
UNIVERSITY OF LISBON
Faculty of Sciences
Informatics Department

A SOFTWARE DEFINED NETWORKING
ARCHITECTURE FOR SECURE ROUTING

Tiago André Raposo Posse

DISSERTATION

MASTERS DEGREE IN INFORMATION SECURITY

2014

UNIVERSITY OF LISBON
Faculty of Sciences
Informatics Department

A SOFTWARE DEFINED NETWORKING
ARCHITECTURE FOR SECURE ROUTING

Tiago André Raposo Posse

DISSERTATION

MASTERS IN INFORMATION SECURITY
Dissertação orientada pelo Prof. Doutor Fernando Manuel Valente Ramos e pelo Prof.
Doutor Christian Esteve Rothenberg

2014

Acknowledgments

Queria, em primeiro lugar, deixar os maiores agradecimentos à minha famı́lia e em es-
pecial aos meus Pais, por todo o apoio que me deram durante todo o meu percurso escolar
e em especial durante o percurso académico. Por terem sido as pessoas que eu precisava
sempre nos momentos certos e pela inegável influência que tiveram para a conclusão de
mais esta etapa. Ao meu irmão Rui, pela ajuda em várias decisões crı́ticas na minha vida e
principalmente na preparação da minha profissional e, claro, às noites passadas no Bairro
ou em casa seja de quem for. Ao meu irmão Carlos, por ser a pessoa que tira a monotonia
da minha vida quando estou em casa.

À minha namorada por todas as vivências e o apoio incondicional durante a faculdade.
Não existe mais ninguém como tu.

Aos meus amigos Henrique Vaz, Pedro Batista, João Feio, Ricardo Pires e Nani Gama
por tempos indescritı́veis, pelas saı́das, as noitadas, as tardes na ponte e os jogos no C1.
Mais importante, pela ajuda que me deram a tornar-me na pessoa que sou hoje e a ver a
vida de uma perspetiva diferente, melhor.

Aos meus amigos Rambo, Marta e Mafalda, pela excentricidade que deram à minha
vida e por serem pessoas com quem é fácil estar e passar horas na diversão. Força INEM!

Ao João Alves e à Vânia Castanheira. Vocês são uma força da natureza e exemplo de
pessoas. Desejo-vos tantas felicidades como as que me proporcionaram.

Aos meus orientadores, Fernando Ramos e Christian Rothenberg, pela liberdade de
ações mas prontidão em ajudar e orientação certa que me leveram à escrita deste trabalho
de uma vida.

Ao Regivaldo Costa pela ajuda que deu na implementação e teste da aplicação BGP-
Sec.

Por fim, à Praxe. Por tudo o que ela me ensinou e me proporcionou, às experiências
que nunca conseguiria ter em qualquer outro cenário.

iii

Um quarto de talento, três quartos de esforço!

Contents

List of Figures x

List of Tables xi

1 Introduction 5
1.1 Internet Structure . 5
1.2 Traditional Networks . 7
1.3 Software-Defined Networking . 9
1.4 Routing . 11

1.4.1 Border Gateway Protocol . 12
1.5 Goals and contributions . 14
1.6 Planning . 15

2 Background 17
2.1 OpenFlow . 17
2.2 SDN controllers . 18

2.2.1 NOX . 19
2.2.2 Beacon . 19
2.2.3 Floodlight . 20
2.2.4 OpenDaylight . 20

2.3 RouteFlow . 21
2.4 Mininet Hi-Fi . 23

3 Routing Proxy for SDN 25
3.1 Architecture . 25
3.2 Implementation . 26

3.2.1 Messages . 28
3.2.2 Processing . 29

4 Security in BGP 31
4.1 Introduction . 31
4.2 Security Goals . 34

vii

4.3 Previous solutions . 35
4.3.1 Origin Authentication . 35
4.3.2 Secure Origin BGP . 36
4.3.3 S-BGP . 37
4.3.4 Data-plane verification . 38
4.3.5 Defensive Filtering . 38

4.4 BGP Security adoption issues . 38

5 Securing BGP in SDN 41
5.1 Architecture . 42
5.2 Implementation . 43

6 Evaluation 45
6.1 RFProxy . 45

6.1.1 Testing . 45
6.1.2 Evaluation . 46

6.2 BGPSec . 49
6.2.1 Testing . 49
6.2.2 Evaluation . 49

7 Final Remarks 53
7.1 Conclusions . 53
7.2 Future Work . 53

Bibliography 59

viii

List of Figures

1.1 AS business relationship . 6
1.2 IP prefix delegation . 7
1.3 Layered network view . 8
1.4 Plane decoupling . 9
1.5 SDN layered view . 11
1.6 Routing between and inside ASes . 12
1.7 BGP route selection process . 13
1.8 Gantt Map . 16

2.1 Overview of an OpenFlow switch . 17
2.2 SDN reactive mode . 18
2.3 Event-driven SDN controller . 19
2.4 OpenDaylight controller architecture . 21
2.5 Overview of RouteFlow . 22

3.1 Detailed view of RFProxy in a network scenario 25
3.2 Overview of the RFProxy application 26
3.3 RFProxy event to message translation 27
3.4 RouteFlow datapath and client mapping 28
3.5 RFProxy message exchange . 29
3.6 RFProxy event processing . 29
3.7 RFProxy mapping processing . 30
3.8 RFProxy flow processing . 30

4.1 Insertion and deletion attacks . 32
4.2 Eavesdropping, modification and replay attacks 32
4.3 Prefix hijacking attack . 33
4.4 Interception attack . 34
4.5 Data-plane attack . 34

5.1 Overview of the BGPSec application . 42
5.2 Overview of the BGPSec application . 42
5.3 BGPSec validation process . 43

ix

6.1 Topology for testing RFProxy . 46
6.2 Physical topology of RFProxy test 2 . 46
6.3 Virtual topology of the second RFProxy test 47
6.4 Virtual topology of the third RFProxy test 47
6.5 CPU utilization of the RFProxy tests. 47
6.6 Memory utilization of the RFProxy tests. 48
6.7 Comparison between throughput test results 48
6.8 CPU utilization of the BGPSec tests. 50
6.9 Memory utilization of the BGPSec tests. 50
6.10 Comparison between processing time results 51

List of Tables

1.1 Steps in the BGP decision process . 13

3.1 Association Table . 27

xi

Resumo

O tamanho e aceitação que a internet ganhou veio ajudar à inovação e à partilha entre
utilizadores, mas em contrapartida aumentou o risco de tanto a infraestrutura da internet
como as pessoas que a utilizam serem alvos de ciber-ataques. Esta é apenas uma visão
parcial do problema, pois para suportar a crescente utilização da internet a infraestru-
tura cresceu sem a maturação de vários protocols e algoritmos que executam alguns dos
servicos mais básicos com que convivemos todos os dias na internet.

Um dos melhores exemplos é o do Border Gateway Protocol, um protocolo de troca
de informação de roteamento que está em uso há mais de 20 anos mas possui vários
problemas de segurança conhecidos. O desenho inicial do protocolo, aliado à ineficiência
das redes tradicionais impediram a adoção das várias adições de segurança jà propostas
para o protocolo. O protocolo não possui atualizações de segurança que o protejam contra
os vários tipos de ataques já descobertos, como prefix hijacking, intercepção e ataques no
plano de dados. Estes ataques podem ter consequências graves durante perı́odos de tempo
não negligenciáveis, como reportado em [33, 19].

As propostas já existentes, como o S-BGP[27], soBGP[48] e Origin Authentication[12],
apesar de eficazes na proteção contra um ou mais ataques contra o BGP, não foram adop-
tadas na prática devido aos seus elevados requisitos computacionais ou de implementação.
Neste trabalho resumimos os problemas para adopção de soluções de segurança em três
pontos principais:

1. Algumas soluções requerem poder computacional ou capacidade de memória que
nem todos os dispositivos de rede que correm BGP em funcionamento conseguem
suportar;

2. A solução requer alterações ao protocolo BGP em funcionamento;

3. A solução não garante benefı́cios de segurança imediatos ao AS que a adoptar;

A investigação actual tem chegado à conclusão que muitos dos problemas das re-
des tradicionais surgem devido à necessidade de os dispositivos de rede participarem em
protocolos complexos para executar funções de rede que vão além do seu objetivo: en-
caminhar pacotes [24]. Como consequência, as redes tornaram-se bastante complexas e
portanto difı́ceis de gerir e escalar. A falta de segurança radica também neste problema.

1

2

Em alternativa às redes tradicionais, a comunidade cientı́fica e a indústria têm vindo a
adoptar um novo tipo de redes, as Software Defined Networks (SDN). Estas redes sepathe
datapathram o plano de controlo do plano de dados, passando toda a lógica e estado de
rede para um controlador logicamente centralizado, mantendo nos dispositivos de rede
apenas a tarefa de encaminhar pacotes. Os controladores SDN implementam funções de
rede através de aplicações que executam no próprio ambiente do controlador em vez de
obrigar os dispositivos de rede a implementarem esses protocolos. Um desses contro-
ladores é o OpenDaylight, que tem o apoio de alguns dos maiores nomes da indústria
como a Cisco, IBM, HP e Juniper, e espera-se ser a principal referência no futuro.

Neste trabalho propomos duas aplicações SDNs para o controlador OpenDaylight:
RFProxy e BGPSec. O RFProxy é um dos três componentes base da aplicação Route-
Flow, uma plataforma de serviços de roteamento para SDN. O RFProxy é o único com-
ponente da aplicação a executar no controlador e é responsável por gerir e configurar os
switches de acordo com as decisões tomadas pelo RFServer. Esta aplicação vem aumen-
tar o número de opções para a utilização do RouteFlow e proporciona uma plataforma de
roteamento avançada e eficiente para o OpenDaylight.

A aplicação BGPSec tem como objetivo garantir proteção contra ataques de prefix hi-
jacking, onde um atacante tenta redireccionar todo o tráfego destinado a um AS para si.
Esta proteção é conseguida através da validação dos dados recebidos do BGP. Ao utilizar
uma aplicação para a validação dos anúncios BGP em vez de obrigar os dispositivos de
rede a executarem este processamento, o desenho e implementação tornam-se mais sim-
ples e permitem um maior conjunto de opções quando comparado com as implementações
necessárias em redes tradicionais. A utilização de uma aplicação SDN para este efeito é
algo inovador e traz vantagens quando comparada com as redes tradicionais. Em partic-
ular, o ambiente SDN permite mitigar os dois primeiros problemas de adopção de uma
extensão de segurança, ao passar o processamento para o controlador e a não requerer
uma alteração ao protocolo BGP.

