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Abstract—Recent proposals on Data Center Networks (DCN)
are based on centralized control and a logical network fabric
following a well-controlled baseline topology. The architectural
split of control and data planes and the new control plane
abstractions have been touted as Software-Defined Networking
(SDN), where the OpenFlow protocol is one common choice for
the standardized programmatic interface to data plane devices. In
this context, source routing has been proposed as a way to provide
scalability, forwarding flexibility and simplicity in the data plane.
One major caveat of source routing is network failure events,
which require informing the source node and can take at least
on the order of one RTT to the controller. This paper presents
SlickFlow, a resilient source routing approach implemented with
OpenFlow that allows fast failure recovery by combining source
routing with alternative path information carried in the packet
header. A primary and alternative paths are compactly encoded
as a sequence of segments written in packet header fields. Under
the presence of failures along a primary path, packets can be
rerouted to alternative paths by the switches themselves without
involving the controller. We evaluate SlickFlow on a prototype
implementation based on Open vSwitch and demonstrate its
effectiveness in a Mininet emulated scenario for fat-tree, BCube,
and DCell topologies.

I. INTRODUCTION

Data Center Networks (DCN) are an essential component of
today’s cloud-oriented Internet infrastructure. Proper planning
of the data center infrastructure design is critical, where perfor-
mance, resiliency, and scalability under certain cost constraints
require careful considerations [6]. Data centers are growing in
size and importance as many enterprises are migrating their
application and data to the cloud. To achieve the benefits of
resource sharing, cloud data centers must scale to very large
sizes at marginal cost increases.

Continued growth of DCN requires a reliable infrastructure
because interruptions in services can have significant conse-
quences to enterprises [2], [19]. An increasingly portion of
Internet traffic is based on the data communication and pro-
cessing that takes place within data center networks. However,
traditional fixed network approaches are simply not designed
to meet the current needs of a virtualized environment and are
not flexible enough to support the changing demands.

Recently, a promisingly networking technology referred to
as Software Defined Network (SDN) is emerging. SDN is
an architectural proposition based on some key attributes,
including: separation of data and control planes; a uniform

vendor-agnostic interface to the forwarding engine (i.e. Open-
Flow [21]); a logically centralized control plane; and the
ability to virtualize the underlying physical network [13].

This paper proposes SlickFlow, an OpenFlow-based fault
tolerent routing design that allows switches to recover from
failures by specifying alternative paths in the packet headers.
The approach relies on defining at the source the primary route
and alternative paths, enabling packets to skip from failures
without the intervention of centralized controllers. The key
idea of SlickFlow is to represent the paths as a sequence of
segments that will be used by each switch to perform the
forwarding operation. A segment carries the information of the
next node of the primary path, and an alternative path related
to the current node. If the primary path is not available, then
the current switch rebuilds the header and forwards the packet
to the alternative path.

Route computation is performed by the controller which has
a centralized view of the network, and is able to compute all
the routes among endpoints. When a new flow arrives at the
network edge, the controller installs rules at source switches
(ingress) to embed the SlickFlow header into the packet and
at destination switches (egress) to remove the header in order
to deliver the packet to the destination endpoint.

The proposed protection mechanism allows switches to
reroute packets directly in the dataplane as a faster alterna-
tive to controller-based path restoration. The source routing
approach simplifies the forwarding task in every switch, since
it only requires local knowledge of its neighbors, rather than
a routing entry per potential destination. SlickFlow can be
deployed on top of recently proposed DCN topologies, such
as fat-tree [1], DCell [16], and BCube [14]. A prototype was
implemented as a proof of the concept using software-based
OpenFlow switches and evaluated under fat-Free, BCube and
DCell arrangements. The experimental results point to signif-
icant gains in failure reaction time.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the design and
implementation of SlickFlow. Section V evaluates our proposal
in terms of packet header overhead, link failure recovery times,
packet loss, and forwarding performance. Finally, Section VI
concludes the paper and outlines avenues for future work.
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II. RELATED WORK

A. Data Center Networks

Recently, there have been many proposals for network
architectures specifically targeting the data center.

