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Abstract

Traditional layer 2 and layer 3 network designs face
some limitations on data center networks such as lack of
scalability, difficult management and inflexible communi-
cation. We observe that data center networks are often
managed as a single logical network fabric with a well-
controlled baseline topology and growth model. This pa-
per describes a data center networking approach based on
encoded paths carried in the packet header. We present an
OpenFlow-based testbed implementation of a data center
architecture governed by a logically centralized Network
Manager, which is responsible to transparently provide the
networking and support functions to operate the data center
network. We evaluate the proposal in terms of fail recovery
time, state requirements, and load balancing capabilities.
The results of the experiments show that our proposal im-
proves the fail recovery time, while preserving scalability
requirements.

1. Introduction

Data Center Networks (DCN) are an essential com-
ponent of today’s cloud-oriented Internet infrastructure.
Proper planning of the data center infrastructure design is
critical, where performance, resiliency, and scalability un-
der certain cost constraints require careful considerations
[1]. Data centers are growing in size and importance as
many enterprises are migrating their application and data to
the cloud. To achieve the benefits of resource sharing, these
data centers must scale to very large sizes at marginal cost
increases.

Continued growth of DCN requires a reliable infrastruc-
ture because interruptions in services can have significant
consequences to enterprises [3]. An increasingly portion of
Internet traffic is based on the data communication and pro-
cessing that takes place within data center networks. How-
ever, the routing, forwarding, and management protocols
that run in today’s data centers were designed for the gen-
eral LAN setting and are proving inadequate along a num-
ber of dimensions [10, 20].

The Ethernet protocol relies on network-wide flooding to
locate end hosts and broadcast based protocols, like ARP,
resulting in large state requirements and control message
overhead that grows with the size of the network. Another
weakness of current Ethernet architectures is relying on the
Spanning Tree Protocol (STP). While STP performs well
for small networks, it introduces substantial inefficiencies
on larger networks that have more demanding requirements
for low latency, high availability, and traffic engineering.
IP routing ensures efficient and flexible use of networking
resources via shortest path routing, but it leads to a huge
configuration overhead and hampers the arbitrary allocation
of Virtual Machines (VMs) to any physical server.

In order to conceive this vision, we intend to build a data
center network that meets the following objectives:

• Layer 2 semantics: Just as if the servers were on a
LAN, where any IP address can be connected to any
port of an Ethernet switch due to flat addressing, data
center management software should be able to easily
assign any server to any service.

• Multipathing: Network traffic should be capable of
using all paths between the communicating parties and
avoid link congestion. This in turn means to remove



STP which wastes precious bandwidth by blocking
many links to prevent forwarding loops.

• Scalability: To support the rising use of server, net-
work, and storage virtualization, the DCN design
should ensure the ability to scale with the growing
communication and addressing requirements.

• Fault tolerance: At large scale, failures are the norm,
so failure recovery should be rapid and efficient. Ex-
isting sessions should be capable of recovering from
failures of network nodes and the routing/forwarding
paths should converge as fast as possible.

• Automatic configuration: The astronomical size of
virtualized data centers makes manual network admin-
istration tasks a prohibitive and error-prone configu-
ration burden. To avoid service outages and provide
agility, the network architecture should be able to rely
on plug-and-play mechanisms.

Traditional fixed network approaches are simply not de-
signed to meet the current needs of a virtualized environ-
ment and are not flexible enough to support the changing
demands. Recently, a promisingly disruptive networking
technology referred to as Software Defined Network (SDN)
is emerging. SDN is an architectural proposition based on a
number of key attributes, including: separation of data and
control planes; a uniform vendor-agnostic interface to the
forwarding engine (i.e. OpenFlow [17]); a logically cen-
tralized control plane; and the ability to slice and virtualize
the underlying physical network [8].

This paper contributes with a set of Ethernet-compatible
routing and forwarding, and fault tolerance mechanism with
the goal of meeting the requirements discussed above. We
propose a scheme that employs centralized controller defin-
ing rules at the source switch to embed the path informa-
tion within the packet header in form of Encoded Path
(EP). The EP specifies a set of nodes within the data center
through which the intermediate switches should forward the
packets.

