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Abstract—A well-known problem of network traffic repre-
sentation over time is that there is no “one-fits-all” model.
The selection of the “best” model is traditionally made in a
time-consuming and ad-hoc manner by human experts. In this
work, we evaluate the feasibility of using Bayesian Information
Criterion (BIC) and Akaike Information Criterion (AIC) as tools
for automated selection of the best-fit stochastic process for inter-
packet times. We propose and validate a methodology based on
Information Criteria, resulting in an automated and accurate
approach for such traffic modelling tasks.

Index Terms—BIC, AIC, stochastic function, inter-packet
times, Hurst exponent.

I. INTRODUCTION

Traffic identification [1] and generator tools [2] [3] rely
on a set of pre-defined stochastic models to set the packet
classification/generation rules by configuring packet bursts and
inter-packet times. Studies show that realistic network traffic
provides different and more variable load characteristics on
routers [4], even for the same average bandwidth. Bursty traffic
can cause more packet buffer overflows on a given network
[5], resulting in higher network performance degradation than
under constant-rate traffic [4].

Many efforts have been devoted to understanding the traffic
nature, which has been proved to be self-similar and fractal
[6] [7]. Classical network traffic models based on Poisson
related processes cannot express well this type of scenarios.
Therefore, research has been devoted to processes with high-
variability [8]. For example, the use of heavy-tailed stochastic
processes, such as Weibull, Pareto, and Cauchy, have non-
exponentially bounded distributions [3] and can guarantee
self-similarity via Joseph and Noah effects [8]. However,
they do not necessarily ensure correlation on other quality
measures between the model and the actual traffic, such as
the average packet rate [9]. There are works that advocate for
the use of Cauchy [5], Weibull [10], Bivariate gamma [11],
and Moravian-related process [12], just to cite some.

While there is an extensive amount of study-cases on
network traffic modeling, there is a gap of suitable generic
methods for automating the choice of the “best” model. Spe-
cific models valid for some research studies do not guarantee
that the same model will apply for new cases. Investigations
point to the opposite direction: a change in the scenario can
change the best model as well [5] [10]. Since no “one-fits-
all” model is viable, the status quo of traffic modeling is

to be done on an ad-hoc manner by human specialists [13].
Another option would be to simulate all outputs a given set of
random processes and choose the model that best fits the data.
However, this task turns into a research project itself, involving
definition of metrics, random-data generation, cross-validation
methods, repetitions to guarantee high confidence intervals,
and so on. Therefore, such an approach is not practical if that
is not the primary research target.

In this work, we propose and evaluate the use of the
Information Criteria (IC), more specifically BIC (Bayesian
Information Criterion) and AIC (Akaike Information Crite-
rion) [14], as suitable methods for automated model selection
for network traffic inter-packet times. Being analytic and
deterministic methods which spare model designer humans in
the loop, they are also simple to implement and do not rely
on hypothesis testing. In addition, We define a cross-validation
method based on a cost function J , which acts as an aggregator
of traditional and key metrics used for validation of stochastic
models and traffic samples. J assigns weights from the best to
the worst representation for each property of each trace model
by using randomly generated data with our stochastic fittings.
Through this process, we choose the best-fitted traffic model
under evaluation. Afterward, we compare the results achieved
by AIC/BIC and our cost function. Given the aforementioned
approach, we show that AIC/BIC methods provide an accurate
stochastic process selection strategy for inter-packet times
models. Some marginal caveats include limiting our work to
independent, and identical distributed random variables, since
they are commonly used to describe network traffic [5] and are
widely supported in traffic generators [2]. Information criteria
on more complex models such as Markov-chain and envelope
processes [15] have been left for future work.

II. A PRIMER ON BIC AND AIC

Let M represent a statistical model of some dataset
x = {x1, ..., xn}, with n independent and identically dis-
tributed observations of a random variable X . This model can
be expressed by a probability density function (PDF) f(x|θ),
where θ is a vector of the PDF’s parameters, θ ∈ Rk (k is
the θ’s dimension). The likelihood function of this model M
is given by [14]:

L(θ|x) = f(x1|θ) · ... · f(xn|θ) =
n∏

i=1

f(xi|θ) (1)



The goal is to estimate the best statistical model, from the
set {M1, ...,Mn}, where each one has an estimated vector of
parameters θ̂1, ..., θ̂n. AIC and BIC are defined by:

AIC = 2k − 2 ln(L(θ̂|x)) (2)

BIC = k ln(n)− 2 ln(L(θ̂|x)) (3)

In both cases, the preferred model Mi, is the one with the
smaller value of AICi or BICi.

