
Network Emulation with P7: A P4 Programmable Patch Panel
on Tofino-based Hardware

Fabricio Rodriguez1, Francisco Germano Vogt1, Ariel Góes De Castro2,
Marcos Schwarz3, Christian Rothenberg1

1 University of Campinas (UNICAMP)
2 Federal University of Pampa (Unipampa)

3Brazilian National Research and Education Network (RNP)

{frodri,chesteve}@dca.fee.unicamp.br, f234632@dac.unicamp.br,
arielcastro.aluno@unipampa.edu.br, marcos.schwarz@rnp.br

Abstract. The use of virtual and software-based environments, such as Mininet,
has become popular for network experimentation. However, these platforms of-
ten have limitations, including low transmission speeds and trade-offs between
scalability and performance fidelity. Advances in P4 programmability and new
P4 hardware that supports Tofino Native Architecture (TNA) have enabled the
possibility of emulating various network link characteristics and creating net-
work topologies for running line-rate traffic in a single P4 switch (i.e., Tofino).
In this paper, we introduce the P7 (P4 Programmable Patch Panel) emulator,
which allows the configuration of network scenarios with different link charac-
teristics, including 100G traffic capacities, using a single P4 switch. We demon-
strate the scalability and realism of the P7 emulator, making it an ideal environ-
ment for network research and experimentation.

1. Introduction
With an ever-increasing demand for complex network environments being developed by
both the industry and academia, software-based environments struggle to deliver high-
fidelity experiments for real scenario instances. This surge in demand has been primar-
ily fueled by advances in network programmability, such as P4 [Bosshart et al. 2014].
However, creating user-friendly testbeds that are accessible, affordable, and can provide
line-rate and high-fidelity performance for evaluation purposes can be challenging. Re-
searchers often operate with limited budgets, which greatly affects the quantity and quality
of networking devices at their disposal. Consequently, experiments are frequently lim-
ited to small-scale environments regarding speed, number of devices, and complexity, or
emulation/virtualization environments, such as Mininet [Lantz et al. 2010] and Mininet-
WiFi [Fontes et al. 2015], or simulation-based approaches. As a result, networking ex-
perimentation often involves common trade-offs that may compromise aspects such as
realism, flexibility, scalability, and customizability of experiments, among others.

A first introduction and limited version of the P4 Programmable Patch Panel (P7)
was presented in [Rodriguez et al. 2022] as a high-end yet affordable network emulation
platform that overcomes shortcomings from traditional testbed approaches. In this work,
we aim to detail the P7 implementations and discuss the addition of new link metrics such
as custom packet loss models (i.e., Gilbert-Elliot and user-defined) and, moreover, the
addition of support for user-defined P4 code to run in the internal switches in a parallel



pipeline. P7 is a network emulator for P4-enabled devices. With P7, it is possible to
provide realistic emulation of network topologies using programmable hardware pipeline
features such as recirculations, port configurations, different match+action tables, and
even DAC cables. Furthermore, the user or experimenter can connect physical servers to
inject custom traffic (e.g., PCAP-based or Tofino-based) to the emulated networking sce-
nario (see Figure 1). Additionally, we increased the level of customization by supporting
user-defined P4 codes on each “emulated” switch.

In
g
re
s
s

Match-Action

Table

Recirculation

E
g
re
s
s

Match-Action

Table

Match-Action

Table

Jumper

DAC

Figure 1. P7 concept and P4 pipeline representation.

The remainder of this paper is organized as follows: motivations and goals for
developing our tool are introduced in Section 2. Section 3 summarizes the related works.
Section 4 gives an overview of the P7 tool itself, followed by a detailed explanation of
its main features. Meanwhile, Section 5 presents a use-case depicting the usage of P7 for
performance tests. Section 6 shows the documentation and the demonstration details for
the Demo. Finally, future work and conclusion are discussed in Section 7 and Section 8,
respectively.

2. Motivation and Goals
Traditional network experiment solutions, such as virtual and emulation-based environ-
ments, suffer from performance fidelity, trade-offs, and scalability constraints. Therefore,
there is a need for a realistic experimental platform that can provide high-fidelity perfor-
mance, scalability, and flexibility. We aim to leverage the power of P4-based hardware
(Tofino) to provide a realistic experimental platform with high-fidelity performance, scal-
ability, flexibility, and support for data plane programmability using a hardware-based
environment.