The advantage of this source routing approach is that
the forwarding task of each switch becomes trivial, as it re-
quires only local knowledge of its neighbors, rather than a
forwarding entry for every potential destination. Besides,
since the first hop switch specifies the EP, the multiple
available paths can be explored. As the paths are precom-
puted, when a fail occurs in any topology link, another link-
disjoint path can be selected quickly by only embedding a
different encoded path at the originating switch without re-
quiring network-wide convergence algorithms in the control
plane. The proposed architecture also provides support for
ARP handling, and load balancing. The experimental eval-
uation of our prototype implementation suggests that the

design space of new DCNs has been unleashed by Open-
Flow/SDN.

The rest of the paper is organized as follows. Section
2 introduces background information about DCN architec-
tures and Software Defined Networks and discusses related
works. Section 3 presents our design architecture and im-
plementation, describing the key functional blocks . Sec-
tion 4 evaluates our proposal in terms of fail recovery time,
network state requirements, and load balancing capabilities.
Finally, Section 5 concludes the paper and outlines the fu-
ture works.

2. Background and Related Works

2.1. Data Center Networks

There are a number of data forwarding alternatives in
data center networks. The high-level dichotomy is between
creating a layer 2 network or a layer 3 network, each with
associated tradeoffs. A layer 3 approach assigns IP ad-
dresses to hosts hierarchically based on their directly con-
nected switch. In the topology of Figure 1, hosts connected
to the same ToR (Top of Rack) could be assigned the same
/26 prefix and hosts in the same row may have a /22 prefix.
Using segmentation via subnetting, such careful IP assign-
ment enables relatively small forwarding tables across the
data center switching fabric.

Standard intra-domain routing protocols such as OSPF
[18] may be employed among switches to find shortest paths
among hosts. OSPF is able to detect failures and broad-
cast the information to all switches to avoid failed links or
switches. Transient loops with layer 3 forwarding is less of
an issue as the IP-layer TTL limits the per-packet resource
consumption during convergence.

The biggest problem with the IP-centric approach is its
massive configuration overhead [9]. Improperly synchro-
nized state between system components, such as a DHCP
server and a configured switch subnet identifier can lead to
unreachable hosts and difficult to diagnose errors.

For these reasons, certain data centers deploy a layer
2 network where forwarding is performed based on flat
MAC addresses. A layer 2 fabric imposes less admin-
istrative overhead, but commonly requires a loop protec-
tion mechanism such as STP. Spanning tree automatically
breaks loops, preventing broadcast packets from continu-
ously circulating and melting down the network, but it leads
to suboptimal paths and uneven link loads. Load is espe-
cially high on links near the root bridge. Thus, choosing the
right root bridge is extremely important, which imposes an
additional administrative burden. Moreover, flooding and
source-learning introduce two problems in a large broadcast
domain. The forwarding tables at a bridges can grow very



large because flat addressing increases the table size pro-
portionally to the total number of hosts in the network. And
the control overhead required to disseminate each hosts in-
formation via flooding can be very large, wasting link band-
width and processing resources [10].

A middle ground between a layer 2 and layer 3 fabric
consists of employing VLANs to allow a single logical layer
2 fabric to cross multiple switch boundaries. While feasi-
ble for smaller-scale topologies, VLANs introduces several
problems. Bridges provisioned with multiple VLANs must
maintain forwarding table entries and process broadcast
traffic for every active host in every VLAN visible to them-
selves, limiting scalability. Furthermore, they require band-
width resources to be explicitly assigned to each VLAN at
each participating switch, limiting flexibility for dynami-
cally changing communication patterns. Finally, VLANs
also use a single spanning tree to forward packets, which
prevents certain links from being used.

2.2. Fat-tree Network Designs

The fat-tree topology has many properties that are at-
tractive for large scale interconnection and system area net-
works [15, 14]. This topology is inherently highly resilient
with a large number of redundant paths between two pro-
cessing nodes, and most importantly, the bisection band-
width of the fat-tree topology scales linearly with the net-
work size. As a result, the switching capabilities of the net-
work form an integral part of its overall performance. For
the most effective use of resources, the switching network
must not present any bandwidth bottlenecks in the flow of
data between nodes [2, 25].

A three-tier arrangement built from 20 4-port switches
is shown in Fig 1, which presents a lower layer of ToR
switches, an intermediate layer of Aggregation (AGGR)
switches, and an upper layer of CORE switches. Based on
this architecture, data may be transmitted between any two
hosts, undergoing a maximum of five switch hops.

