. 5   Deploy service YAML
file

Host Information
and Service
commands

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 21 of 40  34

Next, we describe potential elasticity algorithms for the infrastructure orchestra-
tion component. Elasticity algorithms are responsible for triggering the elasticity
operations based on the monitoring metrics. The following is a description of the
elasticity algorithms that can be implemented in the infrastructure orchestration:

–	 For threshold elasticity algorithms, the tenant defines a threshold policy for
infrastructure orchestration to periodically check the monitoring metrics. In this
algorithm, an elasticity operation is triggered when the threshold is breached a
pre-defined number of times in sequence. The IoT demonstration considered in
this paper uses this algorithm activating a trigger after three threshold violations.
For instance, after three consecutive measures of CPU usage above an 80% thresh-
old, the infrastructure orchestration will trigger the applicable elasticity operation;

–	 For learning-based elasticity algorithms, the infrastructure orchestration ben-
efits from machine learning algorithms to predict the threshold value that must
be used to trigger the elasticity operations. One SRO implementation example
that uses a learning-based elasticity algorithm was presented as a demonstration
in the NECOS project.13 The demonstration shows a recurrent neural network
(RNN) responsible for performing the key performance indicator (KPi) estima-
tion, the SLA prediction, the slice resources optimization, and the enforcement
of slice modifications.

–	 For reinforcement learning-based algorithms, the infrastructure orchestra-
tion implements reinforcement/deep learning algorithms to trigger the elasticity
operations. The purpose of these algorithms is to maximize a reward based on
the decisions previously made by an agent to achieve the best choice of elasticity
operation to be realized for specific scenarios.

–	 For time window-based approach, elasticity operations are triggered when a
threshold crossing is registered, and such threshold crossing is kept for a given
period of time (time window). The purpose of this approach is to avoid unneces-
sary elasticity operations due to statistical fluctuations of the infrastructures sup-
porting the slices.

In this paper, we leverage elasticity based on the time window elasticity approach.
A detailed description of the elasticity algorithms that have been validated in the
NECOS project is available for the interested reader in reference [53].

4.4 � Workflows

This section describes the workflows considering the following methods:(i) start_
monitoring, (ii) start_management, (iii) deploy_service, and (iv) start_service_mon-
itoring. Methods (i) and (ii) occur immediately after the slice instantiation and are
responsible for starting the components of both monitoring and management sub-
systems, on behalf of a specific CNS. Thus, with those components running in the

13  http://​www.​maps.​upc.​edu/​public/​MLO_​demo_​video_​with_​audio.​mp4.

http://www.maps.upc.edu/public/MLO_demo_video_with_audio.mp4

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 22 of 40

slice provider, the tenant can deploy the service, (iii), and start the monitoring com-
ponents, (iv), responsible for collecting the established metrics.

Figure 6 illustrates the steps needed to start the monitoring and management sub-
systems. Assuming that the slice infrastructure is instantiated and the last two sub-
systems are deployed appropriately, the tenant can request a service deployment and
monitoring from the CNS-AOM. The workflow of these tenant requested operations
is depicted in Fig. 7.

The workflow depicted in Fig. 6 starts after CNS instantiation. The CNS-AOM
orchestration component instructs both controllers to deploy each subsystem (moni-
toring and management). In terms of management, the resource controller is called
through the method start_management, instantiating the resource adapters for com-
munication with the VIMs/WIMs of that CNS. In terms of monitoring, several com-
ponents need to be instantiated/configured as described in Subsection 3.3. Thus, the
start_monitoring method requests the deployment of one aggregator & collector
as well as a set of agents and adapters (one pair for each slice part comprising the
CNS). Finally, after all instantiation processes are complete, the CNS-AOM orches-
tration receives a response indicating that all components are created correctly and
the subsystems’ information is returned to the tenant.

The workflow illustrated in Fig. 7 starts after the deployment of the R&S moni-
toring and management subsystems. The tenant can request a service deployment by

Start

Resource Controller
starts the Resource
Adapters for each

slice part

Monitoring
Controller starts one

Aggregator &
Collector and one
Adapter for each

slice part

Resource Adapters
start the

communication with
each VIMs/WIMs

Monitoring
Adapters gather

metrics from each
monitoring entity

Monitoring
Adapters send the
metrics via Agents
to the Aggregator

End

Aggregator &
Collector abstracts

the metrics and
insert them into the

database

Resource &
Service

Management

Resource &
Service

Monitoring

Slicing Resource
Orchestrator

After the slice and
VIMs/WIMs have been

instantiated the CNS-AOM
Orchestration is called to

start the subsystems
deployment

CNS-AOM
Orchestration

communicates with the
Resource and

Monitoring Controllers

Fig. 6   The workflow responsible for start_management (purple-to-yellow) and start_monitoring (purple-
to-green)

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 23 of 40  34

sending a detailed service description to the CNS-AOM orchestration. Upon receiv-
ing the request, the latter invokes the resource controller’s deploy_service method
that instructs the resource adapters to deploy the service in the VIMs and WIMs.
Next, the orchestrator calls the monitoring controller to deploy the respective adapt-
ers responsible for collecting metrics from the service. As the other monitoring
components are already deployed, the start_service_monitoring method is respon-
sible for instantiating only the service’s agent(s) and adapter(s). As the aggregator
& collector is already instantiated, the new service metrics will be aggregated and
inserted into the database according to the format described in Listing 1.

5 � Proof of Concept Validation

In this section, we describe two services instantiated over distinct CNSs, aiming to
validate the proposal through the PoC implementations. The two different slices are
monitored, managed, and orchestrated by the CNS-AOM subsystems. The first slice
allocates a content distribution network (CDN) service, which is deployed among
three cities in the state of São Paulo, Brazil. The second slice instantiates the IoT
platform called dojot [54], comprising an architecture of microservices, in which
the development and offering of IoT services are supported. The CNSs presented in

Start

Slicing Orchestrator
receives the request

from tenant to
instantiate a service

Slicing Orchestrator
requests the service
deployment to the

Resource Controller

Resource Controller
starts the service
deployment to the

respective Resource
Adapter

Monitoring
Controller start the

Service Adapter and
a new Agent

Resource Adapters
communicate with
the VIMs/WIMs in

order to deploy the
service requested

Aggregator &
Collector abstracts
the service metrics
and insert them into

the database

Service Adapters
communicate with

the monitoring
entity responsible
for collecting the

metrics

End

Slicing Orchestrator is
notified that service

was deployed
successfully and

starts the request to
monitor that service

Resource &
Service Monitoring

Resource & Service
Management

Slicing Resource
Orchestrator

Fig. 7   The workflow responsible for deploy_service (purple-to-yellow) and start_service_monitoring
(purple-to-green)

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 24 of 40

this section are deployed across different cities in the case of the CDN and different
countries (Brazil and Spain) in the case of the IoT platform. Here we highlight the
important characteristics of CNSs, such as multiple administrative and technology
domains as well as the elasticity operations.