VL2 [11] provides the illusion of a large L2 network on
top of an IP network, using a logically centralized directory
service. VM hosts add a shim layer to the networking stack
called the VL2 agent which encapsulates packets into a IP-
in-IP tunnel. The are two classes of IP addresses, Locator
Addresses (LA) with topological significance, and Application
Addresses (AA). LA addresses are assigned to the switches,
which run a link state routing protocol to disseminate these
LAs and provide a global view of the topology. VL2 assigns
servers AA addresses and when a server sends a packet,
the shim-layer on the server invokes a directory system to
encapsulate the packet with the LA address of the destination
ToR (Top of Rack) switch. Once the packet arrives at the
LA of the destination ToR, the switch decapsulates the packet
and delivers it to the destination AA carried in the inner
header. Link failures are handled by assigning the same LA
address to all intermediate switches that are all exactly three
hops away from any source host. ECMP takes care of load
balancing the traffic encapsulated with the anycast address of
the active intermediate switches. Upon switch or link failures,
ECMP reacts without needing to notify agents while ensuring
scalability.

Like VL2, PortLand [23] also employs two classes of
addresses at L2: Actual MAC (AMAC) addresses, and pseudo
MAC (PMAC) addresses, which encodes hierarchical location
information in its structure. PortLand employs a centralized
Fabric Manager to resolve ARP queries, and to simplify
multicast and fault tolerance. The Fabric Manager assigns
to each end host a PMAC representing its location on the
topology. The ARP requests made by end hosts are answered
with the PMAC of the destination. Thus, packet forwarding
process is based solely on the PMAC. The egress switches
are responsible for PMAC to AMAC mapping and packet re-
writing to maintain the illusion unchanged MAC addresses.
Therefore, end hosts remain unchanged. In presence of fail-
ures, the fabric manager informs all affected switches of the
failure, which then get their forwarding tables recalculated
based on the new version of the topology.

B. Source Routing

Not new to DCN or specific to SDN is the previous work
devoted to source routing under different flavours. Source
routing is an appealing approach that uncouples the routing
logic from and provides data plane scalability by turning
forwarding elements stateless. In contrast to conventional hop-
by-hop routing, switches just forward packets based on the
routing information carried in the packet headers. We now fast
forward from early work on source routing [26] to a subset of
recent work relevant to the scope of this paper.

OpenFlow programmability provides a convenient way to
define the source routing rules at the network edges. In

SiBF [25], the packet’s source route is represented into a in-
packet Bloom Filter (iBF). The Bloom filter bits are carried by
the MAC fields and the MAC rewriting occurs at the source
and destination OpenFlow-enabled ToR switches. SecondNet
proposes Port-Switching based Source Routing (PSSR) that
represents a routing path as a sequence of output ports of
switches. In both SiBF and SecondNet, the failure recovery
mechanism is based on a centralized controller that reroutes
the traffic. In SecondNet [15], when a link or switch fails, the
controller tries to allocate a new path for that VM-pair. SiBF
proposes the installation of lower priority back-up flow entries
with an alternative link-disjoint iBF path. Upon a failure at
intermediate switches, the controller removes the active (high
priority) flow entries at ToRs affected by the failure.

Slick Packets [22] have been proposed to achieve fast data
plane failure reaction by embedding alternative routes within
the packet headers. The packet header contains a directed
acyclic graph called the forwarding subgraph (FS). Each router
along the packet’s path may choose to forward it along any of
the outgoing links at that router’s node in the FS (optionally
preferring a path marked as the primary). This allows packets
to ‘slip’ around failures in-flight while retaining the flexibility
of source route control. However, Slick Packets is a theoretical
network design without an implementation and validated using
analytic results.

Related work with focus on datapath resilience includes
MPLS Fast Reroute [3], SafeGuard [18], and OpenFlow fast
failover [27]. Common to these proposal is computing alter-
native path to each destination for intradomain routing, so a
router can locally switch to the alternative path without waiting
for a control-plane convergence process.