As contribuições principais deste trabalho podem ser resumidas da seguinte forma:

1. Implementação e avaliação de um serviço avançado de roteamento em ambiente
SDN, nomeadamente ao controlador OpenDaylight;

2. Análise dos problemas de segurança do BGP e das extensões de segurança já pro-
postas para redes tradicionais;

3. Desenho, implementação e avaliação de uma aplicação de segurança para o BGP
baseada em SDN;

Abstract

The Internet has evolved from a small group of interconnected computers to an infras-
tructure that supports billions of devices including computers, smartphones, etc, all with
increasing demands in terms of network requirements. The architecture of traditional net-
works hinders their capability of fulfilling these demands, mainly due to the tight coupling
of the data and control planes. Network devices are required to handle and participate in
complex distributed protocols to perform network tasks such as routing, making networks
very complex and thus affecting their scalability, performance, management and innova-
tion ease.

The Border Gateway Protocol, the de facto protocol for routing between Autonomous
Systems (ASes) is one of the fundamental protocols for the operation of the internet.
However, it was created in a time where the internet was composed of fewer ASes that
trusted each other and in the information they provided, which is now unsafe to assume.
The internet growth also resulted in an increase in the attacks against the internet routing
infrastructure, and several misbehaviors have been detected, either due to attacks against
the protocol or misconfiguration. Although several solutions have been presented to solve
the security issues of BGP, no proposal has yet been adopted due to three main reasons:

• The solution requires either a computational power or memory size that not all
currently deployed BGP speakers will be able to withstand;

• The solution incurs changes to the BGP protocol currently in use;

• The solution does not bring immediate security benefits for the adopting AS;

Software-Defined Networking (SDN) is an emerging network paradigm that aims to
solve the problems of traditional networks by decoupling the data and control planes,
moving the latter to a logically centralized controller while making network devices ex-
ecute solely the former. All network tasks and applications run on top of the controller,
which abstracts the network and greatly simplifies the development and testing of new
applications and protocols. Forwarding rules are installed and removed using OpenFlow,
a vendor-independent communications protocol for SDNs.

Several SDN controllers have been developed by different companies and researchers,
several of them open-source. One of such kind is the OpenDaylight (ODL) controller,

3

4

supported by some of the top names in the IT industry (e.g. Cisco, IBM, HP). The goal of
ODL is to create a controller of reference and help accelerate SDN evolution and adoption.

Although the controller is the core component of a SDN, network logic is performed
by an application running on top of it. An example is RouteFlow, a routing platform that
provides flexible and scalabe IP routing services to a SDN. Routing decisions are made
by creating a virtual network that mimics the topology of the physical infrastructure and
by analyzing the routing tables of the virtual devices. RouteFlow is composed by three
components: RFClient, RFServer and RFProxy, with the latter running in the controller.
The first contribution of this work is the implementation and evaluation of the RFProxy
module for the OpenDaylight controller.

An SDN architecture provides a new environment to improve BGP security through
the creation of an application to run on top of the controller. Such approach mitigates the
first two adoption problems mentioned above by offloading the additional processing to
the controller and by not requiring changes to the BGP protocol.

The other contribution of this work is the study and analysis of the BGP security
problems and traditional solutions, and how to address them in a SDN environment. We
implemented and evaluated BGPSec, a security application for the OpenDaylight con-
troller that provides the network with protection against prefix hijacking attacks, where a
malicious AS tries to direct the traffic destined to an AS onto itself.

Chapter 1

Introduction

1.1 Internet Structure

The Internet is composed of 47744 Autonomous Systems (ASes) [1], geographically dis-
tributed across the world. Each AS is represented by a unique numeric identifier (AS
number) and is composed of one or more computer networks, all governed by the same
administration and employing a single high-level routing policy.

Due to ASes being geographically distributed, the cost of directly connecting all ASes
would be unfeasible and as such it becomes necessary that some ASes act as traffic re-
lays, forwarding packets on behalf of their neighbors to other ASes. This requirement
is represented in terms of business relationships, a relation that an AS can create with a
neighbor through which the pair defines how much traffic an AS will forward on behalf
of the other, the cost of such operation and which destinations the AS will forward the
traffic to. These relations can be of the following types [45]:

• customer-to-provider: the customer forwards traffic to and from the provider to its
customers, free of charge

• provider-to-customer: the provider forwards traffic to and from the customer to all
destinations it knows, at an agreed fee

• peer-to-peer: symmetric relation where each peer forwards traffic to and from the
other peer to its customers, free of charge

ASes that provide forwarding services traffic to its neighbors are called Transit ASe.
They represent 10% of the total ASes in the internet and are responsible for interconnect-
ing the rest of the ASes in the internet, called Stub ASes. Stub ASes have no customers,
no peers and only one provider, which acts as its Internet Service Provider (ISP) and thus
allows the AS to access the rest of the internet.

ASes are usually classified into three tiers organized hierarchically (figure 1.1): tier-1,
tier-2 and tier-3 ISPs [45]. Only a few Tier-1 ISPs exist and they are large national or

5

6 Chapter 1. Introduction

international ISPs, all with direct access to the internet backbone, resulting in a mesh of
interconnected ASes that form the internet core. Tier-2 ISPs are national or regional ASes
that purchase internet service to Tier-1 ISPs and thus depend on them for internet access.
Tier-3 ISPs are small region ASes that purchase service from both Tier-1 and Tier-2 ISPs
and provide internet service to end-customers. Tier-1 ISPs and a group of Tier-2 ISPs
compose the transit ASes for the whole internet, passing traffic for the rest of Tier-2 and
Tier-3 ISPs that are stubs.

Figure 1.1: ASes create business relations with each other, forming a hierarchical infras-
tructure for service provisioning. Tier-1 ISPs are larger and form a full mesh with each
other and typically have more connections than Tier-2 and Tier-3 ISPs.

Each AS is assigned an AS number, an unique number that uniquely identifies the
AS, and a block of IP addresses, called an IP prefix (e.g. 173.50.0.0/16 is an IP prefix
that covers all addresses from 173.50.0.0 to 173.50.254.254), that identifies a network
destination. Prefixes are regulated by IANA (Internet Assigned Number Authority) and
five Regional Internet Registries (RIRs), each responsible for delegating prefixes in a
specific region. Large ISPs may apply for an IP prefix to one of the RIRs and then further
split its prefix into smaller parts and assign them to client ASes (figure 1.2).

Finally, ASes are mostly driven by economic factors [16]. Smaller ASes tend to peer
with each other to reduce traffic sent to the provider, thus reducing operational costs
[45][38]. However, peering has its downsides as it requires buying additional equipment
and represents higher management costs, and no AS wants to peer with a potential cus-
tomer and lose the revenue. Peering can be private if done through a dedicated connection
between both ASes, or public if done through an Internet eXchange Point (IXP). IXPs are
third-party infrastructure that provide a point for several ASes to connect and peer with
the participants they want, at a lower cost but with more limited bandwidth.

Chapter 1. Introduction 7

Figure 1.2: IANA acts as root for the entire internet hierarchy and coordinates with the
five RIRs to delegate prefix to ASes. ASes can afterwards further delegate parts of their
prefix to other ASes

1.2 Traditional Networks

A computer network is composed of a set of terminal devices (computers, etc.) intercon-
nected through one or more network devices (switches, routers). The latter are responsible
for forwarding packets from one terminal device to another using a specific communica-
tions protocol, usually the Internet Protocol (IP).

Over the years, the Internet has grown from a few nodes to thousands of intercon-
nected networks and the number increases each day as more devices are incorporated into
the network (e.g. smartphones). This growth has caused an increase in performance and
reliability requirements from both network users and devices, as new, more demanding
applications and services are created and slowly introduced into networks. In order to
cope with such requirements, researchers and the industry have improved existing net-
work protocols so they can deliver better performance, reliability and security. However,
these protocols are usually vendor-specific and aim at solving a specific problem, making
networks more complex with each added protocol.

Networks are divided into three planes (figure 1.3): management, control and data.
Network policies are defined in the first, enforced by the second and executed by the third,
resulting in a highly decentralized architecture that has satisfied network requirements for
years. However, network control functionalities (control plane) are coupled in network
devices along with packet forwarding tasks (data plane), forcing devices to participate in
complex distributed protocols to perform several tasks (e.g. routing), exhausting time and
resources required for a faster and more reliable packet forwarding. This vertical integra-
tion of planes has led to several problems including hard management, poor scalability
and flexibility and slow innovation[29].

8 Chapter 1. Introduction

Figure 1.3: Layered view of traditional networks in three planes: management, control
and data. The management plane is executed by the network managers, while the data
and control plane are integrated in network devices.

First, installing system policies or adapting the network requires network managers
to configure each device individually using low-level and often vendor-specific protocols.
This is a time-consuming and error-prone process that can render the network slow, inse-
cure or even lead it into an incorrect state. This scenario becomes worse in heterogeneous
networks, as network managers are required to deal with several different protocols de-
veloped by the different vendors for their devices. Additionally, to implement network
functionalities such as load balancing and access control, network managers have been
using separate components to compensate for the lack of networking device capabilities,
further increasing network complexity and lowering flexibility.

Second, networks become more complex as they scale [14], so it is possible for a
network to grow to a point where it satisfies network requirements but cannot be managed
due to the necessary time and resources it would take. Additionally, a large network may
introduce communication and processing overheads resulting from executed protocols
that do not allow it to satisfy the requirements.

Finally, integration of the control plane in network devices results in a closed environ-
ment where industry and researchers need to wait for vendors to create new equipment that
incorporates new solutions for specific problems. This process typically takes a consider-
able amount of time and the new equipment is usually too expensive, which in addition
to the overall costs of maintaining a network infrastructure means old hardware may be
in operation for several years before being updated, hindering innovation to a point where
new network protocols and applications take years to be designed, tested and deployed.
An example of network stasis is the update from IPv4 to IPv6, which started over a decade
ago and is still unfinished.

In conclusion, the incremental approach of providing solutions to cope with network

Chapter 1. Introduction 9

requirements that has tailored traditional networks to their current state is no longer ef-
fective. It is becoming increasingly necessary to re-design networks so they can provide
the required capabilities to not only address current network problems but also to provide
future networks the ability to adapt to new challenges and requirements.

1.3 Software-Defined Networking

Software-Defined Networking (SDN)[40][29] is a network architecture that physically
decouples the data and control planes (figure 1.4), moving the latter to a logically cen-
tralized controller and keeping the former in network devices. By doing so, network
control is shifted from the decentralized set of network devices to the controller, tackling
the root of traditional network complexity.

Figure 1.4: Plane decoupling in SDN: the control plane is executed by the controller, that
defines how switches execute the data plane

Figure 1.5 shows a representation of the SDN architecture, divided in three planes:
data, control and plane. The data plane is composed of a set of switches, which become
simple packet forwarding devices that do not need to implement and execute complex
protocols. They merely process instructions coming from the control plane and forward
packets based on those instructions, resulting in simpler device implementations and less
use of resources, ultimately leading to faster and more reliable packet forwarding.

