Towards Multiple Pipelines Network Emulation
with P7

Fabricio E Rodriguez Cesen*, Francisco Germano Vogt*, Ariel Goes De Castro!,
Christian Esteve Rothenberg*
*University of Campinas (UNICAMP), Brazil
TFederal University of Pampa (UNIPAMPA), Brazil

Abstract—Network emulation traditionally relies on software-
based solutions. While extremely useful in many scenarios,
it suffers from performance fidelity and inherent scalability
constraints. With the advent of P4 and programmable switches
like Tofino, new opportunities for hardware-based network
emulation are emerging. P7 (P4 Programmable Patch Panel)
offers a solution for high-fidelity 100G traffic network emulation,
including different link characteristics such as latency, jitter,
packet loss, and bandwidth, as well as the ability to define
custom topologies. However, it currently lacks support for custom
P4 code in emulated devices. This is where multiple pipelines
network emulation comes in. In this demonstration, we show
how to emulate a topology using P7 and incorporate custom P4
code into each emulated node. We allocate a dedicated pipe for
user-defined P4 code and allow users to configure tables for each
node separately.

I. INTRODUCTION

Network emulation has long been a valuable tool for testing
and evaluating network configurations and protocols in a safe
and controlled environment. However, existing software-based
solutions suffer from limitations in performance fidelity and
scalability, which can affect the accuracy and validity of test
results. As a result, there is a growing demand for hardware-
based network emulators that can provide high-fidelity, high-
performance testing capabilities while also offering the flexi-
bility and customizability of software-based solutions.

The availability of programmable switches like Tofino and
the programming language P4 has opened up new opportu-
nities for hardware-based network emulation with enhanced
flexibility and performance. One such solution is P7 (P4
Programmable Patch Panel) [1], which offers high-fidelity
100G traffic network emulation, including various link char-
acteristics such as latency, jitter, packet loss, and bandwidth,
as well as the option to customize network topologies.

However, one limitation of P7 is that each emulated switch
is treated as a simple forwarding node without the ability to
instantiate a custom P4 code, which limits experimentation
in dataplane programmability. To address this limitation, in
this demo, we propose integrating user-defined P4 code and

This work was supported by the Innovation Center, Ericsson S.A., and
by the Sao Paulo Research Foundation (FAPESP), grant 2021/00199-8, CPE
SMARTNESS. This study was partially funded by CAPES, Brazil - Finance
Code 001.

P7, enabling users to test their own P4 codes in an emulated
topology with all the characteristics of P7!.

II. BACKGROUND AND RELATED WORK
A. P7 (P4 Programmable Patch Panel)

P7 is a network emulator tool for high-fidelity network
experimentation on a single P4 switch. With a friendly en-
vironment, the users can define different topologies following
a script similar to Mininet [2]. P7 allows users to instantiate
network elements (i.e., switches), background traffic, and link
characteristics. Some of the principal link metrics included in
P7 are latency, jitter, packet loss, and bandwidth.
Bandwidth: Define the bandwidth limit (in Mbps) for every
single link on the topology. The bandwidth limitation is
performed using a port shaping definition. In Tofino Native
Architecture (TNA)?, the physical ports and the recirculation
ports can be shaped.

Latency: Define per-link latency in milliseconds. P7 uses
recirculation and timestamps to achieve latency by keeping
the packet recirculating in the same pipe until it reaches the
desired time. A custom header is used to store the original
timestamp and verify it at each recirculation.

Packet loss: Define the possibility of dropping a packet in
a link. P7 has a random function that discards the packet
according to the specified loss percentage. Using a random
number, if it is below the threshold, the packet is dropped.
Jitter: Define per-link jitter and a probability (per packet) that
the jitter will be applied. P7 uses a random function to increase
or decrease latency and apply the variation.

To emulate a topology, P7 adds a custom header to the
packet that contains information about the current emulated
link, the switch ID, and the original timestamp. Using this
information, P7 applies the link characteristics and forwards
the packet to the corresponding link or switch. In addition to
the header, P7 utilizes recirculations in the same pipe to create
the logic determining how the packet transitions from one link
to another or enters a switch.

An overview of the P7 architecture is shown in Figure 1.
The architecture includes the addition of a custom P4 code in
P7 and the corresponding running and compilation processes

!Public available at: https://github.com/intrig-unicamp/p7
Zhttps://github.com/barefootnetworks/Open-Tofino

Input
Support
Generated
Compile
Running
SDE
RT

:| P7 Topology :
2| definition |[.

*| userpa
.| code input :

Mod User
P4 code

Parse User
P4 Code

User P4 Codeif- =" """ b ’
<o g DFSDE
- P7 : | Run switch | :
dijkstra | | P4 code | 2 Pipelines |:

Configure

B -> Ports

| Controller files: - :t
p |: . . bfrt

4_ Topology . [send Table |:
Graph - 7| Information |

bfrt Ports

Fig. 1. P7 architecture.

that need to be followed. P7 utilizes the information defined by
the user in the main topology script to automatically generate
the necessary files required for running P7 on Tofino hardware.
The files generated by P7 include the P7 P4 code, tables, and
port information. The user is responsible for compiling the P4
code and running it with the corresponding table information
sent by Barefoot Runtime (bfrt).