The purpose of the PoCs discussed in this section is to verify whether the pro-
posed architecture is able to provide monitoring, management, and orchestration of
CNSs. First, the CDN PoC will demonstrate the service functionalities, deployment
of CNS-AOM subsystems through the SRO, the service deployment through R&S
management and multiple VIMs, and the service metrics being monitored through
R&S monitoring from multiple monitoring entities. Second, the dojot PoC will eval-
uate the slice elasticity operations by using a tenant-defined policy and periodically
monitoring the CNS through infrastructure orchestration component. If the moni-
tored metrics exceeds a predefined threshold, the infrastructure orchestration trig-
gers an elasticity operation and adapts the subsystems when necessary.

In the next two subsections, each of the services will be presented in detail, spe-
cifically in terms of the configuration setup and analysis of the obtained results.

5.1 � CDN Service Description

This service is responsible for providing multimedia content (photos, videos, etc.)
of tourist areas to end-users. Based on the user’s location, the CDN is capable of
providing content from the closest server and minimizing the delay to download the
content. The CDN is composed of a core cloud, responsible for processing the end-
users’ requests, and edge clouds instantiated on demand, responsible for delivering
the content close to the requester. The reason behind this service is that users (tour-
ists) located in high-profile tourist areas are more likely to request content about
local sites and consume videos on limited-resource devices (e.g., tablets and smart-
phones with battery and bandwidth limitations). Therefore, we use CNS-AOM to
promptly instantiate the service on local edge clouds and deliver the content from a
closer server, seeking to reduce the delay of downloading the consumed multimedia.
The functionalities of the core and edge cloud components are as follows.

–	 The core cloud hosts a central service page and a video streaming content
repository related to tourist attractions around the world. A DNS lookup ser-
vice is also deployed, which is capable of redirecting a user’s request to the most
appropriate server (edge or core) based on the requester’s location;

–	 The edge cloud provides web and video servers hosting cached content geo-
graphically distributed in predetermined areas around the world. These servers
are responsible for replying to redirected requests to where each edge cloud ser-
vice is located. Assuming that the edge cloud infrastructure is already deployed,
the video service will be instantiated upon a request to the core cloud from a user
located closer to the edge servers.

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 25 of 40  34

5.1.1 � Configuration setup

Based on the proposed CDN service, we consider important aspects of CNSs, such
as geo-localization, multiple VIMs, diverse monitoring entities, and different admin-
istrative domains. The objective of this PoC is to show that the CNS-AOM subsys-
tems are capable of monitoring and managing the CDN slices, and validating these
important aspects through a real scenario following a set of steps, which are detailed
next.

Figure 8 illustrates the steps performed in the evaluation of the CDN, as well as
the slice deployment. Three slice parts are instantiated across different cities of São
Paulo state, Brazil. The slice provider contains the CNS-AOM components and is
deployed in Sorocaba city. The core cloud CDN is also located in Sorocaba. The
first edge cloud is deployed in the city of São Carlos and the second edge cloud is
located in Campinas. In addition, to represent the technological heterogeneity sup-
ported by the CNS-AOM, different VIMs and monitoring entities are chosen for
each slice part.

The steps shown in Fig. 8 demonstrate the monitoring and management opera-
tions performed. For the sake of simplicity, a single video ( ≈ 2.4 MB) is present in
each slice part and is transmitted at 20 kBps to the three end-users requesting video
content. In this PoC, requests do not occur simultaneously since the goal of it is to
validate the CNS-AOM management (including monitoring the infrastructure). To
identify the location of the end-user, we define and implement different subnets for
each city (São Carlos, Sorocaba, Campinas, and others). We also assume that there
are enough resources to deploy and start the edge services closer to the user. The
network connectivity between the slice parts is simplified using a VXLAN tunnel
through the Internet. The following steps are executed to collect the metrics from the
offered service:

Edge Cloud I
Slice part II
São Carlos

Core Cloud CDN
Slice part I
Sorocaba

Edge Cloud II
Slice part III
Campinas

Slice Provider
CNS-AOM

Components

a.1

b.1

a.2

b.2

c.2

c.1

d.1

d.2

e

fEnd-user 1
São Carlos

End-user 2
Campinas

End-user 3
Elsewhere

Caption

Netdata Prometheus Kubernetes Docker Swarm

Fig. 8   CDN service across São Paulo cities

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 26 of 40

(a.1)	� end-user 1, located in São Carlos, requests a video from the core
cloud service, which delivers the requested video;

(a.2)	� after identifying one request from São Carlos, the core cloud service
deploys dge cloud 1 through R&S management components;

(b.1)	� end-user 1 requests the video from the core cloud service again;
(b.2)	� the video is delivered by edge cloud 1, since it is geographically closer

to end-user 1;
(c.1)	� end-user 2, located in Campinas, requests a video from the core

cloud service, which delivers the requested content (likewise to step a.1);
(c.2)	� after identifying one request from Campinas, edge cloud 2 is deployed

through R&S management components;
(d.1)	� end-user 2 requests the video from the core cloud service again;
(d.2)	� the video is delivered by edge cloud 2, as it is geographically closer to

end-user 2;
(e)	� end-user 3, located elsewhere, requests a video from the core

cloud, which delivers the requested content;
obs:	� after a period of inactivity, both edge cloud services are decommissioned

using the R&S management components;
(f)	� end-user 1 requests the video for the third time, which is again deliv-

ered by the core cloud service as edge cloud 1 was decommissioned.

For the evaluation, we assumed that the core cloud service is already deployed by
the CNS-AOM and is capable of distributing web and video content to end-users. In
the same way, the edge clouds are previously instantiated, but the edge services are
activated only after a core cloud request, depending on the end-user’s location. The
services and monitoring/management subsystems are deployed by the CNS-AOM
according to the workflows described in Sect. 4.4. To perform the video redirection,
the service checks the end-user location based on the IP address. If the closest edge
service is not available, the infrastructure orchestration component starts the closest
available edge service and gets the video from the core cloud. On the other hand, the
end-user gets the video from the edge service closer to the end-user. The experimen-
tal setup used for this assessment comprises the following configuration:

–	 Slice provider

–	 Slice provider configuration: Supermicro model X10SDV-TP8F, with OS
Linux Ubuntu 18.04 LTS, Kernel 4.15.0-58-generic x86_64, CPU Quad core
Intel Xeon D-1518 2.2GHz (-MT-MCP-) with 8 threads, RAM 64GB DDR4
and HD 2TB.

–	 Localization: Sorocaba - São Paulo, Brazil.

–	 Core Cloud - Slice Part 1

–	 Resource provider configuration: Supermicro model X10SDV-TP8F, with
OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-58-generic x86_64, CPU Quad
core Intel Xeon D-1518 2.2GHz (-MT-MCP-) with 8 threads, RAM 64GB
DDR4 and HD 2TB.

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 27 of 40  34

–	 Localization: Sorocaba - São Paulo, Brazil.
–	 VIM: We use an SSH adapter to interact/deploy the service.
–	 Monitoring Entity: Netdata.

–	 Edge Cloud - Slice Part 2

–	 Resource provider configuration: One virtual machine with 8gb de RAM,
OS Linux Ubuntu server 18.04 LTS, 4 virtual CPUs and 100 GB of storage.