The use of a logically centralized controller does not imply a centralized environment,
which would create a single point of failure and severely hinder scalability. A controller
may in fact be distributed[28][46] for load balancing and fault tolerance.

The control plane can be seen as the network brain, holding the architecture together.
It is executed by the controller, a software platform that can run on commodity hardware
and acts as a Network Operating System (NOS)[25]: it provides high-level programming
abstractions and relevant network state to applications, so they can perform network op-
erations without the need to deal with the low-level details of devices. The controller will

10 Chapter 1. Introduction

translate instructions coming from applications and configure devices accordingly in a
transparent way, so applications see the network as a single logical entity instead of a de-
centralized infrastructure. Network state (e.g. network topology, link state, device state,
etc.) is made available to applications by means of a logically centralized Network View,
stored in the controller or in a data store.

Decoupling of the control and data planes requires bi-directional communication be-
tween both planes. As such, the Southbound Interface (or Southbound API) becomes
a critical component of the SDN architecture, as it provides the connecting bridge be-
tween the controller and the switches. The most widely accepted standard and the de
facto protocol for the Southbound API as of today is OpenFlow [34][3], a communica-
tions protocol and device-implemented API that provides a clear and uniform way for the
controller to interact with heterogeneous network devices without using vendor-specific
implementations.

Network behavior is defined in the management plane. Implementing new network
features and services is done by deploying applications on top of the controller using the
provided abstractions and network view, independently of network topology and device
implementations. This strategy results in a more simple and straightforward integration
of different applications and features.

Communication between applications and the controller is done by means of program-
ming abstractions, which compose the Northbound Interface (or Northbound API). At the
time of this writing, this API is specific to the controller implementation, as there is no de
facto standard for this API. However, it is expected that as SDN evolves, a standard will
emerge[29].

The West- and Eastbound interfaces are only present when the network features a
distributed SDN controller and are used to provide a way for the different controllers to
communicate and coordinate.

A SDN can work in reactive or proactive mode. In Reactive mode, switches react
to packets they do not know how to process, passing a copy of the packet header to the
controller for it to decide how to process it and configure switches with the necessary
flows that will be applied to all subsequent packets with the same header. This packet
is usually the first packet of a flow, so this operation is commonly called flow initiation,
done once per flow.

In Proactive mode, the controller configures the switches to handle all possible net-
work traffic by installing a pre-determined set of flows. Operating in this mode requires a
great understanding of network topology and applications to identify all necessary flows
but can help scale the network as it is not required to send the first packet of a flow to the
controller.

There are several controllers for SDNs developed with different objectives and fol-
lowing different designs. The most relevant for this work is OpenDaylight, as it aims to

Chapter 1. Introduction 11

Figure 1.5: Layered view of the architecture of a SDN controller. The management plane
is executed by the applications that run on top of the controller and use the northbound
interface to interact with it. Controller services represent the control plane and use the
west and eastbound interfaces to communicate with other controllers and the southbound
interface to instruct the network devices.

be the controller of reference for SDNs and has the support of a large community and
some of the top names in the technology industry, such as IBM, HP, Intel, etc. We discuss
this and other controllers them further in the next chapter.

1.4 Routing

Routing is a critical part of any network. It is the process of discovering and configuring
the paths (or routes) from each network device to all the other devices in the network,
providing a way for devices to know where to send a packet so it reaches a specific desti-
nation. A path is an ordered sequence of nodes through which the origin node can send a
message to the destination.

Due to the large scale of the internet, it would be unfeasible to have all network devices
maintain the same routing table, with all participating in the same routing protocol. The
hierarchical structure of the internet thus allows dividing routing in two parts: routing
between ASes and routing within an AS. Routing devices belonging to an AS use an
Internal Gateway Protocol (IGP) for destinations inside the same AS and an External
Gateway Protocol (EGP) to route between different ASes (figure 1.6). There are several

12 Chapter 1. Introduction

IGPs developed and used in networks such as RIP, OSPF, etc., but only one EGP is mainly
used in the internet, the Border Gateway Protocol.

Figure 1.6: Routing between ASes is done through an EGP, while routing inside each AS
is done through an IGP

Traditional networks employ this feature through complex distributed protocols in
which network devices need to participate to decide how traffic will flow through the
network, which incurs in heavy processing overheads on network devices. On the other
hand, SDNs implement this feature through applications that are executed on top of the
controller. One such kind of app is RouteFlow, a flexible and scalable routing platform
for SDN that is the target of this work.

1.4.1 Border Gateway Protocol

The Border Gateway Protocol (BGP)[42] is an inter-domain routing protocol and the de
facto EGP for exchanging routing information between ASes on the internet[45]. The
protocol is used so that ASes can interact with each other to share information on how to
reach every other destination (IP prefix) in the internet.

BGP speakers (routers running BGP) that are at the edge of an AS are known as border
routers, establishing BGP sessions (TCP sessions) with border speakers from neighboring
ASes through which they exchange UPDATE messages. Speakers that are engaged in a
session are called peers.

UPDATE messages contain several fields including a list of prefixes being advertised,
a list of prefixes being withdrawn and a list of attributes for each route being advertised,
including the AS PATH attribute. This approach, called path vector, is a variation of the

Chapter 1. Introduction 13

distance vector algorithm where instead of exchanging a single metric for each route,
nodes exchange a set of route-related attributes.

Figure 1.7: When a speaker receives a BGP UPDATE, it applies route importing policies,
executes the best selection process and applies route exporting policies, if needed, before
re-advertising the message.

Figure 1.7 shows the process executed by a speaker when it receives an UPDATE mes-
sage. First, the speaker will apply a route importing policy to determine if the route should
be filtered or processed and in case it will be processed, the policy might change route
attributes. Afterwards, if the speaker did not have a previous route for that destination,
it will accept it as the best route and save it in its routing table. If a previously selected
best route was already stored, the two are compared using a set of rules (table 1.1) and the
winning route is stored in the routing table. Additionally, if the received route wins, the
speaker concatenates the AS number of the processing AS to the received AS PATH and
advertises1 a new UPDATE message using the new AS PATH. The message attributes and
the set of neighbors to which the route is sent is determined by the route exporting policy.
Both policies and the set of rules are defined by each AS independently and are usually
kept private.

Step Attribute Controlled by local or neighbor AS
1 Highest LocalPref local
2 Lowest AS path length neighbor
3 Lowest origin typ neither
4 Lowest MED neighbor
5 eBGP-learned over iBGP-learned neither
6 Lowest IGP cost to border router local
7 Lowest router ID (to break ties) neither

Table 1.1: Steps in the BGP decision process [16]

Additionally, new routes are also propagated using internal BGP (iBGP) to speakers
belonging to the same AS. Previously, speakers in the same AS formed a full mesh and
propagated routes accordingly, but this approach severely hinders scalability. As such,

1The terms advertise and announce are used interchangeably to denote the act of an AS sending an
UPDATE message to a set of neighbors.

14 Chapter 1. Introduction

large networks typically employ a hierarchy of route reflectors[13]. Route reflection di-
vides the network in clusters of one or more speakers acting as servers for the remaining
clients, which may act as servers for sub-clusters. The servers form a full mesh with each
other while clients are not required to be peers. Servers would reflect routes received from
servers to all clients and routes received from clients to the remaining clients and servers.
There is, however, the problem of misconfiguration, where speakers in a path could be
assigned different routes from different reflectors, leading to inconsistencies [20].

One of the worst problems of BGP is its insecure design, which led to several vul-
nerabilities discovered over the years and exploited through several attacks such as prefix
hijacking, interception and data-plane attacks [15]. In particular, a prefix hijacking oc-
curs when a malicious AS advertises a prefix belonging to another AS in order to hijack
its traffic and thus gain access to privileged information. We tackle this problem in this
work.

1.5 Goals and contributions

In this thesis, we propose two applications for the OpenDaylight controller: RFProxy
and BGPSec. The first integrates RouteFlow with the OpenDaylight controller, providing
another controller alternative to RouteFlow while providing a more advanced routing suite
to OpenDaylight.

Our second main contribution is BGPSec, an application to provide an AS with protec-
tion against prefix hijacking attacks in an SDN environment. We discuss the advantages
of providing a solution using SDN instead of traditional networks and discuss a possible
evolution for this application.

The main contributions can be resumed as follows:

1. Development and evaluation of RouteFlow for OpenDaylight (chapter 3)

2. Analysis of BGP security problems and proposed solutions in traditional networks
(chapter 4)

3. Design, implementation and evaluation of a SDN application to provide partial se-
curity to BGP (chapter 5)

All the developed software is available open-source in github23. Additionally, the
ODL RouteFlow application was added to the RouteFlow project[8] and in in the initial
process of incorporation in OpenDaylight.

2https://github.com/routeflow/odl-rfproxy
3https://github.com/tiagoposse/sdnbgpsec

Chapter 1. Introduction 15

1.6 Planning

Figure 1.8 shows the plan to produce this thesis. We identified four main phases:

• Requirements (chapter 2): In this phase, we collected information about SDN and
existing controllers, the BGP routing protocol and RouteFlow. Considerable time
was also spent on understanding both RouteFlow and the OpenDaylight controller,
their architecture, general workflow and code.

• RFProxy Implementation (chapter 3): In this phase, we implemented the RFProxy
application for OpenDaylight and performed tests to verify if it was correctly work-
ing.

• BGP Security analysis (chapter 4): In this phase, we collected a more complete set
of information about BGP security and previous security solutions for traditional
networks. We focus on attacks and vulnerabilities and provide clear examples of
possible attacks against the internet infrastructure. We also discuss why BGP is still
so insecure and why no security proposal has yet been clearly adopted.

• BGPSec Implementation (chapter 5): We design a new application for the Open-
Daylight controller with the goal of protecting networks against BGP prefix hijack-
ing attacks and test its correctness and the overheads that it incurs on BGP message
processing.

• Dissertation: In this phase we wrote the dissertation.

16 Chapter 1. Introduction

Figure 1.8: Gantt Map

Chapter 2

Background

2.1 OpenFlow

OpenFlow (OF)[34] is an open-source communication interface developed by the Open
Networking Foundation[3], adopted as the de facto Southbound Interface for SDNs. OF
combines a set of common of features present in the flow tables of devices from dif-
ferent vendors and provides a uniform API for developers to define forwarding rules by
programming the flow table: the OpenFlow protocol (figure 2.1).

Figure 2.1: Overview of an OpenFlow switch

Each entry in a flow table, called flow, is composed of three parts: (1) a matching rule,
composed by a set of packet header fields, (2) a list of actions to be executed for matching
packets and (3) counters for statistics. Whenever a packet is received by a switch, it
will compare the packet headers to the matching rule of each flow until it finds a match,
after which it executes the specified actions and updates the flow counters. OF devices
implement a minimum set of three possible actions: (1) forward the packet to a specific
port, (2) forward the packet to the controller and (3) drop the packet. However, this set
can be extended.