C. SlickFlow contributions to the state-of-the-art

This paper elaborates on our previous work on Encoded
Paths [24] extending it to support arbitrary topologies beyond
fat-trees and addressing data plane fault tolerance with the
proposed SlickFlow mechanisms, experimentally validated for
a number of assumptions and DCN scenarios. SlickFlow, as
reflected in the name choice, is inspired by Slick Packets [22]
but fundamentally differs on the alternative paths encoding.
Rather than using forwarding subgraph that can increase the
dataplane complexity due to its variable size header, SlickFlow
relies on a sequence of fixed-size segments that could be easily
supported in hardware-based datapath devices as suggested by
our OpenFlow prototype implementation that re-uses existing
headers of the TCP/IP stack.

Our work aims at combining the flexibility of source rout-
ing, where sources specify an explicit route in the packet
header rather than a destination as traditional network con-
trolled routing protocols, and the fast failure reaction of
alternative routes embedded within the packets. Besides, our
proposal does not require end point modifications nor shim-
header overheads, being able to recover from failures without
recalculating forwarding tables, but using the alternative path
information carried in the packet header.
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Fig. 1: Overview of the design

III. DESIGN AND IMPLEMENTATION

Building upon the principles of SDN, one key characteristic
of the proposed architecture is adopting a clear separation
of the route computation (on the deployed topology) from
failure handling (when link or node status changes) [5]. Thus,
the core idea is compute every potential path on a given
deployed topology. That is, the routing function ignores all
state changes and only recomputes paths when the topology
changes. Since these topology changes are rare and often
known in advance [5], the computation of routes can be done
in a centralized fashion. This flexibility, in both the length
and location of the computation, allows a wide variety of path
computation according to various criteria.

A data center is often managed by a single logical entity
which leads us to adopt a logically centralized controller (NM
- Network Manager) that makes all the decisions within the
data center. As the controller knows the network topology,
we can remove from the switches the task of making routing
decisions which allows to employ specific routing techniques
such as source routing, increasing scalability of the data plane
because intermediate switches become stateless. Basically, the
NM discovers its network map by using e.g. Link Layer
Discovery Protocol (LLDP) to (i) calculate all routes between
each pair of hosts, and (ii) install the forwarding states at the
intermediate switches based solely on the neighboring switch
information.

Thus, for new flows at the network edge, the controller
commands the source (ingress) switches to embed a primary
and (link-disjoint) alternative path into the packet in form
of a SlickFlow header. This redundant protection mechanism
allows the traffic to be switched to this alternative path, when
a failure is detected under the primary path. It contrasts with
reactive path restoration mechanisms, in which the alternative
path is established by the controller when it receives the
failure notification from the OpenFlow switches [27], using
for instance LLDP messages.

Figure 1 shows an example to illustrate our proposal design.
Suppose the host s wishes to communicate with destination d.
As the flow table of source ToR switch S7 is empty, the packet

misses a rule and is forwarded to the NM (Step I). From a
list of the precomputed existing paths, NM selects the primary
path (S7−S4−S2−S6−S10) and alternative paths and in-
stalls one rule (OpenFlow entry) at the source and destination
ToRs (Step II). The rule at source ToR S7 instructs the switch
to (i) embed the selected paths into the packet header fields
(Step III), and (ii) forward the packet via the outport port to
S4. At S4, S2 and S6, all the forwarding decisions are based
on the contents of the SlickFlow header carried by the packet
(Step IV). Finally, the rule in the destination ToR S10 removes
the SlickFlow header and delivers the packet to the destination
d (Step V). In case of a failure event, the current switch looks
for alternatives paths in the SlickFlow header, if available, the
packet is rerouted to the backup path without intervention of
the NM.

It is worth to note that, SlickFlow forwarding does not use
IP address for packet flow matching within the DCN. This way,
unlike the traditional hierarchical assignment of IP addresses,
there are no restrictions on how addresses are allocated. In
essence, we separate host location from host identifier so that
this is transparent to end hosts and compatible with existing
commodity switches hardware. Moreover, this approach does
not introduce additional protocol headers such as MAC-in-
MAC or IP-in-IP [11], [12].

In the following, we describe the details of the underlying
assumptions and mechanisms.

A. Topology Discovery and Route Computation

In order to construct source routes, the NM needs to
know the network topology at boot time without manual
intervention. For this, we use LLDP messages for topology in-
ference. LLDP packets are sent from each interface of switches
and then, according to the received packets in neighboring
switches, the connections are discovered.