Figure 1. Fat-tree Topology

2.3. Software Defined Networking

While many new data center innovations are limited,
there is a promising alternative under the umbrella term
of Software-Defined Networking (SDN) [21]. The control
plane in SDN is commonly called the network operating
system and is separated from the forwarding plane. Typ-
ically, the network OS (e.g NOX [8]) observes and con-
trols the entire network state from a central vantage point,
hosting features such as routing protocols, access control,
resource virtualization, energy management, and new pro-
totype features.

An uniform vendor-agnostic interface named OpenFlow,
has been the trigger that enables SDN designs by providing
a standardized protocol between the network OS and the
forwarding elements. OpenFlow allows to fully control the
forwarding state in either a proactive or reactive way. In
the latter, when an OpenFlow switch receives a packet for
which it has no matching flow entry, it sends the packet to
the controller, which in turn decides on how to handle the
packet. The decision is sent to the switch, which can be
instructed to cache the decision for some period of time by
adding a flow entry to handle upcoming packets at line rate.

The centralized view of SDNs simplify the conception of
control applications. For example, to implement shortest-
path routing, the controller can calculate the forwarding
rules for each switch by running Dijkstras algorithm on the
graph of the network topology rather than running a more
complicated distributed protocol. To enforce a fine-grained
access control policy, the controller can involve an external
authentication server and install a custom forwarding path
for each user. To balance the load between back-end servers
in a data center, the controller can migrate ows in response
to server load and network congestion.

2.4. Related Works

Our attention in this section is devoted to research works
specifically targeting scalable layer 2 networks for data cen-
ter architectures.

VL2 [7] provides the illusion of a large L2 network on
top of an IP network, using a logically centralized directory
service. VM hosts add a shim layer to the networking stack
called the VL2 agent which encapsulates packets into a IP-
in-IP tunnel.

PortLand [20] proposes a scalable routing and forward-
ing protocol for data centers with three-tiered hierarchical
topologies. The main idea behind PortLand is the loca-
tor/identifier split, where nodes are identified by their ac-
tual MAC (AMAC) address, and located by a pseudo MAC
(PMAC) address, which encodes hierarchical location in-
formation in its structure. PortLand employs a centralized
fabric manager to resolve ARP queries, and to simplify mul-



ticast and fault tolerance. When a link failure occurs in Port-
Land, fabric manager informs all affected switches of the
failure, which then individually recalculate their forward-
ing tables based on the new version of the topology.

SiBF [22] represents a source route compactly into an
in-packet Bloom Filter. The bloom filter bits are carried by
the MAC fields and the MAC rewriting occurs at the source
and destination ToR switches.

Unlike VL2, our proposal avoids end point modifications
and shim-header overheads. This works also differs from
Portlad by employing precomputed paths which leads to de-
crease the failure recovery overhead. Compared to SiBF,
our approach does not use bloom filter avoiding false posi-
tives, which causes a packet to have more than one next-hop
candidate.

3. Design and Implementation

The goal of this work is to provide a scalable, fault-
tolerant layer 2 routing and forwarding approach to fat-tree
data center networks. The proposed architecture is based
on separating route computation (on the deployed topol-
ogy) from failure handling (when link status changes) [4].
Thus, the core idea is to let routing compute every potential
path based solely on the deployed topology. That is, routing
should ignore all status changes and only recompute paths
when the topology changes. Since these topology changes
are rare and often known in advance [4], the computation of
routes can be done in a centralized fashion. This flexibility,
in both the length and location of the computation, allows
a wide variety of paths computation according to various
criteria.

The novelty in our approach is to explore the structure
of fat-tree topologies, enabling fast forwarding and fault-
tolerant routing by allowing the source switch to embed the
path information within the packet header in form of the
Encoded Path (EP). The EP specifies a set of nodes within
the data center through which the intermediate switches
should forward the packets. In case of a failure event (link
or switch), the recovery mechanism consists on modifying
the Encoded Path embedded in the packets allowing them
to use other available network paths. All the canditate paths
are previously computed.

The proposed architecture employs a logically central-
ized Network Manager (NM) that makes all decisions on
the data center network. The NM has been implemented as
an application on top of the NOX controller. Basically, the
NM receives a map of the network (see topology discovery
details in Sec. 3.1) to i) calculate all routes between each
pair of hosts, and ii) install the forwarding state of switch
the intermediate switches solely based on the neighbouring
switch information.