When the network is operating in reactive mode (figure 2.2), packets that are not
matched with any flow in the switch trigger a packet in message containing the packet

17

18 Chapter 2. Background

headers to the controller. The controller processes the packet and answers with a flow mod
message to the switch in order to configure a flow to be applied to subsequent packets, or
it directly injects a message in the data plane without changing switch configurations.

Figure 2.2: Representation of a SDN operating in reactive mode: the first packet of a flow
that is not matched by the network device is sent to the controller, which instructs the
device of the appropriate action to apply to subsequent packets with the same header

In addition to packet-in messages, an OF device will automatically send events rep-
resenting changes in port or link states to the controller, allowing for quick reactions to
changes in devices.

By using the common set of functionalities, OpenFlow works on the vast majority
of network devices already deployed, easing its adoption. However, OpenFlow also has
its downsides: (1) it requires that switches both understand packet headers and spend
execution cycles to extract the necessary information from the packet in order to perform
matches. This scenario becomes worse considering that version 1.3 of OpenFlow already
features more than 40 header fields, as compared to the 10 header fields of version 1.0.
Additionally, adding or removing header fields from the protocol may pose backward
compatibility issues.

2.2 SDN controllers

SDNs rely on a controller to operate and manage the network. Most controllers are event-
driven, working in compliance with OF: applications register with the controller for events
of either implementation or southbound protocol-specific types, so that when the con-
troller generates an event of that type, they may process it. The controller will afterward
generate events according to messages received from the data plane and will pass it to in-
terested (registered) applications. This model allows the creation of an execution pipeline
(figure 2.3) for each event, with the possibility of defining priorities and dependencies

Chapter 2. Background 19

for each application. Additionally, any application may choose to let the next application
process the packet, or consume it and thus end the execution pipeline.

Figure 2.3: Representation of an event-driven SDN controller. Events produced by net-
work devices are captured by the controller and passed to registered applications, forming
a separate execution pipeline for each type of event

2.2.1 NOX

NOX[25] is a SDN controller created in 2008, developed in both C++ and Python and the
first to introduce the concept of a Network Operating System (NOS) in SDN context.

The objective of a NOS is to provide high-level abstractions of network resources
that simplify management and ease network programmability. The NOS itself does not
manage the resources, it merely provides a uniform interface for the development of appli-
cations that manage these resources. The goal of NOX was to provide these abstractions
for developers to be able to program the network by creating and deploying applications
for the NOX controller.

NOX was built following the event-driven architecture described above and using a
global network view, composed of the switch-level topology, the locations of users, hosts,
middleboxes and other network elements; and the services (e.g., HTTP or NFS) being
offered. The authors argue that this set of information is complete enough to enable
several management tasks to be executed without much effort and also changes slowly
enough for the controller to be able to keep it consistent over time without compromising
too much scalability. In any case, NOX provides network managers with tools to trade-
off scalability for flexibility and vice-versa by increasing or decreasing the amount of
information to be gathered from the network.

2.2.2 Beacon

Beacon [21] is an open-source controller whose main goal is to provide a development-
friendly environment for developers to easily create high performance applications. For
that purpose, Beacon was developed in Java instead of C or C++, providing developers
a simpler development environment with faster compilation times and automatic mem-
ory management, at the cost of some performance. Its author argues that although Java

20 Chapter 2. Background

is slower, the simpler development environment, the cross-platform support and native
support for multi-threading were crucial when choosing the implementation language.

The controller is composed by a set of bundles, an abstraction of the OSGi framework.
Controller applications are defined through bundles and registered as services in the ser-
vice registry, a component of the OSGi. Other applications can then retrieve instances of
registered services to perform other actions.

This modular design is enhanced by a feature that previous controllers did not sup-
port: run-time modularity. Previous controllers provided users and developers with either
compilation-time modularity, where it was possible to select which applications to build,
or start-time modularity, where it was possible to select which applications to launch. Bea-
con however provides run-time modularity, enabling network managers to add or remove
applications without shutting down the controller, therefore easing the way developers
interact with it. This possibility allows for several use-cases such as the installation of
temporary applications to enhance a property of the controller or the removal of applica-
tions experiencing bugs or errors, etc.

Finally, Beacon also operates in an event-driven fashion as explained above and is
multi-thread, binding network devices to particular threads.

2.2.3 Floodlight

Floodlight [11] is an open-source, enterprise-class SDN controller based on Beacon. It
inherits the same modular design and event-driven architecture, but without using the
OSGI framework for module interaction due to performance and deployment reasons.

Service registry and consumption is provided through the controller main module, the
Floodlight Provider. The controller also provides run-time modularity just as Beacon,
but provides better performance by using the Floodlight Provider instead of the OSGi
framework[5] for service provisioning.

Finally, although the controller is written in Java, the northbound API is REST, so
applications can be written in any programming language that can use this API.

2.2.4 OpenDaylight

OpenDaylight1[10] is an open-source SDN controller written in Java, supported by top
names of the technological world such as HP, Juniper, IBM, Intel, Linux Foundation and
others.

The controller is highly modular (figure 2.4) and features base dynamic modules that
perform network tasks and controller services, which are interconnected through the OSGi
framework. This framework also composes the northbound interface for the controller,
along with a REST API for applications running outside the controller address space.

1https://github.com/opendaylight/controller

Chapter 2. Background 21

Applications register and use services provided by other modules through the northbound
interface and communicate in an event-driven way. OF messages are converted to events
and passed to modules that register as listeners for that type of message. It is also possible
to define listener dependencies, in order to generate a chain of message delegation for a
type.

The southbound interface supports a set of protocols including OF, SNMP, OVSDB,
etc., which are abstracted to applications through the Service Abstraction Layer (SAL).
The SAL deals with the different southbound interfaces and provides a uniform API to be
used by northbound applications.

The goal of Opendaylight is to be the reference open-source SDN controller in order to
ease the adoption of SDNs. This is the reason why we chose to work with this controller.

Figure 2.4: OpenDaylight controller architecture[4]

2.3 RouteFlow

RouteFlow2[43][8] is a routing platform that provides flexible and scalable IP routing
services for SDNs. The platform creates a virtual network that mirrors the underlying
network infrastructure and makes routing decisions by analyzing the changes on the rout-
ing and ARP tables of the virtual hosts.

Virtual hosts are created using the process-based virtualization and network names-
paces features of Linux to provide lightweight virtualization. A container, or virtual host,
is attached to an independent set of system resources, including a network interface, ARP

2https://github.com/routeflow/routeflow

22 Chapter 2. Background

and routing tables, etc., that are not accessible to other virtual hosts. This type of OS-level
virtualization is more scalable and uses less resources than normal full-system virtualized
hosts.

Figure 2.5 shows the overview of the RouteFlow architecture, divided in three com-
ponents [47]: RFClient, RFServer and RFProxy. Each virtual host runs a daemon, called
RFClient, responsible for 1) registering the virtual host in the controller as a virtual plane
resource; 2) manage the virtual host network ports; 3) detect changes in ARP and routing
tables and 4) convert these changes to OpenFlow flows.

RFServer runs as a standalone application, written in Python. It is responsible for
managing the virtual environment by creating and removing virtual machines, commu-
nicate with RFClients and request RFProxy to install/remove flows. It holds the control
logic of all the application and as such it is the central component of RouteFlow.

RFProxy runs as an application in the controller and is responsible for receiving pack-
ets from the network infrastructure, inform RFServer of changes in the network and con-
figure network devices.

Figure 2.5: Representation of the RouteFlow architecture

Routing decisions are made based on the virtual network by observing its behaviour:
the routing engine (Quagga[2]) produces the forwarding information base (FIB) accord-
ing the configured routing protocol (e.g. RIP, BGP). RFClient then captures changes in
routing and ARP tables produced by Quagga, translates them into OpenFlow tuples and
passes them to the RFServer, which adapts this FIB to the specified routing logic and
instructs the RFProxy to configure flows in the physical datapaths using OpenFlow.

Chapter 2. Background 23

2.4 Mininet Hi-Fi

Mininet Hi-Fi[30] is a container-based emulation platform that allows the user to run
and experiment with custom network topologies. It aims at providing a framework that
allows the production of realistic and reproducible network experiments using commodity
hardware.

It uses the same process-based virtualization as RouteFlow to emulate the network,
providing a more scalable and dynamic environment than full-system virtualized hosts.

Mininet Hi-Fi is an enhancement to Mininet [26] that provides performance fidelity.
To achieve this goal, it enforces a minimum limit on CPU and network bandwidth by using
three Linux features: Control Groups, CPU Bandwidth Limits and Traffic Control. All
three features can be configured to provide a system-wide behavior that matches hardware
and provides high-fidelity results [30].

Additionally, Mininet Hi-Fi employs real-time monitoring to check for network and
processing delays. In case any delay occurs and any switch or host is deemed overloaded,
fidelity in the execution is lost and the experiment needs to be reconfigured to ensure
realistic results.

Mininet Hi-Fi has been the evaluation platform of choice by the SDN research com-
munity, providing a realistic platform to test new applications.

Chapter 3

Routing Proxy for SDN

At the time of this writing, RouteFlow has been developed for the POX, NOX, Ryu
and Floodlight controllers, but not for OpenDaylight (ODL). As ODL is the SDN con-
troller of reference, we chose to develop it for ODL to provide a better routing plat-
form and thus help this platform to evolve. The application is available open-source in
https://github.com/routeflow/odl-rfproxy.

3.1 Architecture

Figure 3.1 depicts the architecture and general communication pattern of RFProxy, di-
vided in three modules: the main module, which we generally call proxy, the Inter-Process
Communication (IPC) module and the RFProtocol.

Figure 3.1: Detailed view of RFProxy in a network scenario

The proxy is responsible for communicating with the OpenDaylight controller, pro-
cessing packets coming from both physical and virtual networks and processing events for

25

26 Chapter 3. Routing Proxy for SDN

adding or removing switches/switch ports. The IPC module is responsible for reading and
writing from the database and execute actions based on received messages coming from
the RFServer. The RFProtocol describes the messages exchanged between the RFServer
and the RFProxy implementation.

Communication between the virtual topology and RFProxy is made through a virtual
switch that has to be set up separately, usually when starting up RFServer. Communi-
cation between the RFProxy and RFServer is done through a NoSQL database using the
RFProtocol for message format specification.

Figure 3.2 shows an overview of the controller running RFProxy:

Figure 3.2: Overview of the RFProxy application

3.2 Implementation

In this section we present the details of how RFProxy works, considering the architec-
ture explained above. RFProxy was written in Java, the programming language for the
northbound API of OpenDaylight. The code was divided into Java classes to simplify
programyming and organization.

In compliance with the OpenDaylight controller, RFProxy features an Activator class,
where dependencies and services used by the application are specified in order to register
and consume all necessary modules with the OSGi framework of OpenDaylight.