III. METHODOLOGY

We used four packet captures (pcaps) to extract inter-packet
times we used in this work, where three of them are publicly
available. The first one is a Skype packet capture1, which we
name skype-pcap. The second one is a CAIDA capture2, from
which we use its first capture second3, referred to as wan-pcap.
The third one is a capture of a busy private network Internet
access point4, which is referred as lan-gateway-pcap. Finally,
we capture the last traffic trace at our INTRIG/UNICAMP
laboratory LAN through a period of one hour on a firewall
gateway. We call it lan-firewall-pcap. All the developed scripts
and data sets are publically available [16], for reproducibility
purposes. The results were obtained using the Octave tool.5 We
retrieved inter-packet times from the traffic traces and divided
them into two equally sized datasets. to avoid data over-fitting,
we use odd-indexed elements as training dataset, and even-
indexed as cross-validation dataset. We then apply the training
dataset on several techniques for model estimation:

• Weibull, exponential, Pareto and Cauchy distributions:
We use linear regression through the Gradient descendent
algorithm. Also, we refer to these exponential and Pareto
approximations as Exponential (LR) and Pareto (LR);

• Normal and exponential distributions: We approximate
the mean and variance by the average and standard
deviation on the normal, and the rate by the inverse of the
average on the exponential, we refer as Exponential (Me);

• Pareto distribution: We use the maximum likelihood
method, which we refer to as Pareto (MLH);

Given the seven models (hypothesis) above, we then com-
pute a quality ranking to evaluate AIC and BIC using the
cross-validation dataset. To validate the information criteria
effectiveness, we develop a weight system based on traditional
methodologies for model quality verification and synthetic
traffic validation [9] [6]. First, we randomly generate datasets
following each stochastic processes hypothesis resulting in the
synthetic inter-packet times, which are then compared with the
cross-validation dataset based on the following metrics:

1Available at https://wiki.wireshark.org/SampleCaptures, named
SkypeIRC.cap

2http://www.caida.org/home/
3Available at https://data.caida.org/datasets/passive-2016/equinix-chicago/

20160121-130000.UTC, named as equinix-chicago.dirB.20160121-
135641.UTC.anon.pcap.gz

4Available at http://tcpreplay.appneta.com/wiki/captures.html named
bigFlows.pcap

5https://www.gnu.org/software/octave/

• The Pearson’s product-moment coefficient between the
sample data and the estimated model. The closer to one,
the better;

• Hurst exponent estimation, via range re-scaling. The
closer to the cross-validation Hurst value, the better;

• Average inter-packet time. The closer to the cross-
validation dataset average, the better.

We choose these metrics according to traffic standards on
realism and benchmarking [9]. The “Pearsons product-moment
coefficient” is a measure of the correlation6 between datasets.
The Hurst exponent is a measure of self-similarity [6]7 and
indicates the fractal level of the distribution of inter-packet
times within a trace. Finally, a trace’s average inter-packet
time is inversely proportional to its packet rate. The closer
the model’s average inter-packet is to the original, the closer
will also be its packet rate and throughput [9]. We consolidate
all these metrics in a best-effort weight system, we call cost
function J . Let Cr be the array of correlations between
the randomly generated data and the cross-validation dataset,
sorted from the better (greater) to the worst (smaller). Let
Me and Hr be defined as vectors of absolute difference of
the mean and Hurst exponent between the synthetic and the
cross-validation dataset. These vectors are sorted: the lower
the differences, the better the model hypothesis represents
the same cross-validation measured metric (throughput and
fractal-level). Letting φ(V,M) be an operator giving the
position (starting from 0) of a model M in a vector V , we
define the cost function J as:

J(M) = φ(Cr,M) + φ(Me,M) + φ(Hr,M) (4)

To illustrate an example application, suppose a model m1

with the best correlation, second and third smaller values of
Hr and Me, respectively, would result in: J(m1) = 0+1+2 =
3. Therefore, the smaller J , the better the model to represent
a wide range of different metrics, since it consolidates many
widely adopted metrics [9] in a single value or ranking. The
estimation of these values was repeated 30 times, with a
confidence interval of 95%, small enough to not interfere
with the results. If the information criteria and J returns
related results, this is interpreted as a strong indication of the
reliability and robustness of AIC and BIC.