–	 Localization: São Carlos - São Paulo, Brazil.
–	 VIM: Kubernetes.
–	 Monitoring Entity: Prometheus.

–	 Edge Cloud - Slice Part 3

–	 Resource provider configuration: Supermicro model X8DT3-LN4F, OS:
Linux Debian 9, CPU Intel Xeon E-5520 2.26GHz with 8 MB cache, RAM
8GB DDR3 1066, HD 1TB.

–	 Localization: Campinas - São Paulo, Brazil.
–	 VIM: Docker Swarm.
–	 Monitoring Entity: Prometheus.

5.1.2 � CDN Service Evaluation

Figure 9 presents the amount of bytes transmitted by each service over time. In
the case of the core cloud, the CDN service runs as an application on a physical
host. The edge services run inside containers for both edge cloud 1 and edge
cloud 2. The labels a, b, c, d, e, and f) represent the steps described in the pre-
vious section. For instance, label a illustrates the transmitted bytes for the core
cloud service considering steps a.1 and a.2.

Based on the plot in Fig. 9, we present two important observations:
The black lines represent the core cloud service located in Sorocaba and

show the time between receiving the request and delivering the video to the end-
user. A short time interval between steps indicates that all operations executed
by R&S management, R&S monitoring, and SRO subsystems are performed

Fig. 9   Bytes/s transmitted by core cloud and edge cloud instances over time

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 28 of 40

successfully as expected. These operations include the methods: start_management,
start_service_monitoring, and deploy_service.

The containers running edge cloud instances are deployed shortly before
steps b and d; more precisely, during steps a.2 and c.2, respectively. This indicates
that the R&S monitoring subsystem was able to collect the metrics from the ser-
vice being monitored as soon as the edge instances were instantiated. The indicated
behavior is illustrated in the figure using blue and red lines, representing metrics
collected from edge cloud 1 and edge cloud 2, respectively.

Finally, step e shows that end-user 3, who is located elsewhere, receives the video
from the core cloud service, which in turn is located geographically closer to it.
After a period of inactivity, the edge services are decommissioned. The last request
from end-user 1 is delivered by the core cloud service (step f) because edge cloud
1 is no longer in service. However, as expected, after instantiation of the edge ser-
vices by R&S management, the content is delivered to the requester from the closest
server.

5.2 � IoT Service Description

Figure 10 illustrates the IoT service “big picture”, which consists of a real-time
cargo monitoring and tracking solution. There are monitoring devices with multiple

Fig. 10   IoT service big picture

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 29 of 40  34

sensors (temperature, humidity, light, and GPS) communicating through wireless
networks. Those sensors travel in cargo containers during their journey. Their pur-
pose is to provide monitored data periodically from the sensors to a centralized sys-
tem located in the core cloud, allowing customers to have up-to-date information
about their cargo during transportation. The sensors send the retrieved information,
such as door openings, extreme temperature shifts, localization, and humidity, to the
core cloud instance.

To test the CNS-AOM subsystems, the considered IoT service is instantiated in
a real CNS setup, built across three cities in Brasil (Goiânia, Campinas, and Soro-
caba) and one in Spain (Madrid). The objective is to show the elasticity operations
being performed by the SRO (infrastructure orchestration) based on the monitored
metrics from the CNS infrastructure.

An open-source IoT platform is used to implement the aforementioned service.
The development of dojot is led by CPqD and is composed of several services such
as Kong, Redis, Kafka, Zookeeper, MongoDB, and PostgreSQL. All these services
are configured and deployed to provide IoT service validation. In addition, a load
testing tool is developed for message queuing telemetry transport (MQTT) of the
IoT devices, which is used to increase the number of requests.

Figure 11 illustrates how the dojot platform services are allocated in two different
slice parts, one representing the core cloud and another representing the edge cloud.
The former includes all the main services running, whereas the latter uses an MQTT
IoT-agent to monitor the devices and a Redis microservice to publish the monitored
metrics to the core when deployed. The main responsibilities of the core cloud are
managing the IoT device lifecycle, storing the device’s measurements, and provid-
ing a REST interface to retrieve historical and real-time data about the devices. One

Fig. 11   Microservices of the dojot platform

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 30 of 40

MQTT IoT-agent, responsible for interacting with the IoT devices and sending the
collected metrics to the core cloud, is instantiated for each edge cloud.

5.2.1 � Configuration Setup

The dojot slice is composed of three slice parts, one core cloud instance and two
edge cloud instances. The objective is to show the slice being monitored, managed,
and orchestrated by the CNS-AOM subsystems. As shown in Fig. 12, the CNS-AOM
subsystems are located in the city of Goiânia, representing the slice provider. The
core cloud is located in the city of Campinas and comprises all the dojot microser-
vices. The edge cloud instances are deployed in the city of Madrid as well as in the
city of Sorocaba. The connectivity between the different slice parts is provided by
VXLAN tunnels to connect the cities between Brazil and Spain. The VXLAN tun-
nels are created during the slice creation phase.

UFG Server
Goiania, Goias

UNICAMP Server
Campinas, São Paulo

5Tonic Server
Madrid, Spain

NECOS and CNS-AOM
Components

Internet

Core cloud - Slice part 1

VM Master

VM Worker

VM Worker

Dojot Micro
Services

Dojot Micro
Services

NECOS
Components

VM Master

VM Worker

MQTT IoT
Agent

Edge cloud 1 - Slice part 2

NECOS
Components

Internet

UFSCar Server
Sorocaba, São Paulo

Edge cloud 2 - Slice part 3

VM Worker

Internet

VM Worker

MQTT IoT
Agent

MQTT IoT
Agent

NECOS
Components

VM Master

Netdata Prometheus

Prometheus

Result of
Horizontal
Elasticity
Operation

Result of
Vertical

Elasticity
Operation

Fig. 12   Dojot slice PoC deployment

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 31 of 40  34

The complete description of the configuration setup used in this experiment
follows.

–	 NECOS slice provider

–	 Slice provider configuration: Dell EMC PowerEdge R740 server, equipped
with two Intel Xeon Silver 4114 processor, 128 GB (8x 16GB RDIMM,
2666MT/s, Dual Rank) of RAM, and 12 TB of HD.

–	 Localization: Goiânia - Goiás, Brazil.

–	 Core Cloud - Slice Part 1

–	 Resource provider configuration: Dell PowerEdge R740, with OS: Linux
Ubuntu 18.04 LTS, Kernel: 4.15.0-51-generic x86_64, two Intel Xeon Silver
4114 CPU 2.20GHzD-1518 processors, RAM 64GB DDR4 and HD 2TB.

–	 Localization: Campinas - São Paulo, Brazil.
–	 VIM: Kubernetes.
–	 Monitoring Entity: Netdata.

–	 Edge Cloud - Slice Part 2

–	 Resource provider configuration: Dell EMC PowerEdge R720 with 2x
Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 6 cores per socket (for a total
of 12 cores or 24 vCPU), 128GB of RAM, and 2TB as HDD.