We now describe the main components used in our implementation:

• RFProxy implements the IInventoryListener and IListenDataPacket interfaces. The
first allows the application to listen to events generated by the addition or removal of
switches/switch ports, while the second allows the application to listen to packet in
events.

Chapter 3. Routing Proxy for SDN 27

• MongoIPCMessageService: responsible for the communication between the RF-
Server and RFProxy. The component creates a thread that runs an infinite loop
checking for new messages in the database that are destined to RFProxy. It does so
by checking the read field for all entries in the database.

• RFProtocolFactory: responsible for the creation of RFProtocol messages. Each
message is represented by a different class and code that is instanced by the RFPro-
tocolFactory when receiving a message from the database.

• RFProtocolProcessor: responsible for processing messages received from RFServer.
The component works on top of objects created by the factory and performs actions
based on the received action and parameters.

• AssociationTable: responsible for storing the association between virtual and phys-
ical network devices. Table 3.1 shows an example of this table that stores the id and
port number that was registered for a physical or virtual switch. When a port is reg-
istered but cannot currently be associated with its correspondent, only its respective
half of the table is filled. As such, a full table entry represents a client-dapatath
association.

Datapath Virtual switch
dp id, dp port vm id, vm port

Table 3.1: The association table consists of two-field entries that list the mapping between
datapath ports and virtual switch ports

The RFProxy acts as a protocol translator, converting OF messages into RFProtocol
messages and vice-versa and communicates with the RFClients (clients) to map the phys-
ical to the virtual network (figure 3.3).

Figure 3.3: RFProxy processes events (e1, e2, e3) and generates a RFProtocol message
(M1, M2, M3) for each event, which are inserted in the local database for the RFServer
to process.

28 Chapter 3. Routing Proxy for SDN

All network events are converted into messages according to their type and sent to the
RFServer (server) for processing. This processing will generate an action to be executed
by RFProxy, which may include the configuration of OF flows in the physical infrastruc-
ture. This communication is made through a database.

When a client is started, it sends a mapping packet to the RFProxy containing infor-
mation about its mapping. When both the physical and virtual elements of the mapping
are connected and registered to the server (figure 3.4), the client sends a message to RF-
Proxy update its local mapping table. Using this table, the proxy can forward received
messages to its respective correspondent.

Figure 3.4: How mapping between the physical and virtual networks occurs in RouteFlow.
Each client or datapath is assigned an idle status until its correspondent is registered,
leading both to a client-datapath association status. The server will ask the clients to
send a mapping message to the RFProxy, which will inform the server and update its
association table with the active association.

3.2.1 Messages

RouteFlow makes use of an IPC based on a NoSQL database for easy integration with
the main programming languages. The database used is MongoDB, as it is the default
database used in RouteFlow. Each database entry identifies a message from either RF-
Server or RFProxy to the other, containing a set of parameters, a destination field and a
read field that indicates whether the message has already been processed.

Figure 3.5 shows a representation of an IPC message flow between RFProxy and
RFServer:

• DatapathDown: used to inform RFServer that a physical switch has been discon-
nected from the controller;

• DatapathPortRegister: used to register a new physical switch port in RFServer;

• DataPlaneMap: used to inform RFProxy of a successful mapping between a physi-
cal and a virtual switch port;

Chapter 3. Routing Proxy for SDN 29

• RouteMod: used to trigger the configuration of a new route in the physical infras-
tructure;

• VirtualPlaneMap: used after receiving a mapping packet from a RFClient to inform
RFServer of a new possible mapping;

• PortRegister: implemented according to RFProtocol but not used as it is not yet
used for operation by RF-Server

• PortConfig: implemented according to RFProtocol but not used as it is not yet used
for operation by RF-Server

Figure 3.5: Representation of RFProtocol messages sent and received by the RFProxy
through the local database

3.2.2 Processing

There are several separate workflows that the RFProxy application can execute, depending
on the events received.

Figure 3.6 illustrates how RouteFlow processes events for adding switches.

Figure 3.6: Processing of an event to add a physical device that connected to network

30 Chapter 3. Routing Proxy for SDN

When RFProxy receives a message from the network, it verifies whether it is a map-
ping packet coming from a RFClient or if a normal message. In case it is the latter,
RFProxy forwards the message to the correspondent virtual or physical device if the map-
ping between both has already taken place. If it is a mapping packet (figure 3.7), it is
processed and passed to RFServer as a VirtualPlaneMap, containing the required param-
eters to perform a virtual to physical network mapping. If a normal packet (that is, not a
mapping packet) comes from either a virtual or physical switch, the proxy will check the
Association Table for the corresponding network element and forward the packet to it.

Figure 3.7: Processing of mapping packets

As for events received through the IPC, for each type of event RFProxy generates
a specific RFProtocol message that is inserted in the database for RFServer to process.
RFServer will read it and insert a response in return, to be executed by RFProxy. Figure
3.8 shows the execution flow of RouteFlow for RouteMod messages.

Figure 3.8: Processing of flow mod messages

Chapter 4

Security in BGP

4.1 Introduction

When BGP was designed, the internet was a secure place where all entities trusted each
other. As the internet grew, more and more cases of incorrect BGP announcements were
detected[33, 19, 41]. Since BGP was not designed to be secure, vulnerabilities started to
be discovered and attacks were successfully executed. Several works have summarized
the security limitations of BGP[15, 37, 12, 35] to the following:

• There is no mechanism to protect the integrity, freshness and authentication of mes-
sages.

• There is no way to verify the authority of an AS to advertise a prefix.

• Paths are not authenticated.

This set of limitations allows attackers to tamper with normal BGP behaviour through
BGP speakers or by attacking BGP sessions. Attacks against BGP sessions include mes-
sage insertion/forgery, deletion, modification, eavesdropping and replaying [45]. In a
forgery or insertion attack (figure 4.1a), the attacker inserts a forged, malicious message
into a BGP session with the intent of causing session failures or the insertion of wrong
routing information into the network. In a deletion attack (figure 4.1b), the adversary in-
tercepts and removes a message that is being exchanged by two peers, possibly leading to
inaccurate routing tables. For example, if a BGP update message containing a best path
for a peer is intercepted, the peer will accept a worst path as the best.

Eavesdropping (figure 4.2a) consists in passively listening data exchanged between
speakers in order to gain access to sensitive data such as policy and routing information.
In a modification attack (figure 4.2b), an adversary removes a message from a session
and reinserts it with erroneous information, which can lead to session failures and wrong
routing information being inserted in the network. Finally, replay attacks (figure 4.2c) are
performed by intercepting and storing a message exchanged in a BGP session and re-send

31

32 Chapter 4. Security in BGP

Figure 4.1: Representation of insertion/forgery (a) and deletion (b) attacks against BGP
speakers

it afterwards. This attack can be used to re-introduce withdrawn routes into the network,
withdraw valid routes or even to cause denial of service by replaying messages in bulks.

Figure 4.2: Representation of eavesdropping (a), modification (b) and replay (c) attacks
against BGP speakers

As for speakers, an attacker may use either authorized (valid BGP speakers) or unau-
thorized speakers to attack the network infrastructure. While attacks coming from unau-
thorized speakers can be prevented using data origin authentication and data integrity
mechanisms, attacks from authorized speakers are complicated to prevent since an au-
thorized speaker can run flawed software, be compromised, be accessible by a malicious
person or it may be misconfigured, causing involuntary disclosure of erroneous informa-
tion. Real examples of attacks performed by authorized speakers include prefix hijacking,
interception or data-plane attacks, described below. There are several other attacks against
BGP including de-aggregation, contradictory announcements, manipulation of route ex-
ports, etc., but we do not detail them here.

In a prefix hijacking attack, a malicious or misconfigured speaker announces a
forged UPDATE message containing an IP prefix that belongs to another AS (figure 4.3a).

Chapter 4. Security in BGP 33

Neighbors that receive this message will believe that the information is correct and run
the best path algorithm using the received path. If the new path is elected the best, the
AS will forward the traffic for that destination to an incorrect AS (figure 4.3b). Since cur-
rent BGP implementations do not prevent a speaker from announcing prefixes it does not
originate, these attacks are easy to perform and hard to detect. Independently of whether
the hijack is malicious or unintentional, it will result in partial or complete redirection
of traffic, in addition of easing the execution of other types of attacks including denial
of service (DoS), man-in-the-middle (MITM), spamming and interception of password
reset messages[45]. An example of this type of attack happened in 2009, when a Pak-
istani ISP hijacked traffic belonging to Youtube for over three hours due to an incorrect
advertisement[33].

Figure 4.3: In (a), AS 589 maliciously announces a prefix that it does not own to its
neighbors, that in (b) start to incorrectly sent traffic to AS 589 for the announced prefix,
resulting in traffic hijack.

Additionally, prefix hijacking attacks can be classified as complete or subprefix hi-
jacking attacks[32], depending on the sizes of the announced and original prefixes. In a
subprefix hijack, an AS announces a more specific prefix (prefix with a bigger network
section) owned by another AS. For instance, if an attacker announces a 24-bit prefix when
the original AS announced a 16-bit prefix, the first will be chosen due to the longest prefix
matching rule of BGP. Sub-prefix hijacks can be more effective as more specific prefixes
are chosen independently of the value of other parameters considered by the path selection
process[22].

In an interception attack, the attacker AS announces a malicious path for a correct
destination (figure 4.4a), that is, a path ending in the AS that owns the destination prefix
but that goes through the attacking AS. By doing so, the attacker may trick several ASes
into accepting this new path as best, so that it gains access to the information destined to
another AS (figure 4.4b).

34 Chapter 4. Security in BGP

Figure 4.4: In (a), AS 589 maliciously announces a path that ends in the rightful owner of
a prefix but traverses an incorrect path, so that in (b) its neighbors start incorrectly sending
traffic to the AS, that will send it through its correct route. Although the traffic reaches its
destination, AS 589 gains unauthorized access to data.

In a data-plane attack, a malicious AS announces a path and forwards traffic through
a different, more profitable route (figure 4.5). Since BGP does not validate whether an
AS forwards traffic through the path it announces, this attack is hard to prevent.

Figure 4.5: The attacker announces the blue path but incorrectly forwards through a dif-
ferent path

In conclusion, BGP is not secure by design and thus has several vulnerabilities that
have been exploited over the years, resulting in partial outages of services caused by the
different attacks.

4.2 Security Goals

In [45], the authors propose five security goals that should be guaranteed by any major
BGP security extension:

Chapter 4. Security in BGP 35

• AS Number authentication: it must be verifiable that an entity using an AS number
is its rightful owner;

• BGP Speaker Authentication: it must be verifiable that a BGP speaker uses an AS
number that was assigned to the AS it belongs to;

• Data Integrity: it must be verifiable that a BGP message has not been illegally
modified during transit;

• Prefix Origin Verification: it must be verifiable that an AS is the rightful owner of a
prefix;

• AS PATH Verification: It must be verifiable that an AS PATH was originated and
traversed through the AS sequence in the right order and that it does not violate
exporting policies.