The route calculation module can be configured to calculate
all routes between all pairs of hosts, or a predetermined num-
ber of k paths. This parameter can be set by the administrator
based on the size of the network. For best performance, the
routes can be selected based on disjoint paths [20], or paths
selecting randomly from a probability distribution [29].

B. Path Selection

Once the controller needs to install rules to a new flow, it
selects, among the previously calculated paths between source
and destination, the path along which you want the packet to
be sent, and also select alternative link-disjoint paths.

The paths the controller will choose can be defined accord-
ing to various criteria. It can select paths, for example, to
avoid single link failures along a primary route, to anticipate
node failures, to optimize the network according metrics
such as bandwidth. In this work, we consider paths selection
to minimize the latency in the primary path and to offer
alternative routes to avoid single link failures.

First, NM selects the primary path P from a source s to a
destination d, then for each hop (or a subset of hops) of P ,
it selects an alternative path pi to be used if the next hop on
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Fig. 2: Encoding format layout

the primary path is not available. An alternative path pi is a
path that starts at node i and goes up to destination d avoiding
the link that connects i to the next node of the primary path.
To reduce the latency over the primary path, the NM selects
the shortest path between s and d. In case of multiple shortest
paths to the destination, the NM arbitrarily selects one of these
paths.

Despite the presented path selection covering only single
link failures, multiple link failures can be recovered with the
assistance of the centralized controller. The controller installs
an alternative path on the ToR’s after it receives the link failure
notification from the switches.

C. Packet Header Encoding

After path selection, the NM must encodes the paths into the
SlickFlow header as a sequence of segments that will be used
by each hop along the route. As shown in Figure 2, a segment
corresponding to a node k has 3 pieces of information: (1)
p, the label of next hop on the main path, (2) the length of
the alternative path of k, and (3) the alternative path of k
represented by a sequence of labels (a1, ..., ak). Therefore,
when a node has no alternative path, the length is 0.

The header also contains an additional piece of information,
a bit field called alternative, which specifies whether the
packet is on the primary or alternative path. This encoding
is based on the studies in [22], where the authors compared
different encoding formats to represent networks as directed
acyclic graphs. Our specific choice is based on the fact that
the encoding via graphs results in less compact headers and
increase the complexity of the forwarding operation. Also
note that the form of encoding could be generalized to allow
more than one alternative path to the same node, or even
allow alternative paths to hops on alternative paths. However,
the investigation of enhanced encoding formats and other
optimizations have been left for further work. Next, we explain
how switches use this information to forward packets.

D. Forwarding

Upon receiving a packet, the switch extracts the bits con-
tained in the first segment (leftmost) and uses it as key to
search the output port in the forwarding table. After that,
the switch checks if the corresponding link is available and
checks the alternative bit to know if it is on the primary or
alternative path.

1) Primary path: If the switch is on the primary path, and
the output link to the next hop is available, the switch updates
the header, removing the first segment by shifting the rest of

the header to the left, so that the second segment becomes the
outer most bits, and so on. The packet is then forwarded to
the next hop on the primary path.

If the connection to the next hop on the primary path is
unavailable, the switch checks the length of its alternative
path. If it is 0 –there is no alternative path– the packet is
dropped. Otherwise, the switch reads the label of the next hop
of the alternative path a1. If the link corresponding to a1 is
not available, the packet is dropped. If the link is available,
the switch rebuilds the header by replacing the labels of the
primary path by the labels of the alternative path (a2, ..., ak). It
also sets the alternative bit to 1. The packet is then forwarded
to the next hop a1.

2) Alternative path: If the value of the alternative bit is
1, the switch knows the packet is being forwarded through an
alternative path. The switch reads the label of the next hop, and
if the corresponding link is not available, the packet is dropped.
If the link is available, the switch shifts the corresponding
segment bits to the left and forwards the packet to the next
hop.

When the failed link becomes available again, the flow is
switched back to the primary path automatically. As the switch
verifies that the next hop of the primary path is available again,
it just send the packet to it, without any additional signaling.