–	 Localization: Madrid, Spain.
–	 VIM: Kubernetes.
–	 Monitoring Entity: Prometheus.

–	 Edge Cloud - Slice Part 3

–	 Resource provider configuration: Supermicro model X10SDV-TP8F, with
OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-58-generic x86_64, CPU Quad
core Intel Xeon D-1518 2.2GHz (-MT-MCP-) with 8 threads, RAM 64GB
DDR4 and HD 2TB.

–	 Localization: Sorocaba - São Paulo, Brazil.
–	 VIM: Kubernetes.
–	 Monitoring Entity: Prometheus.

In this work, we consider two different types of elasticity, namely vertical and hori-
zontal elasticity. Vertical elasticity means the addition of a new resource (in this
case, a new VM worker) in one slice part already instantiated. Horizontal elasticity
means adding a new slice part with the service running inside it. For more detailed
information about elasticity operations in the context of CNSs, we recommend the
work presented in [16]. The purpose of this PoC experiment is to demonstrate the
CNS-AOM’s capacity to execute both elasticity operations fully in a real environ-
ment. Seeking to show these operations, we start the dojot slice with only the core
cloud and edge cloud 1, allowing for edge cloud 2 to be added after an elasticity
operation.

The experiment attempts to increase the requests to IoT devices located at edge
cloud 1 using a tool developed by the CPqD development team. Based on a policy

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 32 of 40

in the infrastructure orchestration defined by the tenant, the CPU usage of the infra-
structure needs to be monitored and an elasticity operation has to be triggered if this
metric exceeds an 80% threshold value three times, consecutively. We use a time
window of 5 s. After interpreting this information, the SRO (infrastructure orches-
tration) has to periodically check the metrics being monitored by the R&S monitor-
ing component. An elasticity operation is triggered upon detecting an increase in the
CPU usage due to a large number of requests. Upon completion, two different elas-
ticity scenarios are exercised; a vertical elasticity operation adds a new worker VM
to edge cloud 1 and a horizontal elasticity operation adds a new slice part to edge
cloud 2, as shown in Fig. 12.

The vertical elasticity using Kubernetes as a VIM does not require the (re)deploy-
ment of the service, as it is handled automatically by the VIM. This also happens
with the monitoring entities Prometheus and Netdata. Therefore, after the occur-
rence of a vertical elasticity operation in the slice part already being monitored,
these entities automatically recognize the new resource and the R&S monitoring
component starts to store the collected metrics. However, after executing a horizon-
tal elasticity operation, the service needs to be instantiated in the new slice part,
considering that a new VIM is also instantiated. The R&S management component
is responsible for the service’s (re)deployment and communicating with the VIMs
to distribute the requests to the IoT devices. Additionally, after a horizontal elastic-
ity operation, the R&S monitoring component is responsible for instantiating a new
adapter and a new agent to monitor the infrastructure metrics. The next subsection
details the elasticity operations and the obtained results.

5.2.2 � IoT Service Evaluation

We aim to show the results and describe the most important challenges addressed
in this evaluation. More specifically, we present the results in terms of the time
required to: (i) instantiate the whole slice infrastructure and VIMs; (ii) deploy the
dojot service; and (iii) perform a horizontal elasticity operation. In addition, we dis-
cuss the timeline of the CNS being monitored before and after the elasticity opera-
tions are performed. We identify three important moments when analyzing the
monitored metrics; first, when the infrastructure orchestration triggers the elasticity
operation; second, when monitoring of the new resources (VM or slice part) starts;
and third, when a decrease in CPU usage occurs after the addition of a new resource,
as this load-balanced the requests.

Table 2 presents the instantiating times of the dojot slice service deployed
in a real setup environment between Brazil and Europe. First, we observe that
the slice infrastructure instantiation takes 1917.16 s (about 32 min) to be per-
formed, from the time a request is made to the slice provider (NECOS platform)
until all resources, management, and monitoring components are up and running.
During this time, the task that takes more time to complete is the VIMs/WIMs
deployment, being completed in 1718.74 s (about 28 min). Second, the reserva-
tion time, represented by the time elapsed to choose the best resource allocation
options, takes 9.58 s. After slice creation and component deployment, the R&S

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 33 of 40  34

management takes 505.81 s (about 8 min) to deploy the dojot platform using
Kubernetes as VIMs in the core cloud (Brazil) and in the edge cloud (Spain). This
is the time taken from a tenant service deployment request until all the microser-
vices are running properly. The total time elapsed to deploy the slice and to have
the services operational is 2432.55 s (about 40 min).

Next, we discuss the monitoring moments when the elasticity operations are trig-
gered. In Fig. 13, we can see the CPU usage for each VM inside the edge cloud in
5Tonic (Spain) and the effects of the vertical elasticity implemented during the test
in the first scenario. We highlight three important moments marked as P1, P2, and
P3. Point P1 depicts the time that the infrastructure orchestration first detects an
increase in CPU usage as a result of an increased number of requests for the IoT
devices. At this moment, the SRO starts the vertical elasticity operation, which aims
to deploy a new worker VM in edge cloud 1. After a few minutes, the new VM is
deployed and can be seen in the figure as P2. Finally, P3 shows the moment when
the requests are equally distributed between the two worker VMs, decreasing the
CPU usage of the first worker VM (lines in yellow and blue).

The horizontal elasticity operations follow a similar procedure. However, here
we observe a new slice part deployment and distribution of the IoT device requests,
as illustrated in Fig. 14a. For the 5tonic CPU usage monitoring, P1 highlights the
moment when the infrastructure orchestration triggers the horizontal elasticity oper-
ation, as a result of the high volume of device requests. Figure 14b shows that the
edge cloud 2 deployment starts at P2, activating the monitoring of the new infra-
structure. A few minutes later, the monitoring of the dojot microservices by the R&S
monitoring is activated, as indicated by P3. Finally, Fig. 14c presents the splitting of
requests for IoT devices between both edge clouds 1 and 2 (5tonic and UFSCar),
as highlighted by P4. In this PoC experiment, we validate the following important
aspects of the proposed solution:

Table 2   The dojot slice
deployment times Slice instantiation time (s) 1917.2

Reservation time (s) 9.6
Dojot servicedeploy time (s) 505.8
Total 2432.6

Fig. 13   Vertical elasticity operation taking place

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 34 of 40

–	 The instantiation of a real IoT scenario overseas, ensuring the communication
between the microservices of the dojot platform;

–	 The execution of management and monitoring tasks for the IoT service, by han-
dling the elasticity operations;

–	 The presentation of the CNS-AOM functionalities as well as the accuracy of
monitored metrics reflecting the actual state of the infrastructure;

–	 The interoperability capacity in a multi-domain environment and the abstraction
of working with different monitoring entities;

–	 The collection of metrics for the infrastructure and services from two different
monitoring entities (Prometheus for the edges and Netdata for the core cloud).