A security solution that implements these security goals would prevent all known at-
tacks. However, guaranteeing these goals requires the usage of cryptographic mechanisms
that incur a large computational and storage overhead on network devices, resulting in a
delay of BGP convergence and packet processing times.

4.3 Previous solutions

Several protocol additions were proposed over the years, some were full proposals that
aim to fully secure BGP when all ASes implement the solution [27, 39, 48] and others
were partial proposals to guarantee protection against a set of attacks [44, 49, 50]. We
now describe some of these solutions following the work of [23], which organizes the
solutions from weakest to strongest: simple BGP (described in the Background section),
Origin Authentication, Secure Origin BGP, Secure BGP and Data-plane verification. Ad-
ditionally, we describe Defensive filtering as it can be crucial to securing the internet and
we propose it as future work.

4.3.1 Origin Authentication

Origin Authentication (OA)[12] consists in validating the delegation of prefixes to ASes
to verify if an AS only announces a prefix that was correctly assigned to it by IANA or
the rightful owner of the prefix. This is done through the use of origin authentication tags
(OATs), usually cryptographic proof that the AS is the rightful owner of a prefix.

An OAT is composed of a delegation path, a set of delegation attestations and an ASN
ownership proof. A delegation path is an ordered set of ASes that describes a delegation
chain from the last AS to the origin. Each delegation attestation in the set validates one
of the hops in the sequence, so every attestation would have to be validated in order to

36 Chapter 4. Security in BGP

guarantee origin authentication. An ASN ownership proof is a certificate produced by
IANA attesting that a set of AS numbers are assigned to a specific organization.

To ease revocation and distribution of attestations and ownership proofs, received up-
dates are validated using an external entity, usually a trusted repository or database. This
eliminates the need for a new message to distribute attestations and reduces the burden of
the protocol in ASes.

In conclusion, OA guarantees that an AS cannot falsely claims that it is the rightful
owner of a prefix, thus preventing prefix hijacking attacks. However, it is still possible to
perform interception and other attacks, as the protocol does not guarantee path verifica-
tion, BGP speaker authentication and AS Number authentication.

4.3.2 Secure Origin BGP

Secure Origin BGP (soBGP)[48] is a security extension for the BGP protocol with the
goal of guaranteeing IP prefix ownership and that any announced path physically exists
in the internet. It implements a web-of-trust model for authenticating AS public keys and
a hierarchical structure for verifying prefix ownership.

The security mechanisms of soBGP are based on three certificates: Entity, Policy and
Authorization, used to guarantee the existence of an entity, provide information about an
AS and to guarantee origin authentication, respectively. All three types of certificates
are distributed to the ASes through a newly defined message created to transport security
information, the SECURITY message.

Initially, a set of trusted public entities sign a number of root Entity certificates and
deliver them to a set of ASes using secure communication channels, usually out-of-band.
These certificates are trusted by all ASes and thus can be used by the owning ASes to
further sign Entity certificates, forming a web-of-trust.

Using Policy certificates, each speaker builds a topology map of possible paths to each
prefix. When receiving an UPDATE, speakers use the map to verify that the received
path physically exists. However, announcing a path that is correct but unavailable is not
detected by soBGP. An unavailable path is a path were at least one of the ASes is a
neighbor of, but has not announced a path to the next AS in the sequence and thus will
not pass traffic to it, leading to a blackhole.

soBGP provides the possibility for partial deployment since there are security benefits
when few ASes have adopted the protocol. Adopting ASes exchange certificates directly
through multihop BGP sessions or through some other mechanism, in order to be able
to validate IP prefixes and AS Numbers of the adopting ASes and guarantee partial path
plausibility.

Considering the security goals described above, soBGP guarantees Prefix Origination
Verification, AS Number Authentication, Data Integrity (through the use of IPSec) and
BGP Speaker Authentication, but does not guarantee AS PATH Verification (as only path

Chapter 4. Security in BGP 37

plausibility is guaranteed).
In conclusion, soBGP web-of-trust model provides a more flexible and dynamic dele-

gation and verification of certificates. However, it is questionable whether ASes should be
able to sign certificates on behalf of other ASes, as IP prefixes and AS Numbers are cur-
rently managed and assigned by the infrastructure described in section 1.1. Additionally,
it does not satisfy all security goals, it requires a change to BGP (and therefore requires
re-deploying speakers) by adding the SECURITY message and it provides no immediate
benefits to an AS that adopts the protocol.

4.3.3 S-BGP

S-BGP[27] is a secure, scalable and deployable architecture for authentication and autho-
rization of BGP information that addresses most of the security problems associated with
BGP. The architecture is based on two PKIs (Public Key Infrastructures), public entities
that will be responsible for the distribution and validation of digital certificates to orga-
nizations. Both PKIs parallel the existing IP prefix delegation infrastructure and use it to
delegate certificates.

Each AS receives a set of digital certificates from the PKIs that bind a public key,
an AS number and an IP prefix to the AS. Using this set of certificates, the AS creates
additional certificates: one to bind an AS number to an IP prefix, one for each speaker
belonging to the AS to authorize its announcements and one for each route (route at-
testations). All certificates except the last are distributed using out-of-band mechanisms
while route attestations are distributed in UPDATE messages for path validation. Route
attestations are carried through a new, optional path attribute that can be carried through
speakers that do not implement S-BGP (easing partial deployment). However, in order for
the approach to work, every speaker would have to be replaced by a new, updated speaker
that implements S-BGP and thus knows how to process the new field.

The protocol suffers from several deployment issues that have prevented its adoption:

• The memory size required to store certificates is too big for most currently deployed
commercial routers.

• The existing internet infrastructure would also need to be changed in order to be
able to provide services for the creation and validation of digital certificates.

• Replacing current speakers in order to deploy speakers that implement S-BGP is
unfeasible as it would cost too much and would possibly affect internet stability.

• signing and verifying all certificates and attestations is computationally expensive,
resulting in increase of BGP convergence times by a non-negligible amount.

S-BGP provides prefix origination verification and AS number verification through
address attestations, speaker authentication through router public key certificates, AS path

38 Chapter 4. Security in BGP

verification through route attestations and data integrity through IPSec. In sum, it guaran-
tees all BGP security goals and provides protection against most attacks, including prefix
hijacking and interception attacks. As such, S-BGP guarantees all properties of previous
solutions, but it does not implement a mechanism to verify if an AS respects its routing
policy when forwarding traffic, so it does not prevent data-plane attacks.

4.3.4 Data-plane verification

Data-plane verification[15, 49] is a defense mechanism that prevents an AS from an-
nouncing a path and forwarding traffic through another path. ASes may violate their ex-
porting policies in order to send traffic through a more profitable path, instead of through
its provider.

In [49] the authors offer a solution for this problem by allowing an AS to act as a
verifier for its packets, allowing it to contact an AS (the prover) in the announced path for
that destination to verify that the packet traversed it and its predecessor through tokens
in the message. By chaining this verification, the verifier could detect misbehavior. The
actions to take when such behavior occurs is left for each AS to decide.

This solution requires out-of-band pre-distribution of shared secrets between the ver-
ifier and the receiver, which may consume large storage space of each router but allows
cryptographic operations to be avoided for fast verification.

4.3.5 Defensive Filtering

Defensive filtering is a defense mechanism which limits the BGP announcements made
by stubs. Each transit AS keeps a list of the IP prefixes owned by their direct customers
that are stubs. Whenever the customer announces an IP prefix, the provider checks the
prefix list and in case the customer is not the owner for that prefix, the announcement is
dropped/ignored.

Additionally, this mechanism is orthogonal to other protocols, that is, it can be used
along with other security protocols like S-BGP.

Finally, if all transit ASes would implement this mechanism, all attacks performed by
stubs would be prevented, leading to a big increase in internet security.

4.4 BGP Security adoption issues

Although several proposals have been considered for adoption and there are real efforts
for the implementation of a RPKI (Resource Public Key Infrastructure)[31], which would
allow an easier deployment of protocols such as S-BGP, several issues slowed the adoption
of a security protocol. Reasons may vary from protocol to protocol, but we summarize
the three main deployment issues:

Chapter 4. Security in BGP 39

• The solution requires either a computational power or memory size that not all
currently deployed BGP speakers will be able to withstand;

• The solution incurs changes to the BGP protocol currently in use;

• The solution does not bring immediate security benefits for the adopting AS;

The first item describes the problem in adding cryptographic mechanisms and other
processing needs to current BGP speakers due to their computational power and memory
requirements. Some BGP speakers across the internet do not meet those requirements and
thus they would need to be replaced so the solution could be implemented.

In addition to having less memory and computational power than it would be required,
speakers only have the standard BGP protocol installed and ready to use. As such, if a
new and enhanced protocol was to be deployed, it would have to be replaced in all the
deployed infrastructure.

Finally, most solutions provide security benefits only after a set of ASes adopt the
protocol and each AS provides security for the other ASes instead of for itself.

Chapter 5

Securing BGP in SDN

The ease of innovation and deployment of new network protocols and architectures of-
fered by SDN provides a clear alternative path to improve internet security. In this section
we propose BGPSec1, an SDN application that will run on the OpenDaylight controller
prevent prefix hijacking attacks by providing prefix origination verification to the network.

The design of this solution aims to tackle two of the three main issues that prevented
the deployment of BGP security solutions so far, by

1. Offloading the security task to the controller without switch intervention;

2. Requiring no changes to the BGP protocol;

Indeed, these two issues are solved by the adoption of a SDN architecture. First, se-
curity is provided through an application running on top of the controller instead of as a
decentralized protocol running in switches. Hence, the additional processing is performed
by the controller. Which, by residing in normal servers, typically has higher computa-
tional power and memory space than network devices. Second, by adding these features
through a separate application, it is not required to change the protocol.

To prevent prefix hijacking we leverage on the existing RPKI infrastructure [31] and
automate the process of real-time verification of IP prefix ownership. The RPKI is an in-
frastructure that results from the effort of the IETF SIDR group to build a trusted mapping
from an IP prefix to the AS that is authorized to announce it. Currently, the RPKI only
covers around 5% of existing ASes [7], but it is growing at a steady pace. For example,
the number of objects in the RPKI has doubled in the last 18 months[9]. The use of an
RPKI offeres the means to solve a part of current internet attacks, including the mentioned
in the beginning of the previous chapter [33, 19, 41].

1https://github.com/tiagoposse/sdnbgpsec

41

42 Chapter 5. Securing BGP in SDN

5.1 Architecture

The architecture of the application we propose is represented in figure 5.1. The applica-
tion is divided in two modules: database synchronization and packet verification. The first
is responsible for synchronizing a local database with the global RPKI so that verifications
can be done locally, avoiding the overhead of accessing the RPKI for each request. This
module also provides an HTTP API for database lookups. The packet processing mod-
ule is responsible for listening and processing BGP announcements and perform prefix
verification in the local database.

