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Abstract—In recent years, advances in virtual reality (VR)
technologies (e.g., high-quality VR headsets) have enabled a
new perspective of experiences for users (e.g., gaming, online
events). However, ensuring the user experience is still a challenge.
Existing solutions are limited to measuring and estimating QoE
at the user plane (e.g., VR player) or at the control plane,
imposing unfeasible latency for different scenarios (5G networks
and beyond). In this work, we propose QoEyes, an in-network
QoE estimation based on the use of Inter-Packet-Gap (IPG) in
programmable devices. Our results show that the IPG measured
on the data plane is strongly linked to QoE, yielding an accurate
data plane QoE estimate.

I. INTRODUCTION

Virtual Reality (VR) video streaming applications are al-
ready a reality. VR head-mounted displays are expected to
grow to nearly 34 million by the end of 2023, while the associ-
ated network traffic is expected to increase at least 12-fold [1].
It poses a significant challenge to network operators as VR
video streaming applications will demand stringent network
performance to achieve a reasonable Quality of Experience
(QoE). Recent studies [2] indicate that VR video applications
require network delay lower than 9ms, while the bandwidth
requirements can surpass 500 Mbps.

To reduce bandwidth requirements, VR video streaming
players rely on spherical-to-plane projection such as the tile-
based scheme [3]. In this approach, VR videos are encoded
at different resolutions (e.g., 720p, 1080p, 4K) and then
split into spatial (a.k.a tiles) and temporal segments. During
the streaming, the VR player only requests segments and
tiles corresponding to the visible area of the full 360-degree
panoramic view (a.k.a. viewport). Additionally, the VR player
relies on other strategies such as Adaptive Bitrate and Buffer
Management heuristics, which allows requesting segments that
are estimated to belong to the viewport in higher quality, while
the other tiles are requested at lower resolutions.
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Recent studies in this domain have focused on measuring
and estimating the QoE of VR video streaming. However,
they are typically done at the user plane (e.g., directly at the
VR player) or the control plane. For instance, [2] propose a
user plane two-stage ML-assisted approach that infers how the
users perceive the streamed VR video performance. Despite a
few initiatives, little has been done to directly infer the QoE in
the data plane. It would bring the benefit of analyzing each VR
video session QoE and reacting to different network conditions
in near real-time.

In this paper, we introduce QoEyes, an in-network QoE es-
timation. QoEyes relies on the use of Inter-Packet-Gap (IPG)
in a programmable network device. The IPG refers to the ar-
rival time difference between two consecutive network packets
of the same network flow. By measuring the IPG per each VR
video session, the network can infer QoE directly on the data
plane and thus make decisions in order to improve it. Figure
1 illustrates an overview of QoEyes, which performs QoE
estimation on programmable network devices (by analyzing
the IPG of video sessions) and relays this information to the
control plane as required. We implemented QoEyes in P4
using Barefoot Tofino hardware and evaluated using publicly
available VR video traces. Results show that QoEyes can
strongly correlate calculated IPG with the achieved Mean
Opinion Score (MOS). The main contributions of this paper
can be summarized as follows:

• the design of an in-network VR video streaming QoE
estimation directly in the data plane;

• a prototype implementation using Barefoot Tofino hard-
ware;

• open-source software artifact for reproducibility1;

The remainder of this paper is organized as follows. Section
2 discusses the background and related work in VR video
streaming. Section 3 introduces the QoEyes design in pro-
grammable data planes. In Section 4, we present and discuss
the results of an evaluation of the proposed approach. Last,
in Section 6, we conclude the paper with final remarks and
perspectives for future work.

1https://github.com/intrig-unicamp/QoEyes
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Fig. 1. Illustrating an use case of QoEyes in a P4-based network.
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Fig. 2. Three zones 8×5 tiling scheme.

II. BACKGROUND & RELATED WORK

A. QoE and VR Video Streaming

QoE measurement is subdivided into subjective and objec-
tive approaches. The first measures the video quality perceived
by the Human Visual System (HVS) and is more accurate than
the objective assessment methods [4]. However, these methods
are manually set (i.e., offline) based on user observation
and feedback through their behavior (e.g., presence, motion
sickness, perceptual quality). On the other hand, objective
metrics are based on quantifiable data that can be measured
or calculated (e.g., bandwidth and latency). To better capture
the user’s experience, it is often best to use subjective and ob-
jective metrics. For example, we can collect objective metrics
from inferring user experience by mapping objective metrics
to the subjective experience. This mapping can be established
through user studies or statistical models developed based on
user studies’ data.