Fig. 14   Horizontal elasticity operations taking place

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 35 of 40  34

6 � Conclusions and Future Work

This paper presented the design and implementation of the CNS-AOM architec-
ture for monitoring, managing, and orchestrating CNSs. The proposed architecture
considered the following challenges that arose from this new concept: (i) the het-
erogeneity of VIMS/WIMs and monitoring entities used in different slice parts;
(ii) the monitoring, management, and orchestration of infrastructure and services
on demand, considering multiple administrative and technological domains; and
(iii) the elasticity operations being performed by the CNS-AOM subsystems in a
real overseas CNS instantiation. As far as we know, the proposed implementation
is the first attempt to encompass these characteristics, taking a step forward toward
the adoption of CNSs. Additionally, we deployed real CNSs hosting two services.
First, a CDN slice instantiated across three different cities showed the feasibility of
the architecture. The components and the CDN service were presented across dif-
ferent VIMs/WIMs and used different monitoring tools, proving the functionalities
of the two proposed components. In summary, after instantiating the CNS using
the slice provider platform, the tenant could fully monitor, manage, and orchestrate
the CNS and the service through the CNS-AOM subsystems designed and imple-
mented in this research. Notably, the IoT service was deployed among far-away cit-
ies in Brazil and Spain, although a considerable amount of time elapsed between
the slice request and the dojot service deployment. Through the service provided
by the dojot platform, we successfully tested one of the most important character-
istics of CNSs, which is the elasticity operation. The ability to change the amount
of resources when detecting a change in usage in the monitored metrics is highly
desirable in such environments. In addition, the CNS-AOM capability of handling
all the proposed processes was proven, including the adaptation of components after
an elasticity operation and service redeployment to take advantage of the new slice
infrastructure.

We intend to advance the proposed architecture further by considering the fol-
lowing important aspects as future work: the implementation of other elasticity
algorithms (e.g., learning-based), the improvement of the elasticity operation adding
different mechanisms to check the SLOs/SLAs, the inclusion of network slice parts
with network elements and WIMs, and the security concerns about the CNS man-
agement and orchestration.

Acknowledgements  Work funded through the H2020 4th EU-BR Collaborative Call, under the grant
agreement no. 777067 (NECOS - Novel Enablers for Cloud Slicing). This work was financed also by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES).

References

	 1.	 Silva, F. S. D., Lemos, F. S. D., Medeiros, A., Neto, A. V., Pasquini, R., Moura, D., Rothenberg,
C., Mamatas, L., Correa, S. L., Cardoso, K. V., Marcondes, C., Abelem, A., Nascimento, M., Galis,
A., Contreras, L., Serrat, J., Papadimitriou, P.: Necos project: Towards lightweight slicing of cloud

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 36 of 40

federated infrastructures. In 4th IEEE Conference on Network Softwarization and Workshops (Net-
Soft), pp. 406–414, (2018)

	 2.	 Clayman, Stuart, Neto, Augusto, Verdi, Fábio., Correa, Sand, Sampaio, Silvio, Sakelariou, Ilias,
Mamatas, Lefteris, Pasquini, Rafael, Cardoso, Kleber, Tusa, Francesco, Rothenberg, Christian, Ser-
rat, Joan: The necos approach to end-to-end cloud-network slicing as a service. IEEE Commun.
Maga. 59(3), 91–97 (2021)

	 3.	 Galis, A., Makhijani, K., Dong, J., Bryant, S., Boucadair, M., Martinez-Julia, P.: Network Slicing
- Introductory Document and Revised Problem Statement draft-gdmb-netslices-intro-and-ps-02.
https://​datat​racker.​ietf.​org/​doc/​html/​draft-​gdmb-​netsl​ices-​intro-​and-​ps-​02, (2017). Accessed 10 May
2021

	 4.	 Geng, L., Galis, A., Dong, J., Makhijani, K., Bryant, S., Galis, A., de Foy, X., Kuklinsk, S.: Network
Slicing Architecture draft-geng-netslices-architecture-02. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​
geng-​netsl​ices-​archi​tectu​re-​02, (2018). Accessed 14 May 2021

	 5.	 3GPP. 3GPP SA5 - Study on management and orchestration of network slicing/Network slice man-
agement (3GPP TR 28.801), (2016)

	 6.	 ETSI. Network Functions Virtualisation (NFV) Release 3; Evolution and Ecosystem; Report
on Network Slicing Support with ETSI NFV Architecture Framework. ETSI GR NFV-EVE 012
V3.1.1. https://​www.​etsi.​org/​deliv​er/​etsi_​gr/​NFV-​EVE/​001_​099/​012/​03.​01.​01_​60/​gr_​NFV-​EVE01​
2v030​101p.​pdf, (2017). Accessed 12 May 2021

	 7.	 ETSI. Next Generation Protocols (NGP); E2E Network Slicing Reference Framework and Informa-
tion Model. ETSI GR NGP 011 V1.1.1. https://​www.​etsi.​org/​deliv​er/​etsi_​gr/​NGP/​001_​099/​011/​01.​
01.​01_​60/​gr_​ngp01​1v010​101p.​pdf, (2018). Accessed 12 May 2021

	 8.	 Galis, A., Kiran M.: Network Slicing Landscape: A holistic architectural approach, orchestration
and management with applicability in mobile and fixed networks and clouds (2018)

	 9.	 Galis, A.: Perspectives on Network Slicing—Towards the New ’Bread and Butter’ of Networking
and Servicing. https://​sdn.​ieee.​org/​newsl​etter/​janua​ry-​2018/​persp​ectiv​es-​on-​netwo​rk-​slici​ng-​towar​
ds-​the-​new-​bread-​and-​butter-​of-​netwo​rking-​and-​servi​cing. Accessed 23 Nov 2020

	10.	 Pasquini, R., Baliosian, J., Serrat, J., Gorricho, J., Neto, A., Verdi, F.: Inferring cloud-network slice’s
requirements from non-structured service description. In: NOMS 2020—2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–5 (2020)

	11.	 Medeiros, A., Neto, A., Sampaio, S., Pasquini, R., Baliosian, J.: Enabling elasticity control func-
tions for cloud-network slice-defined domains. In: NOMS 2020—2020 IEEE/IFIP Network Opera-
tions and Management Symposium, pp. 1–7 (2020)

	12.	 Medeiros, Alisson, Neto, Augusto, Sampaio, Silvio, Pasquini, Rafael, Baliosian, Javier: End-to-end
elasticity control of cloud-network slices. Internet Technol. Lett. 2(4), e106 (2019)

	13.	 de Foy, X., Rahman, A.: Network Slicing - 3GPP Use Case. http://​www.​ietf.​org/​inter​net-​drafts/​
draft-​defoy-​netsl​ices-​3gpp-​netwo​rk-​slici​ng-​02.​txt, October (2017). Accessed 23 Nov 2020

	14.	 Yousaf, Z., et al.: GR NFV-IFA 022 - V3.1.1—Network Functions Virtualisation (NFV) Release 3;
Management and Orchestration; Report on Management and Connectivity for Multi-Site Services.
https://​www.​etsi.​org/​deliv​er/​etsi_​gr/​NFV-​IFA/​001_​099/​022/​03.​01.​01_​60/​gr_​NFV-​IFA02​2v030​
101p.​pdf, (2018). Accessed 23 Nov 2020