Figure 5.1: Overview of the BGPSec application

The application point of entrance is the packet processing module. Upon startup,
BGPSec registers itself as a service in the OSGi framework (figure 5.2) for other modules
to use, providing an interface with methods to validate packets.

Figure 5.2: Overview of the BGPSec application

Chapter 5. Securing BGP in SDN 43

5.2 Implementation

The database synchronization feature is implemented using the RIPE-NCC RPKI valida-
tor tool [6], which acts on the global RPKI managed by the RIRs. The tool automatically
accesses and downloads resources from the RPKI and stores them in a local database for
faster access. Additionally, the validator tool has a sixty minutes time-to-live (TTL) on its
database entries, after which it queries the global RPKI in order to update the database.
With the objects added in the past 18 months, the update rate is roughly 1,2 updates ev-
ery 2 hours, we decided one hour would be effective at keeping the database in sync,
especially considering the default for the RPKI TTL is 3 hours.

The packet processing module is implemented in Java and has the following compo-
nents:

• Handler: responsible for verifying if the message received is a BGP UPDATE and,
if so, extracting the NLRI information and passing it to the MessageParser for vali-
dation.

• MessageParser: responsible for parsing and verifying the correctness of BGP UP-
DATE messages, called the RPKI to validate origin information

When the application receives a packet (Figure 5.3), it retrieves the contained BGP
information and verifies if the message length is within bounds, after which the message
is parsed and the cache is checked for the AS number and IP prefix pair contained in the
message. If no result is found, the application performs an HTTP call to query the RPKI
validator tool and returns whether the pair is a VALID, INVALID or UNKNOWN ROA. For
a valid or an unknown result, the application finishes processing the packet and returns
the result to the calling application. We allow unknown results to be return because the
RPKI is still incomplete. In case of invalid result, the application returns invalid to the
calling application, causing it to drop the packet. After the result is received, it is stored
in the cache.

Figure 5.3: BGP UPDATE messages received by speakers are passed to the controller,
which verifies its validity by checking the cache first and the local database if needed.

An IP prefix and AS number pair will be valid in case it is verified by one or more

44 Chapter 5. Securing BGP in SDN

ROAs in the RPKI or invalid in case there is at least one ROA that states the prefix as
invalid. The result will be unknown if no ROA contains information about the pair.

Chapter 6

Evaluation

In this chapter we present and analyze functionality and evaluation tests made to both the
RFProxy and BGPSec applications.

Tests were performed on an Intel Core 2 Duo CPU, running Ubuntu 12.04 (recom-
mended by RouteFlow) with a 2.93 GHz CPU and 4 GB of memory.

6.1 RFProxy

We divide our tests in two parts to both assess the functionality of our implementation
and provide statistics for evaluation purposes. For functionality tests, we run the available
example topologies provided by the RouteFlow organization: rftest1 and rftest2 and use
Mininet Hi-Fi to emulate a network using the same topology of each test to provide a
data-plane layer for the controller to work on top of.

For evaluation purposes, we designed and ran a small, a medium and a large topol-
ogy and tracked CPU and memory usage and the average time it takes for a flow to be
configured following a packet in event.

6.1.1 Testing

The rftest1 and rftest2 tests are provided along with the RouteFlow code for the RFServer
and RFClients. Each test consists in a script and a set of configuration files that will setup
the database, start the virtual hosts, define the mapping between clients and physical hosts
and provide topology information for mininet to create an emulated network.

The first test creates a simple topology with two hosts connected by a single switch,
while the second creates a more complicated topology (figure 6.1) using a set of four hosts
and four switches.

45

46 Chapter 6. Evaluation

Figure 6.1: Small topology. The topology consists of 4 switches and 4 virtual hosts

Both tests were successful and resulted in a correct routing configuration where every
host in the network was able to reach every other host.

6.1.2 Evaluation

Evaluating the performance of our RFProxy implementation required the use of the third-
party tools cbench1 and YourKit java profiler. Cbench provides a configurable benchmark
platform that creates switches and uses them to send a variable amount of messages to
the controller. YourKit provides statistics about CPU and memory utilization of a java
application.

For the first test, we used the same topology of rftest2, while for the second test and
third tests, we used a topology with 16 interconnected datapaths (figure 6.2), but mapped
to different amounts of virtual hosts, taking advantage of RouteFlow ability to map several
datapaths to a single virtual host. In this case, each virtual host represents four datapaths
(figure 6.3). Finally, for the third test, we used the same 16 switches mapped to 8 virtual
hosts (figure 6.4), to analyze the effect of growing the virtual network and compare the
CPU and memory usage.

Figure 6.2: Large topo. Topology of the physical network for the second and third tests
to RFProxy, composed of 16 interconnected switches.

1https://github.com/andi-bigswitch/oflops/tree/master/cbench

Chapter 6. Evaluation 47

Figure 6.3: Topology of the virtual network for the second test, composed of 4 intercon-
nect virtual hosts.

Figure 6.4: Topology of the virtual network for the third test, composed of 8 interconnect
virtual hosts.

As we said, we used cbench to simulate the different scenarios and perform tests.
Each test result depicts the moment from when cbench started, after which the network
is subject to mapping by RouteFlow and the test begin as soon as a switch is correctly
mapped. In Figures 6.5, 6.6 and 6.7 we present the results for the three tests made to
RFProxy:

Figure 6.5: CPU utilization of the RFProxy tests.

48 Chapter 6. Evaluation

The marks in the figure refer to the following events:

1. Cbench starts sending packets

2. The setup of the topology finishes

3. Test finish;

These results show that as we increase the number of datapaths and virtual hosts, the
CPU usage increases as RFProxy is subject to higher loads, as expected. We were unable
to test with more than 8 virtual hosts, as the computer did not withstand the interrupt
load of the virtual hosts. In fact, it can be observed that the largest topology finishes
the mapping between networks after the other two, due to the higher load caused by the
virtual machines.

Figure 6.6: Memory utilization of the RFProxy tests.

Results for memory utilization are as expected, with the smaller topology achieving
the lowest memory utilization, while the larger topology with 8 virtual hosts uses the most
memory.

Figure 6.7: Comparison between the results of throughtput (latency mode) of the three
tests.

Chapter 6. Evaluation 49

In latency mode, each emulated switch maintains exactly one outstanding new flow
request, waiting for a response before soliciting the next request. Latency mode measures
the OpenFlow controller request processing time under low-load conditions, providing an
indicator on how many transactions (packet in + flow mod) were generated in one second.

In RouteFlow, packet in messages generate ARP requests and wait for the correspond-
ing responses before sending flow mods to the switches, adding a delay. The results show
that for the large topology with four virtual hosts, the average number of flows mod mes-
sages per second was 648, translating to 1 \ 648(∗1000) ≈ 1.54ms of latency. For the
large topology with eight virtual hosts, the average number of flow mods per second was
1410, translating to 1 \ 1410(∗1000) ≈ 0.71ms of latency. We conclude that a larger vir-
tual topology reduces the load on virtual hosts and thus improves the number of flow mod
responses (and ARP requests/responses) that each virtual host can process. In this case,
the latency reduction factor was significant, approximately 2.17.

6.2 BGPSec

As with the RFProxy implementation, we divided our tests in two parts, one to assess
BGPSec functionality and the other to evaluate its performance and overhead.

6.2.1 Testing

To test whether the application is working correctly, we introduced code snippets into
RFProxy to call BGPSec, so that it processes and validates BGP messages before passing
them to the virtual hosts for routing. We used the same topology as with the first test
of RFProxy (figure 6.1), and used the bgpsimple2 tool to inject BGP packets into the
network. We injected an invalid, a valid and an unknown packet into the network and
checked the results of the validations and whether the routes were configured in case the
result was valid. We could verify that the invalid packet was dropped, while the valid and
unknown packets were correctly parsed and the corresponding routes were configured.

6.2.2 Evaluation

We consider the overheads that the application may introduce in the environment and
determined three metrics to evaluate: CPU and memory usage and average time per packet
processing (the time it takes for the application to completely process a packet).

The original dataset used for tests was obtained from the RIPE NCC Routing Infor-
mation Service3, which stores real BGP data collected from several locations around the
world.

2https://code.google.com/p/bgpsimple/
3http://www.ripe.net/data-tools/stats/ris

50 Chapter 6. Evaluation

For our first evaluation test we used a single speaker to advertise 1000 UPDATE mes-
sages to the network. For the second evaluation test we used a single speaker to send
5000 UPDATE messages. Finally, for the last evaluation test we used three speakers,
each sending 5000 UPDATE messages against the network.

Figure 6.8: CPU utilization of the BGPSec tests.

The marks refer to the following events:

1. All tests start;

2. The singler-peer, small load test finishes;

3. The remaining tests finish;

Since we used a single advertising peer for tests one and two, the CPU usage (figure
6.8) is similar between them, as opposed to the third test. The use of additional peers
caused an increase of CPU usage to a peak of 40%, while the first and second tests peeked
at 32% and 31% respective, proving that additional peers will cause more load on the
controller. The gradual drop of CPU usage in the third test is caused by the three peers
not finishing at the same time, leading to a slight drop each time a peer finished its packet
injection.

Figure 6.9: Memory utilization of the BGPSec tests.

Chapter 6. Evaluation 51

The memory utilization results (figure 6.9) show no significant variation, hence mem-
ory is not the bottleneck. Indeed, as long as there is room for the RPKI data in the
in-memory database, processing poses no additional overhead.

Figure 6.10: Comparison between the processing time results of the three tests.

As can be seen in figure 6.10, an average of 6ms was spent querying the RPKI to
validate the BGP announcement just received. This represents, on average, half of the
total processing time. Anyway, the the scale of the total processing time is still relatively
insignificant between 10 and 15ms

Chapter 7

Final Remarks

7.1 Conclusions

In this work we propose two applications for the OpenDaylight SDN controller: RF-
Proxy and BGPSec. RFProxy is a component of the RouteFlow routing platform which
is responsible for integrating the platform with the controller and manage the physical
infrastructure. To prove the feasibility and provide an evaluation of the application, we
used a set of third-party tools to generate switch traffic in the network. The drawback for
RFProxy is the CPU usage increase when the network is created and RouteFlow is trying
to route and converge the hosts. However, this increase in CPU is temporary and will drop
when the network converges, to a point where it is negligible.

We studied several BGP security issues and vulnerabilities and provided a clear view
of several attacks and security solutions for the protocol. We further provide reasons
for why these solutions have not yet been adopted based on our study and use these
reasons as guidelines to propose a SDN security application: BGPSec. This application
provides protection against IP prefix hijacking by using the existing global RPKI managed
by the RIRs, enabling on-demand local verification of BGP information received from this
trusted repository. Although the solution incurs minimal processing overheads, the main
issue today is the completeness of the RPKI, which features only around 5% of existing
ASes. Even though this number is still low, its rate of increase gives reason to suspect this
solution will become more important in the future.