IV. PROTOTYPE IMPLEMENTATION

We implemented the SlickFlow forwarding mechanism on
OpenFlow software switches (Open vSwitch), and the Network
Manager (NM) was developed as an application on top of
NOX [13], an OpenFlow network controller.

When a packet arrives at the first hop ToR and lacks of a
matching entry, the packet is sent to the NM which selects
the primary and alternative paths among all pre-calculated
paths between the source and destination. The NM then install
the necessary rules at the originating and destination ToR
switches. In the source ToR, the OpenFlow rule includes
an action to add the SlickFlow header to the packet and in
the destination ToR, the flow actions instruct the switch to
remove the SlickFlow header and deliver the packet to the
destination endpoint. Flow entries at the edge switches are
based on the destination IP address (plus optional VLAN or
tenant identifiers).

Forwarding at intermediate switches is based on the fixed
rules installed by the NM during booting up and topology
discovery. These OpenFlow entries are based on the next hop
label of the SlickFlow header and simply indicate the output
port to which matching packets should be sent. We modified
the default OpenFlow switch software to, before sending a
packet out, make the SlickFlow header processing described
in the previous section.

The concept itself is agnostic to the particular location in
the packet header used to carry the bits. It may reside in a
shim header between the IP and MAC layers, in an IP option,
or in a novel header format in a next-generation Internet
protocol. Our key goal in designing the encoding format is
to ensure simple data plane forwarding that can be deployed
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over existing hardware (e.g., commercial OpenFlow switches).
However, we chose to use existent headers to avoid additional
overhead and simplify the implementation.

We place the SlickFlow header in the VLAN and MAC
Ethernet fields. Whereas the next hop label of the first segment
is placed in the V lanV ID field and the remaining of the header
is placed in the 96 bits of the Ethernet source and destination
MAC address fields and the alternative bit is placed in the
V lanPCP field. For this configuration, each label and length
fields have a fixed size of 4 bits, so each switch is limited
to 16 neighbors and the alternative path can have at most 16
hops.

We reckon that this proof of concept configuration is insuf-
ficient for real data center fabrics which may contain switches
with more than 100 ports. It is however sufficient to demon-
strate our idea and prove the feasibility of implementation.

A more appropriate label size would be 8-bit long, allowing
switches to have up to 256 neighbors, but the header bits in
the Ethernet MAC address space would quickly exhaust, not
allowing to encode alternative paths (or very short paths). One
scenario we are considering for future work leveraging the
latest OpenFlow protocol versions is using additional packet
bit space (e.g., PBB, MPLS, and/or IPv6 basic and extended
headers) to allow for larger SlickFlow headers.

One obvious possibility to reduce the size of the header is
to not include the alternative path of the originating switch
where the SlickFlow encoding rules are installed. Instead,
the alternative path relative to the first hop switch could be
established by the NM as an additional flow entry with lower
priority. When a failure on an outgoing link from the first
switch is detected, the switch can disable the affected outgoing
port(s)traffic and automatically switched to the alternative
path. In case of OpenFlow 1.1+ capable switches, group tables
with fast-failover actions can be used [7].

We envision offering the SlickFlow forwarding service to a
fraction of the traffic (or applications, or VMs groups), while
the rest of the traffic can be handled according to a legacy
network model or by another controller operating in parallel,
e.g., using a virtualization layer like FlowVisor [28].

V. EVALUATION

We evaluate SlickFlow using our OpenFlow-based prototype
running on the Mininet [17] emulation platform. Our main
evaluation goals include exploring (i) how arbitrary topologies
can be supported and behave in SlickFlow, and (ii) how fast
the data plane can recover from network link failures. We
consider common DCNs topologies varying their configuration
and analyzing how many bits would be required to support the
proposed fault tolerent source path encoding.

As a proof of the concept, SlickFlow is implemented and
evaluated encoding one alternative path for every hop on the
primary path (Sec. III-B) measuring the failure recovery time,
packet loss, and forwarding performance.