P7 leverages the programmability and capabilities of new-generation P4 hardware
to emulate network links and instantiate a network topology, allowing line-rate traffic to
run using a single physical P4 switch.

3. Related Work
This section discusses related works that focus mainly on topology emulation. Existing
efforts are implemented on software (e.g., VMs) or hardware.

Mininet [Lantz et al. 2010] is an open-source network emulator for SDN. It in-
troduces the concept of network emulation as a means to test and experiment with SDN
architectures in a single machine. Despite that, it has core limitations in providing high-
fidelity network experimentation. First, its network emulation capabilities are limited by
the characteristics of the host machine’s network interface. The emulation accuracy may
be affected by the host machine’s CPU and memory and the number of virtual hosts and
switches being emulated.



Koponen et al. [Koponen et al. 2014] proposes NSX, a network virtualization plat-
form developed by VMware to manage multi-tenant domains in data center environments.
It provides a distributed virtualization layer that allows for the creation of virtual net-
works across multiple physical hosts. Also, NSX includes a network services platform
that offers firewall, load balancing, and VPN connectivity services. Similarly, Crystal-
Net [Liu et al. 2017] consists of three main components to emulate large-scale production
networks: (i) the Topology Generator leverages statistical models and real-world network
data to create to reflect the characteristics of production networks, such as degree dis-
tribution, clustering coefficient, and link capacity; (ii) the Traffic Modeler leverages ML
techniques to reflect the behavior of real users and applications and; (iii) the Network
Emulator leverages VMs for the testing of different network configurations and policies.
However, the work is limited to virtual switches and routers.

The solutions, as mentioned earlier, are software-based and may not be sufficient
for testing and evaluating large-scale production networks, as they can suffer from per-
formance and scalability limitations. More recently, BNV [Kannan et al. 2018] leverages
hardware virtualization technologies (e.g., Intel VT-d, SR-IOV) to enable the virtualiza-
tion of network devices (e.g., Open vSwitches). SimBricks [Li et al. 2020] is designed
to enable end-to-end simulation of host networking stacks. It simulates components of
the host networking stack, such as the network interface card (NIC), driver, kernel, and
application, to provide a more comprehensive, flexible, and cost-effective approach to
evaluating host networking performance in different scenarios – e.g., packet loss, TCP
congestion algorithms, as presented by the authors.

TurboNet [Cao et al. 2020] is the first to leverage the programmability of modern
switches to emulate network behavior accurately. Specifically, it uses P4 to implement
switch behavior in software and then runs the software on commodity servers to emu-
late the behavior of the switches on a single commodity server to enable the emulation of
large-scale networks. Nevertheless, not all link characteristics and the support of a custom
P4 code are present. In this work, we present P7, a simple plug-and-play solution specifi-
cally designed to provide a high-fidelity instant 100G emulated network on Tofino-based
switches, with various link metrics and the support of a user-defined P4 code.

4. P7 (P4 Programmable Patch Panel)

P7 is a high-end, affordable network emulation platform that realistically emulates net-
work topologies using programmable hardware features. P7 overcomes the shortcom-
ings of traditional testbed emulation approaches limited by small-scale environments,
software-based/virtualization environments, or simulation-based approaches, compromis-
ing different aspects such as fidelity with real networks, flexibility, scalability, and the
customizability of experiments.

P7 allows users to define a network topology, including the link metrics, in a
user-friendly script, similar to defining topologies using the popular Mininet. From the
user-defined topology, P7 internally generates all the necessary files to transform a single
P4 hardware switch into a P7 emulator that can realistically run different scenarios. The
design of P7 prioritizes simplicity, making it a hardware-based emulation testbed that
allows speeds of 10G, 25G, or 100G.



4.1. Architecture

The P7 architecture presented in figure 2 illustrates the high-level components and their
interconnections.