Figure 2. Overview of the design.

Figure 2 shows an example to illustrate the proposed de-
sign. Suppose the source s wishes to send a packet to a
destination d. The packet misses a rule in the flow table of
source ToR S7 and is forwarded to the NM (Step I). The
NM selects the path S7-S4-S2-S6-S10 and installs one rule
(OpenFlow entry) at the source and destination ToRs (Step
II). The rule at source ToR S7 instructs the switch to (i)
embed the selected path into an encoded version (EP) writ-
ten in the packet header fields (Step III), and (ii) forward
the packet via the outport to S4. At S4, S2 and S6, all the
forwarding decisions are based on the contents of the EP
carried in the packet header (Step IV). Finally, the rule in
the destination ToR S10 removes the EP and delivers the
packet to the destination d (Step V). Note that the EP does
not specify the entire path (end-to-end), but only the neces-
sary fabric nodes to get the packet forwarded between the
ToRs.

In the following, we describe the details of the underly-
ing assumptions and mechanisms.

3.1. Topology Discovery and Route Com-
putation

In order to construct source routes, two pre-requisites are
required: (1) topology information, and (2) server location.
At bootstrap time, the Network Manager needs to know the
network topology and correctly infer the tree topology and
the role of each switch (i.e., ToR, AGGR, CORE) without
manual intervention.

To discover the topology of the network we use the Dis-
covery application available in NOX. Discovery is a LLDP
application for topology inference. It sends LLDP packets
out of every switch interface and then uses received LLDP
packets on the neighbouring switch to infer working switch-
to-switch links (e.g. switch A port 1 connected with switch



B port 4). This information is enough to run a simple al-
gorithm that infers the level of each switch in the topology.
The server location information is gathered from the NOX
Authenticator module that keeps record of all authenticated
hosts and users in the network.

The route computation module can be configured to cal-
culate all routes between all pairs of hosts, or a predeter-
mined number k of paths. This parameter can be defined by
the network administrator based on the network size. For
better performance, routes can be selected based on the dis-
joint criteria [16].

3.2. Encoding the Path

After choosing a path between two communicating enti-
ties, the controller must install a rule in the source ToR that
encodes the selected path into a sequence of packet header
bits. The concept itself is agnostic to the particular location
in the packet header used to carry the bits. It may reside
in a shim header between the IP and MAC layers, in an
IP option, or in a novel header format in a next-generation
Internet protocol. Our key goal in designing the encoding
format is to ensure simple data plane forwarding that can be
deployed over existing hardware (e.g., commercial Open-
Flow switches).

In the proposed approach, the EP is represented as a se-
quence of segments, one for each switch that forwards pack-
ets based on the EP. For instance, in Figure 2 a path between
s and d consists of 5 hops, but only the 3 intermediate hops
perform actual forwarding operations based on the EP. The
source and destination ToRs send packets to a port based on
the rule installed by the Network Manager, so, in this case
the EP consists of 3 segments. The segment corresponding
to a switch Si encodes the node’s next hop.

Figure 3. Encoding format layout.

We chose to encode the path into the 96 bits of the
Ethernet MAC fields (Figure 3), with the segments having
the size of 96/k bits, where k is the number intermediate
switches on the longest path. 1

Therefore, in a 3 tier fat-tree topology, each segment re-
ceives a 32 bit space. Since OpenFlow switches are identi-
fied by a 64-bit value called Datapath ID (dpid), the NM has

1If the segments can not be divided equally (e.g., in a fat-tree of 4 lev-
els requiring 5 segments), there is no problem if one of the segments has
different size.

to map the dpid to a number of bits that can fit within the
segments. These mappings only need to be locally unique
to each switch and its neighbours and hence 32 bits or less
is more than sufficient.

3.3. Forwarding based on Encoded Paths

We discuss next how routers use the EP information to
forward packets. The key idea is to split the 96 bits of the
MAC Ethernet fields in blocks, each block to be used by a
switch along the path to forward the packet. Thus, the core
and aggregation switches need to match against a block of
bits (i.e. partially wildcarded) in the Ethernet fields. Un-
fortunately, the OpenFlow 1.0 switches used in our testbed
implementation do not support arbitrary wildcard masks for
the L2 fields. However, with a simple workaround we were
able to emulate the same EP-based forwarding using plain
1.0 OpenFlow features.