A real scenario where QoE methods can be applied is VR
video streaming. VR video streaming refers to delivering 360-
degree video content that users can interact with and explore as
if they were in the environment. Unlike traditional 2D video, it
provides a fully immersive experience that allows users to look
around and explore the virtual world from different perspec-
tives. However, VR video streaming faces several technical
challenges, such as high bandwidth requirements, low image
quality, and limited interactivity. These difficulties stem from
the need to project/decompose the video into tiles for the
user. Figure 2 summarizes an 8x5 tiling scheme. In summary,
we break down the VR video into smaller tiles or fragments,
encoding each tile separately, and then, the tiles are transmitted
over the network. The goal of the tiling is to provide the viewer

with the ability to view a high-resolution VR video without
having to download the entire video beforehand. To that end,
the tiling scheme also allows for the use of adaptive bitrate
(ABR) algorithms, which adjust the bitrate of each tile based
on the network conditions to ensure smooth playback. For
example, Zone z1 is defined as containing only the viewport’s
central tile, Zone z2 encompasses the viewport border tiles (8
tiles), and Zone z3 has the 31 remaining tiles. To overcome
these challenges, developers are improving VR video compres-
sion algorithms, hardware, and software solutions. To reduce
the high bandwidth demands, the user viewport is limited to
the portion of the virtual environment that the user can see at
a given time and is defined by the field of view (FOV) of the
VR headset or device, which determines the size and shape
of the virtual environment that is visible to the user. With that
in mind, a key aspect in the future of VR is selecting a set
of objective metrics (e.g., Quality of Service (QoS) metrics).
However, little has been done [5], [6] towards effective metrics
to guarantee a better QoE in real-time.

B. Inter-Packet Gap (IPG)

The IPG is a promising network metric that has proven re-
cently to be efficient in solving several network problems such
as microbursts [7] and heavy hitters detection [8]. Tradition-
ally, the IPG refers to the arrival time difference between two
consecutive network packets. and can be calculated according
to the Equation 1, where TSl and TSp are the arrival time of
the last and penultimate packet, respectively.

IPG = TSl − TSp (1)

Despite being a simple metric to be calculated when com-
bined with other mathematical methods such as Cumulative
Sum (CUSUM), Exponentially Weighted Moving Average
(EWMA), and Double Exponentially Weighted Moving Aver-
age (DEMA), the IPG has already proven to be a powerful
metric for QoE inference [9]. In this work, we argue that
by calculating the IPG using an EWMA in a programmable
network device, we can get a QoE estimation directly on the
data plane and thus make decisions in real-time, improving the
user’s QoE. More details are discussed in the next chapter.
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C. Related Work

VR-EXP [3] is a platform that enables a set of adaptive
tile-based schemes for various network conditions. PREDIC-
TIVE [2] is a two-stage ML-assisted approach that infers how
the user perceives the resulting VR video playout performance.
In summary, a set of predictors have the network QoS (i.e.,
delay, packet loss, and TCP throughput) and the tiling scheme
as input. In contrast, Vidhya et al. [10] introduced a fuzzy
logic mechanism within the Network Data and Application
Function (NWDAF) entity in 5G to perform QoE evalua-
tion. Similarly, Schwarzmann et al. [11] leverages NWDAF
standardized interface capabilities in 5G networks to estimate
the accuracy of different state-of-the-art regression techniques.
Chen et al. [12] propose an SSIM-based approach for 360-
degree video quality assessment. The algorithm explores a
correlation between 2D and spherical projection. Also, it is
verified on a subjective 360-degree video quality assessment
database. On the other hand, FastInter360 [13] exploits a
set of texture features to reduce the encoding time of 360-
degree videos with equirectangular projection (ERP) while
Upenik et al. [14] extends Yu et al. [5] and benchmarks PSNR-
based approaches against ground-truth subjective quality data.

Iurian et al. [15] analyzed the impact of priority queues
in a video streaming scenario. However, the work is pre-
liminary and does not provide QoE inference. Conversely,
Bhat et al. [16] leverage Q-in-Q tunneling and translates the
application- into link-layer header information at the edge to
infer objective QoE metrics and the model QoE value score
of VR streaming sessions.

Despite existing research efforts to achieve QoE directly in
the data plane, to the best of our knowledge, QoEye is the first
approach toward designing an in-network VR video streaming
QoE estimation directly in the data plane.