P7

Topology

de�nition

&

User P4

code input

bfrt Ports

P7

P4 code

Mod User

P4 code

Parse User 

P4 Code

Topology

Graph

dijkstra

Con�gure

Ports

bfrt

P4

Studio

Send Table

Information

Compile

P4 codes

Run Switch

2 Pipelines

H3

H1

H4 H2

l1

l2

l3

l4 l6

l7 l8

l5

SW1

SW2

SW3

SW4 SW5

P7

User P4 Code

Controller �les

Run P7

Input
Support

Generated
Running

SDE
RT

Figure 2. P7 high-level architecture and workflow.

Input: The user defines the topology in the P7 main script. The setup includes the number
of links and their characteristics (link metrics), the number of nodes, the custom P4 code
(user P4 code), and table configuration.

P7: The central part of our tool, where all the data is processed, and the corresponding
files are generated.

• User P4 Code: The P4 code is parsed to identify the principal parts of the code
such as the parser, ingress, and tables, then the necessary modifications are made,
including index in the table and P7 header parser), and the Modified User P4 code
is generated.

• Packet Forwarding: To perform the routing, we use the Dijkstra algorithm to
define the internal forwarding routes based on the shortest path.

• Controller files: Using this information, the table information for the P7 P4 code
is prepared using the barefoot runtime (bfrt) format. In addition, The bfrt file in-
cludes table information from the user’s P4 code. Port mapping and configuration
files are also generated from the port configuration input in the main P7 file.

• P7 P4 Code: In this part of the architecture, the heart of P7 is also built. This
file contains all the recirculation, metrics, headers, and forwarding information
running in the Tofino switch.

• Topology Graph: In addition to the generated files, a topology graph is also
created based on the user configuration.

Run P7: To run P7, it is necessary to compile the generated P4 codes (i.e., User, P7) using
the SDE tools and run the Tofino switch (with the correct pipeline configuration) from the
P4 studio environment. On the other hand, it is necessary to set the port configuration and
the table information using the bfrt.

From a hardware perspective, the P4 codes deployment is introduced in figure 3.

To distribute resources, each P4 code (i.e., P7, user) runs in separate pipes (0
and 1). One pipe allocates the P7 P4 code, including all link characteristics logic and
forwarding process to the corresponding “emulated” switch. In a different pipe, the user



In
g
re
s
s

Ingress

pipeline

Loopback

Loopback

E
g
re
s
s

Egress

pipeline

In
g
re
s
s

Ingress

pipeline

E
g
re
s
s

Egress

pipeline

Packet

Replication

Engine

&

Tra�c

Manager

Figure 3. P7 P4 architecture.

P4 code is set. The Tofino Native Architecture (TNA) recirculation feature is used to
create internal switch representations. When packets need to be forwarded to a switch,
a recirculation + pipeline change occurs. Then, the packet is sent back to the P7 pipe to
continue with the topology logic.

4.2. Main features

P7 offers several features and characteristics that make it a reliable and accessible tool for
network emulation. These features are summarized below:

P4 programmable: P7 is built on P4 hardware, which provides programmable character-
istics such as packet recirculation, port configuration, and match+action table abstractions
to offer realistic emulation of network topologies.

Affordable: P7 provides high-end emulation capabilities at an affordable cost, making it
accessible to researchers with limited budgets and access to a single P4 hardware.

Realistic emulation: P7 allows users to define network topologies with predefined link
metrics (Implementation details in table 1. The following link metrics can be defined:

• Bandwidth: Users can define the bandwidth limit (in Mbps) for each individual
link in the topology.

• Latency: Users can define per-link latency in milliseconds.
• Packet loss: Users can define the probability of dropping a packet as a percentage.
• Jitter: In addition to latency, users can define per-link jitter (in ms) plus a proba-

bility (per packet) that the jitter will be applied.

Programmable data plane emulation: P7 allows users to add custom P4 code to the
internal switches. The user can define the table information using the same P7 script.

Custom traffic traces: P7 allows users to inject custom traffic flows from traffic or trace
generators, emulating real-world network scenarios.

Simplicity: P7 provides a user-friendly interface for defining network topologies and
autogenerates all the necessary files.

High-speed interfaces: P7 supports high-speed interfaces, such as 10G, 25G, and 100G.