IV. RESULTS

Table I summarizes the estimates obtained for AIC, BIC,
and the stochastic process estimated parameters for all pcap
traces. Each model order is graphically presented in Figure
1. For all pcap experiments, we verify that the difference
between BIC and AIC for a given function is always smaller
than its value among different distributions. As shown in the
table I, AIC and BIC criteria always pointed to the same
model ordering. Table II presents the percentage difference
between the obtained values. We verify that their values tend
to converge when the dataset increases.

6Octave’s function corr()
7Octave’s function hurst(), which uses the re-scaled range method.



TABLE I: Experimental results, including the estimated parameters and the BIC and AIC values of the four pcap traces.

Trace
Function AIC Parameters AIC BIC Parameters

skype-pcap lan-firewall-pcap
Cauchy 6.94E + 03 6.95E + 03 γ : 1.71E − 04 x0 : 1.88E − 01 −2.29E + 05 −2.29E + 05 γ : 1.93E − 02 x0 : −4.97E − 02
Exponential(LR) −4.70E + 01 −4.28E + 01 λ : 1.79E + 00 −2.22E + 06 −2.22E + 06 λ : 4.05E − 01
Exponential(Me) −2.16E + 02 −2.12E + 02 λ : 3.45E + 00 3.63E + 05 3.63E + 05 λ : 1.13E + 02
Normal 1.21E + 03 1.22E + 03 µ : 2.90E − 01 σ : 6.95E − 01 −1.48E + 06 −1.48E + 06 µ : 8.85E − 03 σ : 3.49E − 02
Pareto(LR) 3.38E + 03 3.39E + 03 α : 4.28E − 01 xm : 5.00E − 08 Inf1 Inf1 α : 2.51E − 01 xm : 5.00E − 08
Pareto(MLH) 1.88E + 02 1.97E + 02 α : 7.48E − 02 xm : 5.00E − 08 −1.80E + 06 −1.80E + 06 α : 1.15E − 01 xm : 5.00E − 08
Weibull −1.15E + 03 −1.14E + 03 β : 9.68E − 02 −1.97E + 06 −1.97E + 06 α : 3.46E − 01 β : 1.79E − 03

lan-gateway-pcap wan-pcap
Cauchy 3.65E + 06 3.65E + 06 γ : 1.95 x0 : −4.45E + 03 2.99E + 07 2.99E + 07 γ : 8.17E + 02 x0 : −4.45E + 03
Exponential(LR) 3.67E + 06 3.67E + 06 λ : 9.75E − 03 2.84E + 07 2.84E + 07 λ : 2.20E − 05
Exponential(Me) −5.44E + 06 −5.44E + 06 λ : 2.64E + 03 −3.29E + 07 −3.29E + 07 λ : 6.58E + 05
Normal −4.67E + 06 −4.67E + 06 µ : 3.79E − 04 σ : 1.00E − 06 −3.19E + 07 −3.19E + 07 µ : 2.00E − 06 σ : 1.00E − 06
Pareto(LR) −5.13E + 06 −5.13E + 06 α : 1.49E − 01 xm : 5.00E − 08 4.51E + 07 4.51E + 07 α : 4.00E − 142 xm : 5.00E − 08
Pareto(MLH) −5.13E + 06 −5.13E + 06 α : 1.36E − 01 xm : 5.00E − 08 −3.13E + 07 −3.13E + 07 α : 3.39E − 01 xm : 5.00E − 08
Weibull −5.50E + 06 −5.50E + 06 α : 2.81E − 01 β : 1.00E − 06 −2.73E + 07 −2.73E + 07 α : 7.64E − 02 β : 1.00E − 06
1 The computation of the likelihood function has exceeded the computational precision used, so it was the highest AIC and BIC for this trace.
2 The linear regression did not converge to a valid value, so we used a small value instead to perform the computations.