III. INFERRING QOE IN THE DATA PLANE

Typically, the QoE is estimated by utilizing methods of
measurement or prediction in either the user plane or the
control plane side. These methods are known for their accuracy
in estimating the user’s QoE and generally involve measuring
various QoS metrics and utilizing machine learning or deep
learning algorithms. Despite providing accurate results, these
techniques may not always be as quick in their measurement
due to the extent and complexity of the network metrics that
need to be measured and the efficiency of the machine learning
or deep learning algorithms employed. As a result, it becomes
difficult to promptly implement network policies to address
potential problems or degradation of quality.

To address this limitation, in this work, we propose a first
step to the QoE estimation entirely in the data plane. The
data plane QoE assessment allows making decisions at a
nanosecond level, enhancing the reaction time to problems and
thereby improving the user QoE. For instance, if QoE loss is
detected, strategies like [15] can be user for flow prioritization
and QoE improvement.

The principal challenges of performing QoE inference
on the data plane are: (i) hardware resource and operation

Control IngressPipeline():
RegisterAction ComputeIPG(IPGc):

IPGw = α * IPGw + (1 - a) * IPGc

return IPGw
Register<bit<16>> IPGw

Register<bit<32>> TSl

Apply:
IPGc = TSc - TSl

IPGw = ComputeIPG(IPGc)
PacketClone()

Control EgressPipeline():
if Cloned Packet then

InsertIPGHeader()
end
Algorithm 1: QoEyes data plane algorithm

constraints; and (ii) limited information about data flow. In
the P4 programmable hardware targets, such as the Tofino
Native Architecture (TNA), we have limited storage capacity,
memory access restrictions, and limitations with arithmetic and
comparison operations. For example, the register can only be
accessed once during the lifespan of a packet, comparisons are
restricted to a set number of bits, and arithmetic operations
such as division and multiplication can only be performed
using bit shifting. Additionally, the data plane has limited
knowledge about the data flow. It does not possess information
about the application level, including aspects such as video
resolution, buffer size, and segment size.

Therefore, we introduce QoEyes, a QoE estimation tech-
nique that uses IPG calculation to carry out the QoE estimation
entirely in the data plane. Recent academic studies have
already utilized IPG as the primary metric for inferring QoE,
demonstrating a direct correlation between IPG and QoE [9].
We argue that we can get a QoE estimation directly in the
data plane by calculating the IPG as an EWMA.

Consider the set of network flows F containing all streams
(or VR video sessions) from the network. Then, for each
packet p ∈ F , we calculate the IPGw (Inter Packet Gap
weighted) using the EWMA described in Equation 2. In
the equation, IPGc represents the IPG measured with the
Equation 1, IPGw−1 the last calculated IPGw, and α is an
input parameter to control the IPGw variation.

IPGw = α · IPGw−1 + (1− α) · IPGc (2)

The Algorithm 1 illustrates how we implemented the
QoEyes strategy to perform the IPGw measurement in the
Tofino architecture. We perform all the calculations in the
ingress pipeline, using registers to store the IPGw and the last
noted timestamp (TSl). In addition, we use register actions to
perform the approximate EWMA calculation, which is done
through bit operations. Also, we performed a clone of the
packet in the ingress pipeline and inserted the IPG header into
the cloned packet. This IPG header has the measured IPGw
and the corresponding flow ID and is reported to the control
plane. In practical applications, these reports can be conducted
at regular intervals or only when necessary to monitor the
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Fig. 3. Experimental environment.

IPGw. Additionally, the reporting can be triggered only when
a drift in the IPGw is detected, which signifies a QoE decline.

IV. EXPERIMENTAL EVALUATION

A. Setup

Testbed. We evaluate the performance of QoEyes using a
Barefoot Tofino Switch (Edgecore Wedge 100BF-32X) and
four servers (Intel Xeon E5-2620v2, dual-port 10G Intel X540-
AT2 NIC, and 64GB of memory running Ubuntu 20.04)
connected via 10G SFP+ interfaces. Figure 3 illustrates the
setup of our testbed. For the experiments, one server runs
the VR-EXP player [3] to request 360-degree video content,
while another is equipped with an Apache server that hosts the
VR video content. The traffic between these two servers (i.e.,
VR clients and server) is forwarded through a programmable
Tofino switch, which calculates and monitors the IPG for each
VR session. The switch also reports computed IPGs to the
monitoring server, which analyses the results. Finally, we have
a traffic generator server to generate multiple video sessions
in parallel, as background traffic.
Implementation. QoEyes algorithm is implemented using P4
language for the Tofino Native Architecture (TNA). In the
code, to calculate and store the IPGw, we use registers and
actions with 16-bit of IPGw