In the 3-tier fat-tree topology under consideration, an EP
requires 3 blocks that can be carried in 3 independent Eth-
ernet field, namely, MACSRC , MACDST , and V LAN .
The MACSRC field plays the role of the first EP block, the
MACDST field serves as the intermediate EP block, and,
finally, the V LAN field acts as the last EP block. So, the
switches can match against the full Ethernet fields without
requiring bitmask support in the Ethernet MAC fields.2

3.4. Forwarding Mechanism

We now describe the forwarding mechanism at interme-
diate switches. The input to this operation is the header de-
scribed in §3.2, and the output is the interface out to which
the packet is forwarded.

In EP forwarding, the IP address is used only to identify
the hosts (or VMs) within the data center. This way, unlike
the traditional hierarchical assignment of IP addresses, there
are no restrictions on how addresses are allocated. This op-
tion makes the IP address not significant for routing pack-
ets inside the data center forwarding fabric. In essence,
we separate host location from host identifier in a manner
that is transparent to end hosts and compatible with existing
commodity switch hardware. Moreover, this approach does
not introduce additional protocol headers such as MAC-in-
MAC or IP-in-IP.

The forwarding mechanism in the ToRs is different from
the intermediate switches. When a packet arrives at the ToR
and lacks of a matching entry, the packet is sent to the NM
which will install the necessary rules to deliver the packet
to the destination. In the source ToR, the rule matches the
destination MAC address and instructs the ToR to rewrite

2Note that OpenFlow protocol version 1.1 [5] onwards supports arbi-
trary bitmasks on the Ethernet fields, so the EP can be implemented as
described in section 3.2.



the MAC field for the EP and forward the packet to the next
hop. In the destination ToR, the rule matches the host identi-
fier (IP address), the EP is removed by restoring the correct
Ethernet fields, and the packet is delivered to the destina-
tion host. To improve the end-to-end communication set-
up time, the NM simultaneously installs the rules needed at
both ToRs, so that the reply can flow directly through the
datapath without involving the NM.

Forwarding in the intermediate switches is based on the
fixed rules installed by the NM during booting up. These
rules, based on the EP, indicate the next hop to which the
packet should be sent. Instead of traditional exact match-
ing of MAC fields, these rules match an EP segment, i.e.
a wildcarded subset of the MAC bits. Figure 4 shows an
example of a switch’s forwarding table when connected to
four neighbors. The switch makes the forwarding decision
based on the 32-bit segment (bits 32-63).

Figure 4. Flow table of a intermediate switch.

Which segment to be used for matching depends on the
position of the switch in the packet’s path. In general terms,
the first intermediate switch forwards the packet based on
the first segment, and so forth. However, when a packet
goes from a upper layer to a lower layer the packet may di-
vert from its path because of “double matches”, as shown in
Fig. 5. In order to prevent double matches, before a switch
sends the packet via the output port the matched segment
field is erased by an additional action that rewrites the field
with all zeros.

3.5. Fault-Tolerant Routing

Given the baseline topology and the ability to forward
based on EPs, we are now concerned with fault tolerance. In
this work, we focus is on the network failure recovery after
the failure is detected, independently of the failure detection
method to be used. Candidate approaches for failure de-
tection include path-level mechanisms [6, 23] or controller-
based approaches the LLDP-based topology discovery. Dif-

Figure 5. EP-based forwarding

ferent detection mechanisms will yield different link recov-
ery times. For the purposes of this evaluation, we assume
a port − down event received by the controller which will
react with a fault restoration mechanism as described below.

The fail recovery process can be described using the ex-
ample illustrated in Fig. 6. The switch detects a link fail-
ure (Step I) and informs the NM Manager about the failure
(Step II). The NM updates the connectivity matrix that it
maintains for the entire topology (Step III) and identifies the
installed flows that pass through the affected link. The NM
then chooses new available routes for the affected flows and
sends flow −mod messages (Step IV) to the corresponding
ToR to modify the EP to route via the alternative routes.

Traditional routing protocols, like OSPF, require all-to-
all communication among n switches with O(n2) network
messages and associated processing overhead. Our pro-
posal requires one message from the switch that detects the
fault to the controller, and one message to each ToR that
forwards packets to the discontinued routes, resulting in a
O(n) communication.