	15.	 Thalanany, S., et al.: 5g end-to-end architecture framework v3.0.8. https://​www.​ngmn.​org/​wp-​conte​
nt/​uploa​ds/​Publi​catio​ns/​2019/​190916-​NGMN_​E2EAr​chFra​mework_​v3.0.​8.​pdf, (2017). Accessed
22 Nov 2020

	16.	 Beltrami, A., Maciel, P.D., Tusa, F., Cesila, C., Rothenberg, C., Pasquini, R., Verdi, F.L.: Design
and implementation of an elastic monitoring architecture for cloud network slices. In: NOMS
2020—2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–7 (2020)

	17.	 Galis, A., Tusa, F., Clayman, S., Rothenberg, C., Serrat, J.: Slicing 5G Networks: An Architectural
Survey. In: Wiley 5G Ref: The Essential 5G Reference, pp. 1–41. Wiley, New York (2020)

	18.	 Farrel, A., Gray, E., Drake, J., Rokui, R., Homma, S., Makhijani, K., Contreras, L.M., Tantsura, J.:
Framework for IETF Network Slices. Internet-Draft draft-ietf-teas-ietf-network-slices-04, Internet
Engineering Task Force. Work in Progress (August 2021)

	19.	 Swapna, A.I., Rosa, R.V., Rothenberg, C.E., Sakellariou, I., Mamatas, L., Papadimitriou, P.:
Towards a marketplace for multi-domain cloud network slicing: use cases. In: 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS), pp. 1–4
(2019)

	20.	 Maciel Jr., P.D., Verdi, F.L., Valsamas, P., Sakellariou, I., Mamatas, L., Petridou, S., Papadimitriou,
P., Moura, D., Swapna, A.I., Pinheiro, B., Clayman, S.: A marketplace-based approach to cloud

https://datatracker.ietf.org/doc/html/draft-gdmb-netslices-intro-and-ps-02
https://datatracker.ietf.org/doc/html/draft-geng-netslices-architecture-02
https://datatracker.ietf.org/doc/html/draft-geng-netslices-architecture-02
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://sdn.ieee.org/newsletter/january-2018/perspectives-on-network-slicing-towards-the-new-bread-and-butter-of-networking-and-servicing
https://sdn.ieee.org/newsletter/january-2018/perspectives-on-network-slicing-towards-the-new-bread-and-butter-of-networking-and-servicing
http://www.ietf.org/internet-drafts/draft-defoy-netslices-3gpp-network-slicing-02.txt
http://www.ietf.org/internet-drafts/draft-defoy-netslices-3gpp-network-slicing-02.txt
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/022/03.01.01_60/gr_NFV-IFA022v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/022/03.01.01_60/gr_NFV-IFA022v030101p.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2019/190916-NGMN_E2EArchFramework_v3.0.8.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2019/190916-NGMN_E2EArchFramework_v3.0.8.pdf

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 37 of 40  34

network slice composition across multiple domains. In: 2019 IEEE Conference on Network Soft-
warization (NetSoft), pp. 480–488 (2019)

	21.	 ITU-T. Y.3001 : Future networks: Objectives and design goals. https://​www.​itu.​int/​rec/T-​REC-Y.​
3001-​201105-I, 2012. Accessed 12 May 2021

	22.	 ITU-T Focus Group. IMT-2020 Deliverables. https://​www.​itu.​int/​en/​publi​catio​ns/​Docum​ents/​tsb/​
2017-​IMT20​20-​deliv​erabl​es/​mobile/​index.​html#p=1. Accessed 12 May 2021 (2017)

	23.	 NGMN. NGMN 5G White Paper v1.0. https://​www.​ngmn.​org/​wp-​conte​nt/​uploa​ds/​NGMN_​5G_​
White_​Paper_​V1_0.​pdf. Accessed 12 May 2021 (2015)

	24.	 Hedman, P, NGMN P1 WS1 E2E Architecture Team.: Description of Network Slicing Concept
160113. https://​www.​ngmn.​org/​wp-​conte​nt/​uploa​ds/​160113_​NGMN_​Netwo​rk_​Slici​ng_​v1_0.​pdf.
Accessed 12 May 2021 (2016)

	25.	 Homma, S., Nishihara, H., Miyasaka, T., Galis, A., Ram OV, V., Lopez, D., Contreras, LM., Mar-
tinez-Julia, P., Qiang, L., Rokui, R., Ciavaglia, L., de Foy, X.: Network Slice Provision Models
draft-homma-slice-provision-models-02. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​homma-​slice-​
provi​sion-​models-​02. Accessed 14 May 2021 (2019)

	26.	 Galis, A..: Network Slicing - Revised Problem Statement draft-galis-netslices-revised-problem-
statement-01. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​galis-​netsl​ices-​revis​ed-​probl​em-​state​
ment-​01. Accessed 14 May 2021 (2017)

	27.	 Geng, L., Qiang, L., Ordonez, J., Adamuz-Hinojosa, O., Ameigeiras, P., Lopez, D., Contreras,
L.: COMS Architecture draft-geng-coms-architecture-02. https://​datat​racker.​ietf.​org/​doc/​html/​
draft-​geng-​coms-​archi​tectu​re-​02. Accessed 14 May 2021 (2018)

	28.	 Makhijani, K., Qin, J., Ravindran, R., Geng, L., Qiang, L., Peng, S., de Foy, X., Rahman, A.,
Galis, A., Fioccola, G.: Network Slicing Use Cases: Network Customization and Differentiated
Services draft-netslices-usecases-02. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​netsl​ices-​useca​
ses-​02. Accessed 14 May 2021 (2017)

	29.	 Qiang, L., Geng, L., Makhijani, K., de Foy, X., Galis, A.: The Use Cases of Common Operation
and Management of Network Slicing draft-qiang-coms-use-cases-00. https://​datat​racker.​ietf.​org/​
doc/​html/​draft-​qiang-​coms-​use-​cases-​00. Accessed 14 May 2021 (2018)

	30.	 Qiang, L., Galis, A., Geng, L., Makhijani, K., Martinez-Julia, P., Flinck, H., de Foy, X.: Tech-
nology Independent Information Model for Network Slicing draft-qiang-coms-netslicing-infor-
mation-model-02. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​qiang-​coms-​netsl​icing-​infor​mation-​
model-​02. Accessed 15 May 2021 (2018)

	31.	 Galis, A., Makhijani, K., Yu, D., Liu, B.: Autonomic Slice Networking draft-galis-anima-auto-
nomic-slice-networking-05. https://​datat​racker.​ietf.​org/​doc/​html/​draft-​galis-​anima-​auton​omic-​
slice-​netwo​rking-​05. Accessed 10 May 2021 (2018)

	32.	 3GPP. 3GPP SA2—Study on Architecture for Next Generation System /Network slice related
functionality (3GPP TR 23.799) (2015)

	33.	 3GPP. 3GPP SA2—System Architecture for the 5G System /Network slice related functionality
(3GPP TS 23.501) (2016)