Open source: P7 is publicly available under the Apache License 2.0.



5. Use Case
In this section, we first provide an example of a topology that can be instantiated and
devices that can be connected to a network. Next, we detail how the topology is configured
within the P7 environment and its features, such as user code and network forwarding.

H3

H1

H4 H2

L1

L2

L3

L4 L6

L7 L8

L5

SW1

SW2

SW3

SW4 SW5

Figure 4. P7 example network topology.

Figure 4 illustrates a high-level overview of a network configuration emulated
with P7. In this example, there is a set of interconnected switches (i.e., SW1 to SW5)
with different link characteristics (i.e., L1 to L8). Additionally, physical hosts (i.e., H1 to
H4) are attached to the switch ports. Custom traffic is sent from a host and passes over
the emulated links and switches. Further, Figure 5 describes the data plane approach to
achieve the network topology mentioned above in the Tofino switch. In P7, link charac-
teristics are implemented in the P7 P4 code. The P4 tables in this pipe define the routing
logic and connection to the switches. Recirculations and pipe changes are used to define
the routing rules in the P4 code according to the desired topology. We leverage the avail-
able physical ports to connect external devices to the switches to forward the traffic to the
corresponding link. The user also has the flexibility to customize the P4 code that can
be “emulated” in each internal switch together with the table configuration, thus allowing
greater customization of the data plane forwarding logic at each point in the network.

5.1. Experimental Evaluation
To evaluate the proposed metrics (shown in Table 1), we can use custom network topol-
ogy, for instance, the one represented in Figure 4. End-to-end latency and jitter can be
obtained by running a ping command between two hosts, such as H1 and H2. Packet
loss can be measured either by ping or a traffic generator tool by setting independent loss
probabilities for each link. Traffic rate and available bandwidth can be estimated by using

Table 1. P7 Link characteristics and P4/TNA implementation approaches.
Link Characteristic Implementation approach
Link Connectivity Dijkstra algorithm to calculate the routes

Internal recirculation to the same pipe represents a link

Latency [ms] Timestamp-based timer
Recirculation via internal port until the timer reach the desired latency

Jitter [ms] Random number generator to vary the latency
Lookup table with mathematical functions to perform the calculations

Packet loss [%] Random probability generator to decide the packet discard probability
Realistic definition of packet loss to define the good or bad state

Re-ordering [%] TNA Traffic Management (TM) features
Per-packet probability based recirculation

Bandwidth [bps] Rate limit using the Traffic manager feature
Port shaping configuration of the ports

Background Traffic [bps] Tofino packet generation engine
Up to 100G per pipeline of custom traffic profiles



H1

H2

H3

H4

SW1

SW2

SW3

SW4

SW5

L1

L2

L4

L6
L5

L8

L3

L7

P7

H1

H2

H3

H4

Figure 5. P7 network topology taxonomy.
a traffic generator tool, such as T-Rex, to send data between two hosts at a pre-defined
bandwidth.

We conducted a series of experiments to evaluate the performance of the proposed
metrics, and we can confirm that the experiments are working as expected. We used the
topology illustrated in Figure 4 and ran various tests to measure the end-to-end latency,
jitter, packet loss, and available bandwidth. We used standard tools like ping and T-Rex
to generate traffic and measure the network parameters.

The results obtained from these experiments were consistent with our expectations
and matched the theoretical values we calculated. We verified that the proposed metrics
accurately reflect the network performance and can be used to diagnose and optimize it.

6. Documentation, Code, and Demonstration
P7 is an open-source project under the Apache License 2.0, available on GitHub at
https://github.com/intrig-unicamp/p7. The project welcomes contribu-
tions, bug reports, discussions of current functionalities, and proposals for new features.

The documentation is available on the project’s wiki at https://github.
com/intrig-unicamp/p7/wiki, which provides a complete usage description
of all features (i.e., link characteristics). Additionally, a video tutorial demonstrat-
ing the configuration and execution of the tool is available at https://youtu.be/
dAhy8R34vHU.

The demonstration will focus on defining network topologies using P7’s main
script and their link metrics. Additionally, the user can compile and run P7 on remotely
available physical Tofino hardware to validate the topology and defined characteristics.