TABLE II: Relative difference(%) between AIC and BIC.

skype-pcap lan-gateway
-pcap wan-pcap lan-firewall

-pcap
Weibull 7.47E − 01 3.96E − 04 8.86E − 05 9.21E − 04
Normal 7.04E − 01 4.66E − 04 7.58E − 05 NaN

Exponential(LR) 9.54E + 00 2.97E − 04 4.26E − 05 2.81E − 03
Exponential(Me) 2.00E + 00 2.00E − 04 3.68E − 05 6.90E − 04

Pareto(LR) 2.53E − 01 4.25E − 04 5.36E − 05 1.13E − 03
Pareto(MLH) 4.45E + 00 4.25E − 04 7.74E − 05 1.04E − 03

Cauchy 1.23E − 01 5.97E − 04 8.08E − 05 8.90E − 03
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Fig. 1: Comparison of the quality order of each model given
by AIC and BIC
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Fig. 2: Cost function for each one of the datasets used in this
validation process.

Figure 2 illustrates the cost function values for all the
models on each pcap file. For example, for skype-pcap, BIC
and AIC point that Weibull and Exponential (Me) are the

best representation for the traffic trace. The cost function
used for cross-validation points both as best options, along
with Exponential (LR). To simplify the visualization and
comparison of the differences between the rankings given
by both methodologies, Figure 3 presents a chart with the
relative differences from the order of each model. Taking
as a reference the position of each model given by J , we
sorted them from the better to the worst (0 to 6, on the
x-axis), and measured the position distance with the ones
given by the information criteria. Since the worst case for this
value is 6 (opposite correspondence), we draw a line on the
average: the expected value in the case no positive or negative
correspondence existed between both information criteria and
J . Using the φ operator, as defined before, we can calculate
the ranking delta, as explained, for the i-th model by:

δ(mi) = φ(Jv,mi)− φ(IC,mi) (5)

where Jv and IC are the ordered pairs vectors on models
and cost functions/information criteria, from the best to the
worst, respectively. We can observe that in most cases, the
information criteria and the cost function choose the best
models in a similar order. A hypothesis ranked as good by
one tends to be ranked also as good by the other. For the 28
possible study cases, 19 (68%) resulted in the same ranking or
at most one position difference. In addition, AIC/BIC tend to
prioritize most of the heavy-tailed processes, such as Weibull
and Pareto (except of Cauchy). This is a useful feature when
the scaling and long-range characteristics of the traffic have
to be prioritized by the selected model.

Finally, we observe AIC and BIC presenting a bias in favor
of Pareto (MLH). Even though it was never ranked as the best
model, it was always better positioned by AIC and BIC than
by J . We explain this result by the fact that AIC and BIC
calculation uses the model likelihood, which Pareto (MLH)
maximizes. This effect is clear on the lan-firewall-pcap. Figure
4 presents results from the cross-validation dataset, where
we can observe the best fitting pointed by both methods
(Weibull), and the second-best indicated by J (Pareto (LR))
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Fig. 4: Inter-packet times CDF function and stochastic models
for firewall-pacap.

and by AIC/BIC (Pareto (MLH)). Even though Pareto (MLH)
presents a good performance representing small values, about
10% of the inter-packet times are higher than 10 seconds, a
prohibitive high value that overall turns Pareto (LR) into a
better performing option.

V. CONCLUSION

This work presents and evaluates a method based on BIC
and AIC for automated selection criteria of the best stochastic
process to model network traffic in terms of inter-packet times.
Through a cross-validation methodology based on random data
generation following the selected models and cost function
measurements, we observe that the proposed methodology is
able to accurately pick the first models in the same order,
in support of the feasibility and automation benefits of using
Information Criteria as reliable model selectors for network

network. We conclude that BIC and AIC are suitable alter-
natives to derive realistic network traffic models that could be
used for diverse scenarios to add useful and efficiently add
realism to experiments based on synthetic traffic generation
or network traffic identification. One identified caveat is the
use of the Maximum Likelihood method, which can over-
prioritized some models over more performing ones. As future
work, we will investigate the use of different and more
complex stochastic processes such as Markovian-related and
Envelope processes, beyond the scope of this article.
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