Alternatively, the NM could install two rules with differ-
ent priorities at a ToR switch, each one specifying a link-
disjoint EP. If the high priority path is interrupted, the NM
(or the switch itself) can simply remove (or decrease the
priority of) this entry and the current flow packets will start
matching with the backup EP entry. Exploiting features
introduced in the new versions of OpenFlow such as fast
failover groups, the switch itself could change the forward-
ing behavior to the backup EPs without requiring a round
trip to the controller, which would be later informed about
the link down events and the local recovery state changes.

Failures on the controller or on the connection between
switches and controller may occur. This kind of problem



has been addressed considering a logically centralized, but
physically distributed controller [11, 24]. The control plane
resilience is beyond the scope of this work and will be ad-
dressed in future prototype implementations.

3.6. Address Resolution Protocol - ARP

ARP resolution is performed in a centralized fashion
without the need of broadcast messages. ARP requests are
also used to associate each hosts IP address with its attach-
ment point to the ToR switch.

Ethernet by default broadcasts ARPs to all hosts in the
same layer 2 domain. We leverage the Network Manager
to reduce broadcast overhead, as depicted in Fig. 7. In step
I, a ToR switch receives an ARP request for a destination
IP and forwards the request to the NM. In step II the NM
consults its MAC table to see if an entry is available for the
target IP address. If so, it creates an ARP reply in step III
and returns it to the original host.

End hosts receive the destination ToR switch MAC ad-
dress in response to an ARP request. In the source ToR,
the installed rule can match either just the destination ToR
MAC address, or any combination of fields up to the full
10-tuple. The design choice offers a trade-off between zero
delay for upcoming flows towards the same destination ToR
(as there will be already a matching entry for MACDST )
and the load-balancing granularity and effectiveness (as the
subsequent flows will follow the same EP). How optimize
this trade-off depending on the application needs (e.g., short
low latency flows vs. longer BW intense flows) is subject
of future work. the destination host, the Network Manager
will install the missing rules.

3.7. Load Balancing

Designing data center networks using rich multipath
topologies such as fat-trees solves the high-bandwidth re-
quirement. However, these networks require load balancing
mechanisms to best utilize the multiple end-to-end paths to
provide high bisectional bandwidth. Load balancing can
be performed in a stateless fashion with no overhead using
oblivious routing [25], where the path between the commu-
nicating nodes s and d is randomly selected from a prob-
ability distribution over all s to d paths. We follow this
approach and let the NM select, at random, one among the
precomputed paths.

At runtime, the NM may decide to employ additional
flow table entries to override the initial forwarding behav-
ior of individual flows. For example, knowing that certain

Figure 7. Address Resolution Protocol

hosts, or certain TCP ports are used to exchange large vol-
umes of data, such as large backups or big data processing,
specific rules for these flows could be installed, avoiding the
default path, potentially using additional knowledge about
the application requirements and the network state.

4. Evaluation

In this section, we evaluate the EP approach in terms of
failure recovery time, load balance capabilities, and state re-
quirements. Our testbed platform is based on Mininet [13],
a platform for rapidly prototyping with OpenFlow topolo-
gies and controller applications. The topology used in
the tests is the same as shown in Fig. 1, a multi-rooted
fat-tree with 4 core switches, 8 aggregation switches, 8
Tor Switches and two hosts connected to each ToR. The
switches inside Mininet connect to an OpenFlow controller
in the same machine. The OpenFlow protocol version used
in our implementation is 1.0.

4.1. Failure Recovery Time

We evaluate the failure recovery mechanism for both
UDP and TCP flows. The goal is to measure the time to
reestablish the flows after a failure is detected. Note that
the failure detection time is not considered in these experi-
ments.

UDP traffic is started between two hosts, such hosts are
chosen so that the distance between them was 5 hops, and is
introduced a varying number of random link failures. In the
case where at least one of the failures falls on the selected



Figure 6. Fail Recovery

path between sender and receiver, we measured the time
required to reestablish communication.

 0

 10

 20

 30

 40

 50

 0  2  4  6  8  10

R
e
co

v
e
ry

 t
im

e
(m

s)

Number os random failures

Figure 8. UDP Recovery Time

Figure 8 shows the average recovery time as a function
of the number of randomly failures, after running 10 exper-
iments. Recovery time was about 23 ms for a single failure
and increases slowly with the number of failures. In fact, the
controller may need to repeat the procedure of changing the
Encoded Path at ToRs which explains this small variation
as the number of failures increases. It is worth to mention
that this result has been obtained using the same topology
and methodology as PortLand. Although the metric used in
PortLand was the time to detect and recovery from failures,
it had an average time of 60 ms.