A. Encoding Size
We start by evaluating the SlickFlow header sizes of the

basic encoding format presented in §III-C. The encoding size

Redundancy level n 1 (alternative path) 2 (alternative paths)
Diameter d 5 7 9 5 7 9

p=16 80 140 216 120 224 360
p=32 95 168 261 145 273 441
p=64 110 196 306 170 322 522

p=128 125 224 351 195 371 603

TABLE I: Header sizes (in bits) for different configurations.

Topology Ports p Hosts Diameter d Avg. path length
Fat-tree-3 24 3,456 6 5.9
Fat-tree-4 8 4,096 8 7.6
DCell-1 58 3,422 5 4.9
DCell-2 7 3,192 11 8.2
BCube-1 58 3,364 4 3.9
BCube-3 5 3,125 10 8.0

TABLE II: Topology configurations.

depends mainly on the diameter of the topology, and the switch
fan-out (i.e. number of outgoing ports). Thus, considering a
network with diameter d, each switch with p ports, and the
length of each alternative path with up to l bits, the SlickFlow
header will have d segments, each of size log2(p) + l, plus
the size of the alternative path. To simplify the equation, we
assume that for each path between the nodes, there is an
alternative path of the same length. So, the alternative path
for the first hop has a length equal to network diameter d, the
next alternative path for the next hop contains d−1 segments,
and so on. The redundancy level n is defined as the number of
alternatives paths for every segment. These assumptions lead
to the following equation on the SlickFlow header size:

S = d ∗ (log2(p) + l) + n ∗
d∑

i=1

i ∗ log2(p) (1)

S = d ∗ (log2(p) + l) + n ∗ d
2 + d

2
∗ log2(p) (2)

The first component of this equation refers to the segment
structure (p and length l in Fig. 2) and the second component
refers to the redundant information contained in the segments
(ai of Fig. 2). Assuming that the label corresponding to the
length of the alternative path has 4 bits (which means that
alternative paths are maximum 16-hop long), Table I shows
the size (in bits) of the SlickFlow header for some topologies
and varying network diameter d, number of switch ports p,
and n alternative paths per hop (redundancy level).

As we can see, the diameter of the topology is the dominant
factor, as it was expected by analyzing equation 2. Also,
we can observe that for redundancy level n=2, i.e., two
alternative paths per segment, the header size grows faster.
As the redundancy level in SlickFlow design is general to
be configured, we assume a redundancy level equal to 1, for
validation purpose.

Now, we evaluate the required SlickFlow header sizes for
the topologies used by the main data center architectures
found on the current literature [8], fat-tree, DCell, and BCube,
shown in Figure 4, with variations in the parameters to
keep the number of end servers constant and close to 3,500.
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Table II shows the parameters of the topologies as well as
the corresponding number of ports per switch and the total
number of hosts. The table also includes network properties
such as diameter and the average length of the shortest paths
between servers.

It is worth noting that although some of these topologies
could operate partially complete, we consider only the use of
the complete network topologies, i.e., with all the network
interfaces of servers and switches in use. To build the Slick-
Flow header, we consider the worst-case scenario in terms of
distance, that is, we choose the source and destination nodes so
that the distance between them is the diameter of the network.

Figure 3 shows the results of the resulting packet header
sizes to encode. As it can be seen, BCube1 has the smallest
size an requiring an encoding size of 84 bits, while in DCell2,
the header is about 3 times larger.

An interesting result by comparing topologies of the same
type with different parameters, such as BCube and DCell,
shows that topologies with larger number of ports per switch
have larger header sizes. The reason is because the source-
destination pairs have longer primary paths, requiring alterna-
tive paths for a larger number of nodes. On the other hand,
these topologies are more resilient, because they offer a higher
number of different paths between every pair of nodes.

B. Failure Recovery Time

In order to evaluate the performance of the SlickFlow failure
recovery, we measure the recover time after link failures and
compare with a mechanism that employs the controller to
restore the path of packet flows. In this recovery process,
the alternative path is installed on the ToR’s switches by
the controller when it receives the link failure notification
from the OpenFlow switches (port-down event). Note that
the link failure detection time is not considered in these
experiments since we want to isolate the contribution of the
failure recovery time from the specific controller-based (e.g.
LLDP) or dataplane-based (e.g. BFD, Ethernet OAM, OSPF
Hello) detection mechanism.