	34.	 3GPP. 3GPP SA2—Procedures for the 5G System: Procedures and flows of the architectural ele-
ments/Network slice related procedures (3GPP TS 23.502) (2016)

	35.	 3GPP. 3GPP SA3—Study on the security aspects of the next generation system/ Network slice
related security (3GPP TR 33.899) (2016)

	36.	 3GPP. 3GPP SA5—Provisioning of network slicing for 5G networks and services: Detailed spec-
ification of network slice provisioning/Network slice management (3GPP TS 28.531) (2017)

	37.	 3GPP. 3GPP SA5—Management of network slicing in mobile networks - concepts, use cases and
requirements (3GPP TS 28.530) (2017)

	38.	 ETSI.: Network Functions Virtualisation—White Paper on NFV priorities for 5G. https://​portal.​
etsi.​org/​NFV/​NFV_​White_​Paper_​5G.​pdf. Accessed 12 May 2021 (2017)

	39.	 Open Network Foundation.: TR-526 Applying SDN Architecture to 5G Slicing. https://​openn​
etwor​king.​org/​wp-​conte​nt/​uploa​ds/​2014/​10/​Apply​ing_​SDN_​Archi​tectu​re_​to_​5G_​Slici​ng_​TR-​
526.​pdf. Accessed 12 May 2021 (2016)

	40.	 NECOS.: D3.1: NECOS System Architecture and Platform Specification. V1 Deliverable. http://​
www.​maps.​upc.​edu/​public/​NECOS%​20D3.1%​20fin​al.​pdf. Accessed 10 Oct 2020 (2019)

	41.	 Almeida, L., Maciel Jr. P.D., Verdi, F.L.: Cloud Network Slicing: A systematic mapping study
from scientific publications. https://​doi.​org/​10.​21203/​rs.3.​rs-​34336/​v1 (2020)

https://www.itu.int/rec/T-REC-Y.3001-201105-I
https://www.itu.int/rec/T-REC-Y.3001-201105-I
https://www.itu.int/en/publications/Documents/tsb/2017-IMT2020-deliverables/mobile/index.html#p=1
https://www.itu.int/en/publications/Documents/tsb/2017-IMT2020-deliverables/mobile/index.html#p=1
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf
https://datatracker.ietf.org/doc/html/draft-homma-slice-provision-models-02
https://datatracker.ietf.org/doc/html/draft-homma-slice-provision-models-02
https://datatracker.ietf.org/doc/html/draft-galis-netslices-revised-problem-statement-01
https://datatracker.ietf.org/doc/html/draft-galis-netslices-revised-problem-statement-01
https://datatracker.ietf.org/doc/html/draft-geng-coms-architecture-02
https://datatracker.ietf.org/doc/html/draft-geng-coms-architecture-02
https://datatracker.ietf.org/doc/html/draft-netslices-usecases-02
https://datatracker.ietf.org/doc/html/draft-netslices-usecases-02
https://datatracker.ietf.org/doc/html/draft-qiang-coms-use-cases-00
https://datatracker.ietf.org/doc/html/draft-qiang-coms-use-cases-00
https://datatracker.ietf.org/doc/html/draft-qiang-coms-netslicing-information-model-02
https://datatracker.ietf.org/doc/html/draft-qiang-coms-netslicing-information-model-02
https://datatracker.ietf.org/doc/html/draft-galis-anima-autonomic-slice-networking-05
https://datatracker.ietf.org/doc/html/draft-galis-anima-autonomic-slice-networking-05
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
https://opennetworking.org/wp-content/uploads/2014/10/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://opennetworking.org/wp-content/uploads/2014/10/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://opennetworking.org/wp-content/uploads/2014/10/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
http://www.maps.upc.edu/public/NECOS%20D3.1%20final.pdf
http://www.maps.upc.edu/public/NECOS%20D3.1%20final.pdf
https://doi.org/10.21203/rs.3.rs-34336/v1

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 38 of 40

	42.	 Bonnet, J., et al.: D4.2 service platform first operational release and documentation. https://​bscw.​
5g-​ppp.​eu/​pub/​bscw.​cgi/​d1372​67/​SONATA%​20D4.2%​20Ser​vice%​20pla​tform%​20fir​st%​20ope​
ratio​nal%​20rel​ease%​20and%​20doc​ument​ation.​pdf. Accessed 10 Oct 2020 (2016)

	43.	 Tusa, F., Clayman, S., Galis, A.: Real-time management and control of monitoring elements in
dynamic cloud network systems. In: 2018 IEEE 7th International Conference on Cloud Network-
ing (CloudNet), pp. 1–7 (2018)

	44.	 Tusa, F., Clayman, S., Valocchi, D., Galis, A.: Multi-domain orchestration for the deployment
and management of services on a slice enabled nfvi. In: 2018 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1–5 (2018)

	45.	 Mamatas, L., Clayman, S., Galis, A.: A service-aware virtualized software-defined infrastruc-
ture. IEEE Commun. Mag. 53(4), 166–174 (2015)

	46.	 Manvi, Sunilkumar S., Shyam, Gopal Krishna: Resource management for Infrastructure as a Ser-
vice (IaaS) in cloud computing: a survey. J. Network Comput. Appl. 41, 424–440 (2014)

	47.	 Jennings, Brendan, Stadler, Rolf: Resource management in clouds: survey and research chal-
lenges. J. Network Syst. Manag. 23, 03 (2014)

	48.	 Montero, Rafael, Agraz, Fernando, Pagès, Albert, Spadaro, Salvatore: Enabling multi-segment
5g service provisioning and maintenance through network slicing. J. Network Syst. Manag.
28(2), 340–366 (2020)

	49.	 Chiha, Asma, Van der Wee, Marlies, Colle, Didier, Verbrugge, Sofie: Network slicing cost allo-
cation model. J. Network Syst. Manag. 28(3), 627–659 (2020)

	50.	 Valera-Muros, Barbara, Panizo, Laura, Rios, Alvaro, Merino-Gomez, Pedro: An architecture for
creating slices to experiment on wireless networks. J. Network Syst. Manag. 29(1), 1 (2020)

	51.	 Luong, D.-H., Thieu, H.-T., Outtagarts, A., Ghamri-Doudane, Y.: Cloudification and autoscal-
ing orchestration for container-based mobile networks toward 5g: experimentation, challenges
and perspectives. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–7
(2018)

	52.	 Sukhija, N., Bautista, E.: Towards a framework for monitoring and analyzing high performance
computing environments using kubernetes and prometheus. In: 2019 IEEE SmartWorld, Ubiqui-
tous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communica-
tions, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/
SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 257–262 (2019)

	53.	 NECOS.: D5.2: Intelligent Management and Orchestration. http://​www.​maps.​upc.​edu/​public/​
D5.2%​20fin​al.​pdf. Accessed 28 Nov 2020 (2019)

	54.	 CPqD.: Dojot documentation. https://​dojot​docs.​readt​hedocs.​io/​en/​latest/. Accessed 10 November
2020 (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

André Luiz Beltrami Rocha  received an M.Sc. degree in Computer Science from Federal University of
São Carlos in December 2016. He is currently working towards a Ph.D. in Computer Science at Federal
University of São Carlos, in the scope of orchestration and management of cloud-network slices. In Janu-
ary 2018, he joined the NECOS Project. His research interests include 5G networks, network virtualiza-
tion, network slicing, cloud-network slicing, monitoring, orchestration, data centers and cloud computing.

