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ABSTRACT
The networking equipment market is being transformed by
the need for greater openness and flexibility, not only for
research purposes but also for in-house innovation by the
equipment owners. In contrast to networking gear following
the model of computer mainframes, where closed software
runs on proprietary hardware, the software-defined networ-
king approach effectively decouples the data from the control
plane via an open API (i.e., OpenFlow protocol) that allows
the (remote) control of packet forwarding engines. Moti-
vated by this scenario, we propose RouteFlow, a commodity
routing architecture that combines the line-rate performance
of commercial hardware with the flexibility of open-source
routing stacks (remotely) running on general purpose com-
puters. The outcome is a novel point in the design space of
commodity routing solutions with far-reaching implications
towards virtual routers and IP networks as a service. This
paper documents the progress achieved in the design and
prototype implementation of our work and outlines our re-
search agenda that calls for a community-driven approach.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching
networks

1. INTRODUCTION
Besides the formidable evolution of the Internet with res-

pect to its pervasiveness and applications, its core technol-
ogy, mainly represented by the layered TCP/IP protocol
suite, has not gone through an equally radical transforma-
tion. Since the Internet became commercial, network devices
have been “black boxes” in the sense of vertically integrated
implementations based on closed-source software over pro-
prietary hardware [11]. This model does not only lead to
the recognized Internet “ossification” but also implies higher
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R&D costs and slower time to market of product features.
Recent standardization developments of vendor-neutral

APIs (e.g., ForCES [13], OpenFlow [15]) allow for “lobo-
tomizing” a big part of the decision logic of network devices
to external controllers implementable with commodity hard-
ware (e.g. x86 technology), a plentiful and scalable resource.

RouteFlow, the work in progress depicted is this paper,
is an architecture following the software-defined networking
(SDN) [9] paradigm based on a programmatic approach to
logically centralize the network control, unify state informa-
tion, and decouple forwarding logic and configuration from
the hardware elements [5]. It is composed by an OpenFlow
controller application and an independent RouteFlow server
that manages a virtual network environment to interconnect
virtualized IP routing engines (e.g. Quagga).

Routing protocol messages can be sent ‘down’ to the phys-
ical devices or can be kept in the virtual network plane,
that may be a reproduction of the discovered physical in-
frastructure or a simplified / arbitrary mapping to hardware
resources. The routing engines generate the forwarding in-
formation base (FIB) according to the configured routing
protocols (e.g., OSPF, BGP). In turn, the IP and ARP ta-
bles are collected and translated into OpenFlow rules that
are finally installed in the associated datapath devices.

The main goal of RouteFlow is enabling remote IP routing
services in a centralized way, as a consequence of effectively
decoupling the forwarding and control planes. This way, IP
networks become more flexible and allow for the addition
and customization of protocols and algorithms, paving the
way for virtual router [3] and IP network as a Service (IP-
NaaS) [6] in the software-defined networking era. RouteFlow
is the evolution of our early work on partnering Quagga with
OpenFlow [16] and works transparently to any Linux-based
routing engine (e.g., XORP, BIRD).

The balance of this paper is as follows. Section 2 presents
the RouteFlow design along its different modes of operation
and its main architectural components. Section 3 describes
the prototype implementation. Section 4 discusses the re-
search agenda and Section 5 concludes the paper.

2. THE ROUTEFLOW DESIGN
RouteFlow runs OpenFlow switches’ control logic through

a virtual network composed by virtual machines (VMs),
each of them executing a routing engine (see Fig. 1(a)).
Those VMs (or virtual environments) are dynamically in-
terconnected to form a logic topology that mirrors a physi-