f and 32-bit of TSl
f for each

flow entry (VR video sessions). We assume a capacity for 2k
register entries and use the value of α = 0.96 (approximately)
for the EWMA calculation. The resource utilization of our
algorithm on Tofino can be seen in Table 1. In the table,
we show the resource utilization of the switch.p4 (baseline
of p4 code for switching) and the cost of the extra logic
QoEyes imposes on the switch.p4 (i.e., the cost of QoEyes
+ switch.p4). Observe that QoEyes adds not much to the
switch’s overall physical resource utilization, with a maximum
increase of 4.2% in VLIW actions.
Dataset. For the experiments, we rely on the same traces
used by Filho et al. [3]. The publicly available traces com-
prise two 360-degree videos: Google Spotlight and Freestyle
Skiing [17]. Each VR video is encoded with 720p, 1080p, and
4K qualities. VR video sessions are initiated using a random
user file (also from [3]), which contains a series of movements
(described in axis x, y, z) of user interactions with the VR.

TABLE I
HARDWARE RESOURCE UTILIZATION

Resource Switch.p4 QoEyes
Hash Bits 32.3% 34.2%
SRAM 29.8% 30.6%
TCAM 28.4% 28.4%
VLIW Actions 34.6% 38.8%
Stateful ALUs 15.6% 15.6%

TABLE II
NUMBER OF TILES RECEIVED WITH 100 SESSIONS IN PARALLEL

10Gb 1Gb 100Mb
z1 z2 z3 z1 z2 z3 z1 z2 z3

720p 1 12 1375 1 12 1375 1 12 1375
4K 59 468 5 59 468 5 59 468 5

B. Results

First, we evaluate the relationship between the IPGw mea-
sured in the data plane by QoEyes and the QoE measured
by the user side. For the QoE user side model, we use as a
baseline the QoE model provided by Filho et al. [3], which
utilizes the output provided by the VR-EXP player to calculate
the MOS. In our case, we consider for the calculation of the
ideal MOS (MOS = 5), the case where we have only one active
video session and with the maximum available link capacity. In
all our experiments, we varied the physical port capacity (with
Tofino port shaping) of 10Gbps, 1Gbps, and 100Mbps. Also,
we varied the number of active VR video sessions running on
the network from 100 to 2000. These parameters were applied
in our testbed to have different network conditions.

Figure 4 illustrates the IPGw and QoE measured in the
experiment by QoEyes. As observed in Figure 4(a), the
QoE appears to decline with an increase in the number
of concurrent active sessions or a decrease in transmission
capacity. In Figure 4(b), the IPG shows a similar behavior
(but increasing) when the number of active sessions increases
or the transmission capacity decreases. The only exception
can be seen when there are 100 sessions, where the IPG
remains constant, but the QoE varies. It occurs because with
a small number of sessions, the traffic can be forwarded in
the minimum IPG time (less than 1 ms), and there is only
a gap between the establishment and closing of new TCP
connections. However, the QoE model employed calculates
the QoE based on the bitrate and thus produces better results
with higher transmission capacity, even if all tiles arrive with
the same quality (see Table II).

In Figure 5, we can see the IPGw behavior over 2000 reports
for a flow with a measured QoE MOS greater than 4.5 (blue
color) and another flow with a QoE MOS less than 2.5 (red
color). Note that most of the time, the flow with QoE below 2.5
has a higher IPG than the flow with good QoE. Furthermore,
the IPGw of the stream with lower QoE has higher peaks
and a longer recovery time (time to return to a low IPG). In
both experiments (Figures 4 and 5), we can observe a strong
correlation between the IPGw measured in the data plane, and
the QoE MOS measured on the user side.
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V. FINAL REMARKS

In this work, we present QoEyes, a full data plane QoE
estimation method for 360-degree (VR) videos. QoEyes is
based on the IPGw calculation and can provide the QoE esti-
mate in near real-time. Our results show a robust correlation
between the QoEyes measurement in the data plane and the
QoE assessed using the MOS function [3]. For our future
works, we plan to increase the scope of our evaluation by
exploring a wider range of network scenarios and conducting a
larger number of experiments. Additionally, we aim to perform
experiments on a network-wide scale to determine the QoE
across multiple network devices. Finally, we hope to evaluate
the feasibility of extending our method to consider additional
factors, such as packet size.
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