B. Related Work

Recent efforts in P4-based hardware have been utilized to
enhance programmability and parallelization by incorporat-
ing multiple pipelines. Some works have explored multiple
pipelines but are limited in emulating topologies across their
solution. Other efforts focused on software-based emulation,
including programmable devices, but resources limit them.

P4i/o [3] combines high-level intent policies with a user-
friendly language and the ability to install and remove P4 code
to the underlying hardware. Similarly, eBPFlow [4] leverages
P4 externs to encapsulate user-defined packet processing logic
and provides a hierarchical pipeline structure for sharing com-
mon processing logic across multiple pipelines. In contrast,
Flightplan [5] splits the packet processing pipeline into pieces
across multiple devices. Meissa [6] is built on top of Mininet,
and Sailfish [7] allows customizing P4 codes and offloading
some workloads typically handled by general-purpose servers.

III. MULTIPLE PIPELINES SUPPORT

The Intel Tofino structure employs a multiple-pipe design
(e.g., 2 or 4 pipes). Each internal pipe is identical in structure
and contains 16 100G Ethernet ports. When a packet arrives, it
enters through the Ingress Parser, where the headers present in
the packet are identified. The Ingress Control is responsible for
processing the packet and applying the match+action tables.
After Ingress processing, the packet enters the Traffic Manager
(TM). The TM adds the packet into a packet buffer and
enqueues the packet to the desired port’s pipe. Finally, the
packet passes through Egress processing and is forwarded to
the physical interface.

User mod packet + P7 header

iRec

P7 iport a
Main packet

Port: 8’ pipe |V
Po £
PLya
,U.? Ingress| m

Loopback packet ©

EPR:rCt g" pipe |® | Traffic |” pipe (@)]
: —_ Manager L

Original packet + P7 header
Fig. 2. P7 multiple pipelines approach.

TNA allows us to define and map how the P4 program
will be distributed in different pipes. The default configuration
when running a single P4 replicates the program along all
the available pipes. On the other hand, we can set a custom
configuration of pipes and add different programs to the pipes.

With P7, to emulate a custom P4 code in each internal
switch, we leverage the possibility of setting a custom pipe
distribution model. We propose a solution where a dedicated
pipe runs the P7 P4 code, and a separate pipe runs the user-
defined P4 code (See Figure 2).

To emulate different devices with user-defined P4 code and
the generated topology, we use the TNA recirculation feature.
First, the packet enters into PO @ and is processed by the P7
P4 code @. Packets to be processed by an emulated switch
are sent from the P7 pipe (P0) to the pipe (P1) © running the
user-defined P4 code. In TNA, there is a specific recirculation
port to forward the packet to a particular pipe. Finally, packets
are sent back to PO to continue P7 processing. This process is
repeated for all emulated switches.

To align with P7, the user’s P4 code needs to be adapted.
We developed a parser that identifies the principal parts of
the P4 code and performs modifications. The modifications
include the addition of the P7 header, a switch identifier, and
a recirculation port. These modifications are necessary to align
the user’s code with P7 and enable the proposed custom pipe
distribution model.

When adding the P7 header, we include the P7 parser
processing before the user’s parser @. A switch identifier is
added in all the tables as a Key to match the right switch in the
emulation. Finally, when the processing of the packet ends, we
modify the forwarding port to the corresponding recirculation
port to send the packet back to PO ©.

The packet continues with P7 processing in PO ®@. When
one of the metrics needs to be applied in a link, P7 executes
the corresponding process. It takes the necessary actions, such
as recirculating the packet, limiting the bandwidth, or applying
packet loss. If P7 needs to recirculate a packet due to a
metric, it must be sent to the same pipe’s recirculation port to
keep the packet in PO. Finally, the packet is forwarded to the
corresponding out port @.

To run P7 and the custom P4 code (the integrated processing
can be seen in Figure 1), it is necessary to compile both P4
codes and define the corresponding pipe distribution. This
can be done by setting a custom target configuration file
that includes the compiled files and the assigned pipes. In

ttl = ttl + Xq2

H2 !@!

192.168.0.5

!@! H3

ttl =t + Xg3 | 192.168.0.7

tt|—tt|+Xe ttl = ttl + x
- swl @ @ - swé
2
ttl=c—p(s1111—0] [1erii—0)P ttl = c + = (xu)
(1] H1 Ha (4]

192.168.0.1
Fig. 3. Demo Topology

192.168.0.3

addition, we need to take care while setting the recirculation
and physical ports since it depends on the specific target.