https://www.researchgate.net/publication/50862035_MANTICORE_II_IP_Network_as_a_Service_Pilots_at_HEAnet_NORDUnet_and_RedIRIS?el=1_x_8&enrichId=rgreq-3778e715-f8b1-4933-ba37-11a5d3f22a0c&enrichSource=Y292ZXJQYWdlOzI1NDAwMzM4NjtBUzo5OTAwNjAzNDIxOTAxM0AxNDAwNjE2Mjg2Mzgx
https://www.researchgate.net/publication/265429213_Software-defined_Networking?el=1_x_8&enrichId=rgreq-3778e715-f8b1-4933-ba37-11a5d3f22a0c&enrichSource=Y292ZXJQYWdlOzI1NDAwMzM4NjtBUzo5OTAwNjAzNDIxOTAxM0AxNDAwNjE2Mjg2Mzgx
https://www.researchgate.net/publication/240217606_Requirements_for_Separation_of_IP_Control_and_Forwarding_IETF_RFC3654?el=1_x_8&enrichId=rgreq-3778e715-f8b1-4933-ba37-11a5d3f22a0c&enrichSource=Y292ZXJQYWdlOzI1NDAwMzM4NjtBUzo5OTAwNjAzNDIxOTAxM0AxNDAwNjE2Mjg2Mzgx
https://www.researchgate.net/publication/220702772_Architecture_and_algorithms_for_virtual_routers_as_a_service?el=1_x_8&enrichId=rgreq-3778e715-f8b1-4933-ba37-11a5d3f22a0c&enrichSource=Y292ZXJQYWdlOzI1NDAwMzM4NjtBUzo5OTAwNjAzNDIxOTAxM0AxNDAwNjE2Mjg2Mzgx
https://www.researchgate.net/publication/234830876_Virtualizing_the_network_forwarding_plane?el=1_x_8&enrichId=rgreq-3778e715-f8b1-4933-ba37-11a5d3f22a0c&enrichSource=Y292ZXJQYWdlOzI1NDAwMzM4NjtBUzo5OTAwNjAzNDIxOTAxM0AxNDAwNjE2Mjg2Mzgx


VM

VM

VM

VM

OSPF / RIP / BGP
Virtual Topology

Programmable 
Switch

Programmable 
Switch

Programmable 
Switch

Physical Infrastructure

Programmable 
Switch

Legacy Network

BGP

RouteFlow Server Controller

OSPF
OSPF

Quagga

Quagga

Quagga

Quagga

Lecacy L2/L3 Switch

(a) Overview of a RouteFlow-controlled network.
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Figure 1: RouteFlow architecture conceptual design.

cal infrastructure – or a modified version of it. The virtual
environment is held in (a set of) external servers and com-
municate with the forwarding plane through an OpenFlow
controller application that receives from the RF server the
decisions made by the routing protocols. As a result, flow
rules are maintained in the data plane to specify how traf-
fic must be handled (i.e., port forwarding, MAC re-writing).
While the control is centralized, it stays logically distributed.
This way, it does not require modification of existing routing
protocols. Moreover, legacy infrastructure can be transpa-
rently integrated, given that routing protocol messages (e.g.
BGP, OSPF) can be sent from/to the virtual control plane.

This leads to a flexible, high-performance and cost-effective
approach to provide IP routing based on: (a) programmable
low-cost switches with small-footprint of control software
(i.e. OpenFlow); (b) open-source routing protocols stacks
(e.g. Quagga); and (c) commodity x86 technology.

2.1 Modes of operation
Separating the control plane from the forwarding sub-

strate allows for a flexible mapping and operation between
the virtual elements and their physical counterparts. Fi-
gure 2(a) shows the three main modes of operation that
RouteFlow aims at supporting.

Logical split: This 1 : 1 mapping between hardware
switches and the virtualized routing engines basically mir-
rors the physical substrate (number of switch ports, connec-
tivity) into the virtual control plane.

Multiplexing: This 1 : n mapping of physical to virtual
substrate represents the common approach to router virtu-
alization where multiple control planes run simultaneously
and install their independent FIBs on the same hardware.
Multi-tenant virtual networks can be defined by letting con-
trol protocol messages flow through the virtual plane and
stitching the data plane connectivity accordingly.

Aggregation: This m : 1 mapping of hardware resources
to virtual instances allows to simplify the network proto-
col engineering by bundling a group of switches, such that

neighbouring devices or domains can treat the aggregated
as if it were a single element.1 This way intra-domain rou-
ting can be independently defined while legacy inter-domain
or inter-zone routing (e.g. BGP) can be consolidated into
single control unit for signaling scalability and simplified,
centralized management purposes (cf. [12]).

For every use case, two sub-modes of operation can be
defined depending on whether the routing protocol messages
are sent out through the physical ports or are kept in the
virtual plane. The latter allows to separate and optimize the
problem of physical topology discovery and maintainance
and the problem of routing state distribution.