7.2 Future Work

As a future work, RFProxy should be extended to support the RouteFlow monitor com-
ponent, a new feature that will eventually be implemented by RouteFlow, as well as the
PortRegister and PortConfig messages. Additionally, recent more recent RouteFlow im-
plementations include support for multiple controllers, which our implementation did not
account for. ElectMaster and ControllerRegister messages should be implemented to

53

54 Chapter 7. Final Remarks

support the existence and management of several controllers with RFProxy.
Additionally, we would like to extend BGPSec to also allow network administrators

to define BGP preference rules based on the verification result instead of automatically
dropping/accepting routes. This provides a more flexible route management. Finally,
studying the impact of using a cache would also be interesting.

We are in the process of submitting RFProxy to the OpenDaylight project as an official
project for the Service Provider edition.

Bibliography

[1] CIDR report as of 28 of July 2014.

[2] GNU Quagga Project. http://www.quagga.org.

[3] Open Networking Foundation. https://www.opennetworking.org/.

[4] Opendaylight technical overview. http://www.opendaylight.org/

project/technical-overview.

[5] OSGi framework. http://www.osgi.org/Main/HomePage.

[6] RIPE NCC RPKI Validator. http://www.ripe.net/lir-services/

resource-management/certification/tools-and-resources.

[7] RIPE Network Coordination Centre Statistics. http://

certification-stats.ripe.net/.

[8] RouteFlow platform. https://sites.google.com/site/RouteFlow.

[9] RPKI Spider Deployment Growth. http://rpkispider.verisignlabs.

com/growth.html.

[10] OpenDaylight: A Linux Foundation Collaborative Project. http://www.

opendaylight.org, 2013.

[11] Project Floodlight. http://www.projectfloodlight.org/

floodlight/, 2013.

[12] William Aiello, John Ioannidis, and Patrick McDaniel. Origin Authentication in
Interdomain Routing. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03, pages 165–178, New York, NY, USA, 2003.
ACM.

[13] T. Bates, R. Chandra, and E. Chen. BGP Route Reflection - An Alternative to Full
Mesh IBGP, 2000.

55

http://www.quagga.org
https://www.opennetworking.org/
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://www.osgi.org/Main/HomePage
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources
http://www.ripe.net/lir-services/resource-management/certification/tools-and-resources
http://certification-stats.ripe.net/
http://certification-stats.ripe.net/
https://sites.google.com/site/RouteFlow
http://rpkispider.verisignlabs.com/growth.html
http://rpkispider.verisignlabs.com/growth.html
http://www.opendaylight.org
http://www.opendaylight.org
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

56 Bibliography

[14] Theophilus Benson, Aditya Akella, and David Maltz. Unraveling the Complexity of
Network Management. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’09, pages 335–348, Berkeley, CA, USA,
2009. USENIX Association.

[15] K. Butler, T.R. Farley, P. McDaniel, and J. Rexford. A Survey of BGP Security
Issues and Solutions. Proceedings of the IEEE, 98(1):100–122, 2010.

[16] M. Caesar and J. Rexford. BGP Routing Policies in ISP Networks. Netwrk. Mag. of
Global Internetwkg., 19(6):5–11, November 2005.

[17] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,
and Jacobus van der Merwe. Design and Implementation of a Routing Control Plat-
form. In Proceedings of the 2Nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA, USA,
2005. USENIX Association.

[18] Danny Cooper, Ethan Heilman, Kyle Brogle, Leonid Reyzin, and Sharon Goldberg.
On the Risk of Misbehaving RPKI Authorities. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII, pages 16:1–16:7, New York,
NY, USA, 2013. ACM.

[19] J. Cowie. Rensys blog: China’s 18-minute mystery. http://www.renesys.

com/blog/2010/11/chinas-18-minute-mistery.shtml.

[20] Rohit Dube. A Comparison of Scaling Techniques for BGP. SIGCOMM Comput.
Commun. Rev., 29(3):44–46, July 1999.

[21] David Erickson. The Beacon Openflow Controller. In Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM.

[22] Christoph Goebel, Dirk Neumann, and Ramayya Krishnan. Comparing Ingress and
Egress Detection to Secure Interdomain Routing: An Experimental Analysis. ACM
Trans. Internet Technol., 11(2):5:1–5:26, December 2011.

[23] Sharon Goldberg, Michael Schapira, Peter Hummon, and Jennifer Rexford. How
Secure Are Secure Interdomain Routing Protocols. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages 87–98, New York, NY, USA,
2010. ACM.

[24] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rex-
ford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A Clean Slate 4D Ap-
proach to Network Control and Management. SIGCOMM Comput. Commun. Rev.,
35(5):41–54, October 2005.

http://www.renesys.com/blog/2010/11/chinas-18-minute-mistery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mistery.shtml

Bibliography 57

[25] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McK-
eown, and Scott Shenker. NOX: Towards an Operating System for Networks. SIG-
COMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[26] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. Reproducible Network Experiments Using Container-based Emulation.
In Proceedings of the 8th International Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’12, pages 253–264, New York, NY, USA,
2012. ACM.

[27] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (S-BGP). IEEE
Journal on Selected Areas in Communications, 18(4):582–592, 2000.

[28] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A Distributed Control Platform for Large-scale Production
Networks. In Proceedings of the 9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX
Association.

[29] Diego Kreutz, Fernando M. V. Ramos, Paulo Verı́ssimo, Christian Esteve Rothen-
berg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined Networking: A
Comprehensive Survey. To appear in Proceedings of the IEEE, 2015.

[30] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop: Rapid
Prototyping for Software-defined Networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New
York, NY, USA, 2010. ACM.

[31] M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet Routing,
February 2012.

[32] Qi Li, Mingwei Xu, Jianping Wu, Xinwen Zhang, Patrick P. C. Lee, and Ke Xu.
Enhancing the Trust of Internet Routing with Lightweight Route Attestation. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communi-
cations Security, ASIACCS ’11, pages 92–101, New York, NY, USA, 2011. ACM.

[33] M. A. Brown. Rensys Blog, “Pakistan hijacks YouTube.”. http:

//www.renesys.com/blog/2008/02/pakistan_hijacks_

youtube_1.shtml.

[34] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innova-

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

58 Bibliography

tion in Campus Networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008.

[35] S. Murphy. BGP Security Vulnerabilities Analysis, January 2006.

[36] Marcelo R. Nascimento, Christian E. Rothenberg, Rodrigo R. Denicol, Marcos R.
Salvador, and Maurı́cio F. Magalhães. RouteFlow: Roteamento Commodity So-
bre Redes Programáveis. XXIX Simpósio Brasileiro de Redes de Computadores -
SBRC’2011.

[37] Ola Nordström and Constantinos Dovrolis. Beware of BGP Attacks. SIGCOMM
Comput. Commun. Rev., 34(2):1–8, April 2004.

[38] Ricardo V. Oliveira. Understanding the Internet As-level Structure. PhD thesis, Los
Angeles, CA, USA, 2009. AAI3384046.

[39] P.C. van Oorschot, Tao Wan, and Evangelos Kranakis. On Interdomain Routing
Security and Pretty Secure BGP (psBGP). ACM Trans. Inf. Syst. Secur., 10(3), July
2007.

[40] Open Networking Foundation. Software-Defined Networking: The New Norm for
Networks. White paper, Open Networking Foundation, Palo Alto, CA, USA, April
2012.

[41] T. Paseka. Cloudflare blog: Why google went of-
fline today. http://blog.cloudflare.com/

why-google-went-offline-today-and-a-bit-about, Novem-
ber 2012.

[42] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, IETF,
March 1995.

[43] Christian E. Rothenberg, Marcelo R. Nascimento, Marcos R. Salvador, Carlos N. A.
Corrêa, Sidney C. De Lucena, and Robert Raszuk. Revisiting routing control plat-
forms with the eyes and muscles of software-defined networking,” ser. HotSDN ’12.
ACM, pages 13–18.

[44] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott Shenker, and
Randy H. Katz. Listen and Whisper: Security Mechanisms for BGP. In NSDI,
pages 127–140. USENIX, 2004.

[45] P.C. van Oorschot T. Wan and E. Kranakis. A Selective Introduction to Border
Gateway Protocol (BGP) Security Issues. In NATO Advanced Studies Institute on
Network Security and Intrusion Detection, Oct 2005.

http://blog.cloudflare.com/why-google-went-offline-today-and-a-bit-about
http://blog.cloudflare.com/why-google-went-offline-today-and-a-bit-about

Bibliography 59

[46] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed Control Plane
for OpenFlow. In Proceedings of the 2010 Internet Network Management Confer-
ence on Research on Enterprise Networking, INM/WREN’10, pages 3–3, Berkeley,
CA, USA, 2010. USENIX Association.

[47] Allan Vidal, Fábio Verdi, Eder Leão Fernandes, Christian Esteve Rothenberg, and
Marcos R. Salvador. Building upon RouteFlow: a SDN development experience.
XXXI Simpósio Brasileiro de Redes de Computadores - SBRC’2013, 98, May 2013.

[48] R. White. Securing BGP through secure origin BGP (soBGP). BUSINESS COM-
MUNICATIONS REVIEW, 33(5):47–53, 2003.

[49] Edmund L. Wong, Praveen Balasubramanian, Lorenzo Alvisi, Mohamed G. Gouda,
and Vitaly Shmatikov. Truth in Advertising: Lightweight Verification of Route In-
tegrity. In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’07, pages 147–156, New York, NY, USA, 2007.
ACM.

[50] Zheng Zhang, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao. Practical Defenses
Against BGP Prefix Hijacking. In Proceedings of the 2007 ACM CoNEXT Confer-
ence, CoNEXT ’07, pages 3:1–3:12, New York, NY, USA, 2007. ACM.

	List of Figures
	List of Tables
	Introduction
	Internet Structure
	Traditional Networks
	Software-Defined Networking
	Routing
	Border Gateway Protocol

	Goals and contributions
	Planning

	Background
	OpenFlow
	SDN controllers
	NOX
	Beacon
	Floodlight
	OpenDaylight

	RouteFlow
	Mininet Hi-Fi

	Routing Proxy for SDN
	Architecture
	Implementation
	Messages
	Processing

	Security in BGP
	Introduction
	Security Goals
	Previous solutions
	Origin Authentication
	Secure Origin BGP
	S-BGP
	Data-plane verification
	Defensive Filtering

	BGP Security adoption issues

	Securing BGP in SDN
	Architecture
	Implementation

	Evaluation
	RFProxy
	Testing
	Evaluation

	BGPSec
	Testing
	Evaluation

	Final Remarks
	Conclusions
	Future Work

	Bibliography