Recovery time was presented without considering the
time of the failure detection, while Portland considers this
time, because we wanted to isolate the contribution of the

failure detection mechanism, either on a controller-based or
dataplane-based (e.g. BFD, Ethernet OAM, OSPF Hello).
Further on the PortLand comparison, it uses the proposed
location discovery protocol(LDP) for failure detection but
the paper does not specify the frequency of LDP packets,
which would be required to try a fair and accurate compari-
son.

The same experiment was repeated for TCP communi-
cation. We monitored network activity at the sender while
injecting a link failure along the path between sender and re-
ceiver. As illustrated in Figure 9, the recovery time for TCP
flows takes longer than the baseline for UDP. This discrep-
ancy results is because TCP loses an entire window worth
of data. The TCP retransmission timeout is approximately
200 ms in our system. By the time the first retransmission
takes place, connectivity has already been reestablished in
the network.
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4.2. Load Balance capabilities

Now, we investigate the load balancing capabilities of
the oblivious routing with EP forwarding in our testbed en-
vironment. Given an all to all communication, the goal is to
evaluate how well the traffic is spread among the available
links. We compare the link utilization of our implementa-
tion with a standard Spanning Tree (SPT) implementation
over the same topology. We used textitiperf to generate the
tcp flows.

Figure 10 shows the normalized link utilization after 10
(ten) experiment runs. As expected, SPT over-utilizes some
links (40%), while most of links (approximately 60%) are
not utilized. On the other hand, the oblivious routing ap-
proach spreads traffic more uniformly through the network,
varying around 25% from the ideal value , i.e., 1, as it can
be seen in the figure.

4.3. State Analysis

Finally, we compare the state requirements among Port-
Land [20], VL2 [7], SiBF [22] and EP. The network topol-
ogy is a three-tier network topology, with ToRs connected
to 20 servers and 2 AGGRs. The AGGR switch ports (p1)
are used to connect to p1/2 ToRs and p1/2 COREs with p2
links. Depending on the exact values of p1 and p2 , the
interconnection matrix can be scaled from e.g., 3,000 (p1
= 24) to 100,000 (p1 = 144) physical nodes. Due to the
strict source routing approach, flow table requirements are
minimal and constant in the COREs and AGGRs switches,
i.e., only one entry per interface as shown in Table 1 for
PortLand, SiBF and EP. On the other hand, VL2 requires a
number of forwarding entries proportional to the number of
switches in order to route packets along the two-levels of IP
encapsulation.
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Figure 10. Load balance

For EP, further scaling the network does not affect the
number of entries flow in the switches that is constant and
equal to the number of neighboring switches. At ToRs, the
amount of flow entries grows with the number of simulta-
neous outbound flows (assumed 5 per VM) plus a constant
amount of entries (1 per VM) in order to perform the MAC
re-writing and correct delivery of inbound packets.

5. Conclusion and Future Work

In this paper, we have presented an early implementation
of an OpenFlow-based source routing mechanism to attain
scalability and fault-tolerant routing solution for data center
networks. The proposal works by encoding in the switching
edges the end-to-end path into data packet headers to for-
ward the flows throughout the fabric. Our implementation
on a virtualized testbed shows that the approach can achieve
efficient failure recovery, good multi-path utilization while
using minimal flow table state in the switches.

Future work will extend our current implementation in a
number of ways. We will consider the hypervisor vSwitch
as the first networking hop where initial flow matching and
header re-writing takes place. We will investigate support
to VM migration and multicast services. We also plan to
add extensions to an OpenFlow 1.2 software switch to pro-
vide local failure recovery capabilities and exploit the group
table fast failover functionalities. One idea along this av-
enue is to let the packets carry alternative paths in the packet
header, as proposed in [19]. This way, switches can react
to failures without depending on the NM. In addition, upon
failure events, packets sent out via the alternative paths may
carry enough information about the failed links encountered
between source and destination so that convergence can take
place much faster across the data plane, an idea suggested
in [12] for inter-domain routing.
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