2.2 Architectural details
As shown in Fig. 1(b), the RouteFlow-Controller (RF-

C) runs as an application on top of an OpenFlow network
controller (NC). The NC is responsible for interfacing the
OpenFlow-enabled switches, servicing the RF-C with the
APIs, and discovering the network topology.

The core control logic resides in the RF-Server that is no-
tified about relevant events and keeps the required network-
wide state. For each OpenFlow switch found, the RF-Server
instantiates one (or selects a pre-provisioned) VM.2 Each
VM runs a stack of open-source routing protocols and is con-
figured with as many virtual network interfaces (NICs) as
there are active ports in its corresponding device. The NICs
are bound to software switches, through which their connec-
tivity is dynamically controlled. Once the virtual topology
is set up, the routing protocols in the VMs start running and
adjust the FIBs accordingly. For each FIB update, the slave

1There is no conceptual barrier to support arbitrary m : n
mappings as pursued by IETF ForCES [13] that defines Con-
trol Elements (CE) and Forwarding Elements (CE), which
compound form a Network Element (NE).
2This case corresponds to the logical split and multiplexing
modes of operation. In case of aggregation, a single VM
covers multiple physical switches which can be programmed
to act as a single router (e.g. [3]).
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Figure 2: Modes of operation of the virtualized networking environment

daemon (RF-S) sends an update message to the RF-Server
that requests the installation of a flow entry matching the
destination network mask with the corresponding actions
for port-forwarding, MAC-rewriting, TTL-decrement, and
IP header checksum update.

A simple RouteFlow protocol is defined for the interac-
tions of the RF-Server with the RF-Controller and the RF-
Slave instances. RF-protocol messages can be of the type
command or event and can be seen as a simplified subset of
OpenFlow protocol messages plus a number of new messages
for VM/RF-Slave configuration and management purposes
(e.g., accept/reject VM, RF-Slave config., send update).

To allow for legacy network integration, RouteFlow uses
flow entries to match known routing protocol messages re-
ceived from legacy devices in the physical infrastructure and
pass them to the corresponding virtual entities. Conversely,
pertinent routing messages originated in the virtual topo-
logy are sent through the physical infrastructure.

3. PROTOTYPE IMPLEMENTATION
The RouteFlow prototype is a combination of open-source

software and newly-developed components:3

RF-Server and RF-Controller: The RF-Controller
component is implemented as a C++ application (route-
flowc) running on top of NOX [10]. The RF-Server is a
standalone application responsible for the core logic of the
system (e.g., event processing, mapping VMs to switches,
resource management). Interactions between the RF-Server
and RF-Controller are defined via RF-Protocol messages.

RF-Slave and FIB gathering: Each Linux VM in the
virtual topology executes a RF-S daemon (rfslaved) along
a routing engine (e.g. Quagga). rfslaved is a C++ stan-
dalone application that basically gathers FIB updates via
the Netlink Linux API4 and sends the event data via the
RF-Protocol. In addition, the rfslaved executes a resource
discovery technique for VM and switch-port identification.

3Available in the RouteFlow project page:
https://sites.google.com/site/routeflow/
4Netlink renders rfslaved agnostic of the specific routing
suite as long as it updates the Linux networking stack.

Table 1: ICMP Response Times.
Equipment Slow Path [ms] Fast Path [ms]

Tavg. T90% Tavg. T90%

CISCO 3560-e Catalyst 5.46 7.75 0.100 0.130
Extreme x450-e 11.30 14.00 0.106 0.141

CPqD Enterprise 14.20 17.30 0.101 0.147

RouteFlow 116.00 138.00 0.082 0.119

Virtual networking environment: OpenVSwitch (OVS)
is the software switch used to connect all VM NICs in a vir-
tual topology according to the reachability goals determined
by the chosen mode of operation. We use the OpenFlow pro-
tocol support of OVS to dynamically manage the inter-VM
connectivity and to select which packets should be sent to
the forwarding plane. Moreover, OVS allows distributing
the virtual network environment by having multiple OVS
instances interconnected through tunnel ports.

Evaluation: Experiments with the prototype implemen-
tation in our NetFPGA-based testbed has proved interope-
rability with traditional networking gear and revealed that
the routing protocol convergence time is dominated by the
protocol time-out configuration (e.g., 4 x HELLO in case
of OSPF) and does not suffer from the longer path to the
control plane. As shown in Table 1, RouteFlow introduces
larger latency only for those packets that need to be han-
dled in the slow-path as a result of lacking a FIB entry or
processing by the OS networking / routing stack (e.g., ARP
requests, PING, Quagga routing protocol messages).