Using a friendly interface similar to Mininet, the user can set all the necessary
information (i.e., table information, P4 code) to run experiments on a hardware-based
topology and validate adding custom P4 codes in the switches.

7. Future Work
As a next step, we aim to establish the performance and scalability boundaries of the P7
emulator, including the number of links, aggregated link capacities, latencies, and most
importantly, the scalability (i.e., number of nodes) that the memory, buffers, and stages
available in the Tofino target can support. Furthermore, we plan to extend a comparative
analysis with other tools, showcasing the characteristics, limitations, and emulation capa-
bilities. Additionally, We plan to extend the capabilities of P7 beyond a single switch to

https://github.com/intrig-unicamp/p7
https://github.com/intrig-unicamp/p7/wiki
https://github.com/intrig-unicamp/p7/wiki
https://youtu.be/dAhy8R34vHU
https://youtu.be/dAhy8R34vHU


enable distributed deployments. Additionally, we intend to build an open-source commu-
nity, integrate P7 with Mininet to facilitate the import and visualization of user-defined
topologies, and incorporate In-band Network Telemetry (INT) features to provide detailed
statistics of the emulated network’s queue occupancy and device status. To enhance the
realism and dynamic nature of P7, we plan to introduce jitter patterns and 5G access link
traces. Finally, we plan to embed P7 in larger testbeds such as NSF Fabric and disag-
gregated network initiatives (e.g., OpenRAN Brasil) to expand their experimental toolkits
with customized line-rate network emulation capabilities.

8. Conclusions
This demonstration highlights the significance of P7 in affordable 100G experimental
platforms. P7 is a user-friendly and cost-effective network emulator that caters to tradi-
tional networking, advanced programmable networking research, and teaching purposes.
Additionally, it supports scenarios where metric variation is necessary for tests. As a
programmable high-fidelity testbed, P7 offers the advantage of facilitating repeatable and
reproducible research. Overall, with our experiments, we are confident that we provide re-
liable and accurate measurements of the network performance, and the proposed metrics
can be used to evaluate and improve the performance of real-world networks.

9. Acknowledgment
This work was supported by the Innovation Center, Ericsson S.A., and by the Sao Paulo
Research Foundation (FAPESP), grant 2021/00199-8, CPE SMARTNESS. This study
was partially funded by CAPES, Brazil - Finance Code 001.

References
Bosshart, P. et al. (2014). P4: Programming protocol-independent packet processors.

SIGCOMM, 44(3):87–95.

Cao, J. et al. (2020). Turbonet: Faithfully emulating networks with programmable
switches. In IEEE 28th ICNP, pages 1–11, Madrid, Spain. IEEE.

Fontes, R. R. et al. (2015). Mininet-wifi: Emulating software-defined wireless networks.
In 2015 11th CNSM, pages 384–389, Barcelona, Spain. IEEE.

Kannan, P. G. et al. (2018). Bnv: Enabling scalable network experimentation through
bare-metal network virtualization. In USENIX, CSET’18, page 6, USA.

Koponen, T. et al. (2014). Network virtualization in multi-tenant datacenters. In USENIX
NSDI, pages 203–216, Seattle, WA. USENIX Association.

Lantz, B., Heller, B., and McKeown, N. (2010). A network in a laptop: Rapid prototyping
for software-defined networks. In SIGCOMM, Hotnets-IX, NY, USA. ACM.

Li, H. et al. (2020). Enabling end-to-end simulation for host networking evaluation using
simbricks.

Liu, H. H. et al. (2017). Crystalnet: Faithfully emulating large production networks. In
26th SOSP, NY, USA. ACM.

Rodriguez, F. et al. (2022). P4 Programmable Patch Panel (P7): An Instant 100g Emulated
Network on Your Tofino-Based Pizza Box. In SIGCOMM, page 4–6, NY, USA. ACM.


	Introduction
	Motivation and Goals
	Related Work
	P7 (P4 Programmable Patch Panel)
	Architecture
	Main features

	Use Case
	Experimental Evaluation

	Documentation, Code, and Demonstration
	Future Work
	Conclusions
	Acknowledgment