For the experimental validation purposes, we used the fat-
tree, BCube and DCell of Figure 4. The switches inside
Mininet connect to an OpenFlow controller in the same
machine. The OpenFlow protocol version used in our imple-
mentation is 1.0.

In the first experiment, we measure the time to re-establish
the traffic flow for a single link failure. UDP traffic of 10Mbps
is started between two arbitrary hosts. We monitor the network
activity at the receiver while we inject link failures according
to an uniform distribution and measure the time required to
re-establish the communication, i.e., to continue receiving the
UDP stream.

Figure 5 shows the average recovery time for both topolo-
gies for 10 experiment runs. Total recovery time in SlickFlow
is about 10ms for both topologies, while the time for recovery
process involving the controller is about 150% higher. Note
that in the case of more than one single path failure, re-routing
is still possible by using the controller intelligence.

C. Packet loss

We now measure the loss of packets during the failure
recovery process, varying the transfer rates of the previous
experiment between 1Mbps, 5Mbps, and 10Mbps. Figures 6
plots the average packet loss, for fat-tree and DCell respec-
tively, across 10 runs as a function of the transfer rate. Since
the results are similar for the three topologies, due to lack of
space we omitted the result referring to BCube. As it can be
seen, the packet loss is smaller in SlickFlow compared to the
controller-based restoration process.

Ideally, SlickFlow should have no packet loss, since every
packet is processed by the switches, and if the primary link is
not available, the packet should be sent to the alternative path.
In our proof of concept software-based implementation, how-
ever, zero-packet loss only occurs for the lower transmission
rates (1Mbps). This packet loss behavior can be explained due
to the time it takes for a switch to detect port status changes
and locally switch to an alternative path.

Note that the recovery mechanism without alternative paths
depends of the RTT between the switches and the controller.
For larger networks with heavier control traffic loads, the
effective RTT tends to be higher, decreasing the performance
of the restoration mechanism [9].
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Fig. 4: Topologies
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Fig. 6: Packet loss during network link failure events.
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Fig. 7: Request/response performance

The results also show that the topologies have not significant
influence on the recovery times or the number of lost packets.
This is explained by the fact that the switch implementation
and the failure recovery mechanism is identical regardless the
topology of the network.

D. Forwarding performance

To implement SlickFlow forwarding, we modified the Open-
Flow switch implementation to, before sending a packet out,
process the packet header as described in Sec. III-D. We now
measure the impact of this additional processing compared
to the performance of unmodified switches. Using linear
topologies with different diameters, we used netperf [4] to

measure request/response transactions between a sender and
a receiver, where a transaction is defined as the exchange
of a single application-level request and a single response.
From the observed transaction rate, one can infer one way
and round-trip average latencies. As shown in Figure 7, the
average transaction rate for the modified OpenFlow switch is
less than 5% lower than the default OpenFlow switch in the
worst case, when the diameter is 9 hops.

We reckon that the purpose of this evaluation is solely for
a straw-man comparison between traditional and SlickFlow
forwarding in a software-based implementation. There is no
conceptual barrier to SlickFlow forwarding being supported in
hardware given its simple, fixed size match and packet-header
re-write operations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present SlickFlow, a proposal to add
datapath fault tolerance in DCN based on source routing and
augmented with alternative paths carried in packet headers and
programmed via OpenFlow primitives. SlickFlow is indepen-
dent of the network topology and has shown potential benefits
in emulated DCN topologies. Results in a virtualized testbed
show that the proposed approach can achieve efficient failure
recovery on the data plane without involving the controller.

As future work we plan to improve our implementation
in the following points. We intend to explore features of
newer versions of the OpenFlow protocol, like the fast-failover
mechanism, and using push/pop tags and IPv6 headers to
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validate SlickFlow at scale. We will also devote efforts to
consider the hypervisor vSwitch as the first networking hop
where initial flow matching and header rewriting takes place.
Moreover, taking into account that the failures in data centers
occur more frequently in the ToR-to-Aggregation links [10], in
future revisions of our design we intend to extend the encoding
to increase the level of redundancy by allowing more than one
alternative path over these critical links.
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