IV. DEMO

To validate the proposed multiple pipeline implementation,
we use a custom P4 code that contains different mathematical
operations that are applied to the IP field ¢¢l. These operations
are defined by a P4 table that contains the operation and its
value. This P4 code will perform a specific operation based
on the destination IP of the packet and the information filled
in a table. To confirm that the packet is passing by all the
corresponding nodes in the emulated topology, we can set
different values for the operation. We can summarize the end-
to-end operation by the equation 1.

t=c+> (zswi) 1)
i=1
Where c is the initial value of the ¢¢l, n is the number of
switches, and xgyy; is the value of the operation.
Following the topology described in Figure 3. If we send
a packet from H1 to H4, the packet will start in @ with a
defined ttl value c. The packet will enter into the Tofino switch
and start the P7 processing. The next step @ is in the link
between H1 and SW1. The metrics associated with this link
will be applied in the P7 pipe (P0). Then, in ©, the packet is
processed in the user-defined P4 code pipe (P1). In this step,
the custom P4 will modify the ttl value accordingly to the
table information of this switch (SW1) filled in the P7 main
script. In this switch, the operation will be ttl = ttl + xgw1.
After performing all the processing in the custom P4 code, the
packet will continue following the topology and applying the
process of each link and switch. Finally, when the packet is
forwarded to the destination @, the result of all the operations
will be present in the ¢tl value of the packet.
During the demo. We will present different use cases, includ-
ing topologies with link metrics and custom P4 codes. We will
run P7 remotely in physical Tofino Hardware connected with
different physical servers. The main items to be presented are:

o The calculator use case with various operation values and
different source and destination hosts. Also, the results
can be confirmed by a local script (software-based) that
calculates the operations accordingly to the scenario.

o Attendees will be asked to choose a network topology
with different link metrics (e.g., latency, jitter, packet loss,
background traffic, bandwidth) and a custom P4 code

(e.g., simple 13 forwarding with TTL update). They will
see P7 in action, including the auto-generation of files
and the complete network environment emulation.

o Real-time visualization of network traffic will contribute
to validating on-the-fly performance of the link metric
and the emulation capabilities.

V. CONCLUSIONS AND FUTURE WORK

This demo shows the integration of P7 with multiple
pipelines, contributing to experimental platforms that support
data plane programmability. We presented a solution that
allows the user to create a traditional networking topology
and advanced programmable networking scenario defining a
custom P4 program to run in each node. We offer a user-
friendly environment, a cost-effective 100G network emulator,
and a hardware-based solution for research and teaching.

P7 is a high-fidelity, programmable testbed that offers re-
peatable and reproducible research opportunities. Researchers
can share P7 topology files and custom P4 codes that can be
compiled and deployed, resulting in consistent output regard-
less of the location Moreover, P7’s capability to emulate line-
rate networks with custom P4 codes opens up new avenues
for experimentation and testing.

We plan to enhance the support setting different custom P4
codes in the instantiated switches. We can send the packet to
the corresponding pipe using the same idea of the recirculation
port. In addition, we will add support for registers in the cus-
tom P4 code since they will be shared across all the emulated
devices. Furthermore, we want to formalize the performance
& scalability boundaries (e.g., throughput) depending on the
memory, buffers, and stages available in the Tofino target.

Future work includes adding In-band Network Telemetry
(INT) features for fine-grained statistics of the emulated
network (e.g., queue occupancy, device status). INT is an
important feature to analyze effectively what is happening
inside each of the emulated switches.

Another area of future work is to embed P7 (e.g., adding
P7 hardware-in-the-loop or compiling into P4 SmartNICs) into
larger testbeds such as NSF Fabric and disaggregated network
initiatives (e.g., OpenRAN Brasil) to enrich their experimental
toolboxes with tailored line-rate network emulation capabili-
ties.

REFERENCES

[1] F. Rodriguez et al., “P4 Programmable Patch Panel (P7): An Instant 100g
Emulated Network on Your Tofino-Based Pizza Box,” in SIGCOMM 22
Poster and Demo Sessions. New York, NY, USA: ACM, 2022, p. 4-6.

[2] B. Lantz et al., “A network in a laptop: Rapid prototyping for software-
defined networks,” in SIGCOMM. NY, USA: ACM, 2010.

[3] M. Riftadi and F. Kuipers, “P4i/o: Intent-based networking with p4,” in
IEEE NetSoft, 2019, pp. 438-443.

[4] R. D. G. Pacifico et al., “Application layer packet classifier in hardware,”
in IFIP/IEEE IM, 2021, pp. 515-522.

[5] N. Sultana ef al., “Flightplan: Dataplane disaggregation and placement
for p4 programs,” in NSDI, 2021.

[6] N. Zheng et al., “Meissa: Scalable network testing for programmable data
planes,” in SIGCOMM. NY: ACM, 2022, p. 350-364.

[7]1 T.Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-service
gateways with programmable switches,” in SSIGCOMM. NY: ACM, 2021.