4. THE ROUTEFLOW R&D AGENDA
We look forward to turning RouteFlow into an open-sourced

community-driven framework to deliver novel virtualized IP
routing services in OpenFlow networks. We believe that the
combination of the line-rate performance of commercial net-
working hardware with the flexibility of open-source routing
stacks arranged through modern cloud programming prac-
tices may cross the research arena and unveil new business
models. To fully realize this vision, we have identified seve-
ral areas requiring further research and development work:



Applying PaaS to networking: Similar to the ratio-
nale behind cloud computing, RouteFlow shares the vision
that the PaaS model meeting the networking world could be
a game-changer (cf. [12]). Towards this goal, one feature in
our roadmap is advanced VM management. Implementing
Libvirt [2] allows for VM control via an unified API for a
myriad of virtualization tools (e.g., QEMU, LXC, VMware,
OpenVZ) along enhanced functionality like live migration
or load balancing of the virtual control plane. Further de-
velopments include a comprehensive GUI and management
facilities similarly to service platforms that implement an
IP-oriented IaaS paradigm [6].

Moving beyond state-of-the art router virtualization (i.e.,
1:1 mapping between control and physical elements) towards
more flexible resource mapping (e.g., 1:N, M:N) is a goal
full of challenges. As argued by Keller and Rexford [12],
enabling a Single Router Platform would allow customers
to focus on their application/service while addressing the
management burden of infrastructure owners.

Protocol Optimization: The RouteFlow architecture
allows for a separation of concerns between topology main-
tainance and routing state distribution (cf. [20]). This en-
ables optimizing the routing protocols through fast connec-
tivity maintainance techniques in the data plane (e.g. BFD-
like) while route state distribution such as OSPF LSAs is
flooded only inside the virtual domain. The challenge now is
reproducing in the virtual domain the physical failures [17].
Once detected by any means, link failures can be program-
matically induced via the OVS or by directly hooking into
the specific routing stack (e.g. Zebra DB).

Resiliency and Scalability: Advances in VM technolo-
gies are also fundamental to circumvent different failure sce-
narios and to scale up by physically distributing the com-
ponents. We need some strategy like master-backup [17] or
distributed master controllers [20] to offer resilience in case
of failures of the RF components. One component of the
envisioned solution is a distributed database that holds the
essential Network Information Base (NIB) (cf. Onix [20]).
Yet another relevant research topic includes SDN-enabled
strategies to deal with datapath failures such as decoupling
failure recovery from path computation [4].

Embrace related work and build a community: Last
but not least, we recognize the importance of (1) learn-
ing from previous work pursuing similar goals of separating
control software from routers (e.g., SoftRouter [14], 4D [8],
RCP [7]), (2) applying technologies from operational dis-
tributed systems such as cloud data center applications (e.g.,
event-based systems and NoSQL data stores [20]), and (3)
building a community to joins efforts towards similar goals.5

To cite a few planned actions, we intend to investigate the
interplay options with FlowVisor, the Mantychore APIs [6],
the FIB-saving techniques of Fibium [18], the advances in
split router architectures [19], and the implications of blen-
ding optical and electrical networks by integrating Open-
Flow with GMPLS [1]. By revisiting the technical approach
and promised benefits of the SoftRouter architecture (i.e.,
reliability, scalability, security, flexibility) [14] we hope to
contribute to answering one question around the OpenFlow
model: Can a RouteFlow-like architecture transform the data
networking industry in the same way the SoftSwitch trans-
formed the voice telecom industry?

5OpenFlowHub is one effort in broadcasting open-sourced
SDN technologies: http://www.openflowhub.org

5. CONCLUSIONS
RouteFlow is an example of the power of innovation result-

ing from the blend of open interfaces to commercial hard-
ware and open-source software development. The Route-
Flow architecture allows for a flexible resource association
between IP routing protocols and a programmable physical
substrate, opening the door for multiple use cases around
virtualized IP routing services. We expect RouteFlow con-
tributing to the migration path from traditional IP deploy-
ments to software-defined networks enabled by means of
a community-driven open-source framework. This path is
however not free of research and development challenges.
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