Celso Henrique Cesila  holds the Computer Engineering degree from the São Francisco University (USF),
and an M.Sc. degree in Computer Engineering from UNICAMP, 2020. He is currently a Ph.D. candidate
at the Department of Computer Engineering and Industrial Automation of the School of Electrical and
Computer Engineering - UNICAMP). He is involved as a researcher in academy-industry collaboration
projects related to networked systems (e.g., SDN, NFV, IBN). Since 2013 he has been a Computer Ana-
lyst at the Institute of Mathematics - UNICAMP. His research interests span SDN, NFV, IBN, networking
monitoring, and networking slice.

Paulo Ditarso Maciel Jr.  holds a doctorate’s degree in Computer Science from the Federal University of
Campina Grande (UFCG), a master’s degree in Systems and Computing Engineering from the Federal

https://bscw.5g-ppp.eu/pub/bscw.cgi/d137267/SONATA%20D4.2%20Service%20platform%20first%20operational%20release%20and%20documentation.pdf
https://bscw.5g-ppp.eu/pub/bscw.cgi/d137267/SONATA%20D4.2%20Service%20platform%20first%20operational%20release%20and%20documentation.pdf
https://bscw.5g-ppp.eu/pub/bscw.cgi/d137267/SONATA%20D4.2%20Service%20platform%20first%20operational%20release%20and%20documentation.pdf
http://www.maps.upc.edu/public/D5.2%20final.pdf
http://www.maps.upc.edu/public/D5.2%20final.pdf
https://dojotdocs.readthedocs.io/en/latest/

1 3

Journal of Network and Systems Management (2022) 30:34	 Page 39 of 40  34

University of Rio de Janeiro (UFRJ), and a bachelor’s degree in Computer Science from the Federal Uni-
versity of Paraíba (UFPB). He also held a postdoc position at the Computing Department of the Federal
University of São Carlos (UFSCar-Sorocaba) for two years. As Associate Professor in the Federal Insti-
tute of Education, Science and Technology of Paraíba (IFPB), he works in the undergraduate and gradu-
ate courses of the Academic Unit of Informatics, and his research interests include computer networks,
network management, cloud computing, and virtualization.

Sand Luz Correa  is an associate professor at the Institute of Informatics - Universidade Federal de Goiás
(UFG), where she has been a professor and researcher since 2010. She holds a degree in Computer Sci-
ence from Universidade Federal de Goiás (1994), has MSc (1997) in Computer Sciences from University
of Campinas (UNICAMP) and PhD (2011) in Informatics from Pontifical Catholic University of Rio de
Janeiro (PUC-Rio). In 2015, she spent her sabbatical at Virginia Tech (in the USA) and, in 2020, at Inria
Saclay Research Centre (in France). Professor Sand has participated in some international research pro-
jects (including two from joint calls BR-EU). Her research interests include cloud computing, SDN, data
plane programmability, and sensor systems and smart city platforms.

Javier Rubio‑Loyola  received the Engineering degree in communications and electronics and the M.Sc.
degree in digital systems from the National Polytechnic Institute of Mexico and the Ph.D. degree in tel-
ecommunications from the Universitat Politécnica de Catalunya, Barcelona. He is a Research Scientist
with the Center for Research and Advanced Studies, Mexico. He has participated in a number of Spanish
and IST-European research projects mainly in the network management area. His research interests focus
on network management, network functions virtualization, and software-defined networks.

Christian R. Esteve Rothenberg  is an Assistant Professor in the Faculty of Electrical & Computer Engi-
neering (FEEC) at University of Campinas (UNICAMP), Brazil, where he received his Ph.D. and cur-
rently leads the Information & Networking Technologies Research & Innovation Group (INTRIG). His
research spans all layers of distributed systems and network architectures and are often carried in collabo-
ration with industry, resulting in multiple open source projects among other scientific results.

Fábio Luciano Verdi  is an Associate Professor in the Computer Science Department at Federal University
of São Carlos (UFSCar). He has been working with data centers, cloud computing, SDN, and dataplane
programmability. He is a member of the LERIS Research Group and has been leading projects in the area
of computer network monitoring, virtual resources and cloud infrastructures. He is currently a research
visitor at KTH, Sweden.

	 Journal of Network and Systems Management (2022) 30:34

1 3

34  Page 40 of 40

Authors and Affiliations

André Luiz Beltrami Rocha1  · Celso Henrique Cesila2 ·
Paulo Ditarso Maciel Jr.3  · Sand Luz Correa4 · Javier Rubio‑Loyola5  ·
Christian Esteve Rothenberg2  · Fábio Luciano Verdi1 

 *	 André Luiz Beltrami Rocha
	 andrebeltrami@estudante.ufscar.br

	 Celso Henrique Cesila
	 ccesila@dca.fee.unicamp.br

	 Paulo Ditarso Maciel Jr.
	 paulo.maciel@ifpb.edu.br

	 Sand Luz Correa
	 sandluz@ufg.br

	 Javier Rubio‑Loyola
	 javier.rubio@cinvestav.mx

	 Christian Esteve Rothenberg
	 chesteve@dca.fee.unicamp.br

	 Fábio Luciano Verdi
	 verdi@ufscar.br

1	 Computing Department (DCOMP), Federal University of São Carlos (UFSCar), Sorocaba,
Brazil

2	 School of Electrical and Computer Engineering (FEEC), University of Campinas (Unicamp),
Campinas, Brazil

3	 IFPB, João Pessoa, Brazil
4	 UFG, Goiânia, Brazil
5	 Cinvestav, Ciudad de Mexico, Mexico

http://orcid.org/0000-0001-5633-8893
http://orcid.org/0000-0002-0732-752X
http://orcid.org/0000-0002-6307-036X
http://orcid.org/0000-0003-3109-4305
http://orcid.org/0000-0002-5455-8910

	CNS-AOM: Design, Implementation and Integration of an Architecture for Orchestration and Management of Cloud-Network Slices
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Projects and Initiatives
	2.2 Cloud-Network Slicing and the NECOS Project
	2.3 Related Work

	3 Architecture
	3.1 Slicing Resource Orchestrator
	3.2 Resource & Service Management
	3.3 Resource & Service Monitoring

	4 Implementation Details
	4.1 Resource & Service Management Implementation
	4.2 Resource & Service Monitoring Implementation
	4.3 Slicing Resource Orchestrator
	4.4 Workflows

	5 Proof of Concept Validation
	5.1 CDN Service Description
	5.1.1 Configuration setup
	5.1.2 CDN Service Evaluation

	5.2 IoT Service Description
	5.2.1 Configuration Setup
	5.2.2 IoT Service Evaluation

	6 Conclusions and Future Work
	Acknowledgements
	References

