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1. Introduction

Besides the formidable evolution of the Internet with respect to its pervasiveness and ap-

plications, its core technology, mainly represented by the layered TCP/IP protocol suite,

has not gone through an equally radical transformation. Since the Internet became com-

mercial, network devices have been “black boxes”in the sense of vertically integrated

implementations based on closed-source software over proprietary hardware [Hamilton ].

This model not only leads to the already recognized Internet “ossification” but also im-

plies higher R&D costs and slower time to market of new product features.

Recent developments in the standardization of vendor-neutral APIs (e.g.,

ForCES [Khosravi and Anderson 2003], OpenFlow [McKeown et al. 2008]) allow for

“lobotomizing” a big part of the decision logic of network devices to external controllers

implementable with commodity hardware (e.g. x86 server technology), a plentiful, scal-

able, and affordable resource.

RouteFlow, the work in progress depicted is this paper, is an architecture follow-

ing the software-defined networking (SDN) [Greene 2009] paradigm based on a program-

matic approach to logically centralize the network control, unify state information, and

decouple forwarding logic and configuration from the hardware elements. It is composed

by an OpenFlow controller application, an independent RouteFlow server, and a virtual

network environment that interconnects traditional IP routing engines (e.g. Quagga).

The main goal of RouteFlow is enabling remote IP routing services in a centralized

way, as a consequence of effectively decoupling the forwarding and control planes. This

way, IP networks become more flexible and allow for the addition and customization of

protocols and algorithms, paving the way for “router-as-a-service” models of networking

in the virtual era. RouteFlow is the evolution of our early work on partnering Quagga with

OpenFlow [Nascimento et al. 2010] and works transparent to the specific routing engine

(e.g., XORP, BIRD) as long as it is based on the Linux networking stack.

The balance of this paper is as follows. Section 2 presents the design and modes

of operation of the software-defined RouteFlow routing architecture. Section 3 describes

the prototype implementation and Section 4 concludes the paper.

II Workshop de Pesquisa Experimental da Internet do Futuro 25



 !

 !

 !

 !

 !"#$%$&'"$%$()"

 "#$%&'()*+*'*,-

"*+,*-..-/01$
!23456

"*+,*-..-/01$
!23456

"*+,*-..-/01$
!23456

./-0"1&'(234#&0$#%1$%#5

"*+,*-..-/01$
!23456

71,-58$9142+*:

()"

"*+,*-..-/01$

"*+,*-..-/01$01$01$01$01$01$01$

"*+,*-..-/01$01$01$01$01$01$

6*%$57'*8(95#:5# ;*3$#*''5#

 !"#

 !"#

;<-,,-

;<-,,-

;<-,,-

;<-,,-

715-58$!23456

(a) Overview of a RouteFlow-controlled network.
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(b) RouteFlow components.

Figura 1. RouteFlow architecture conceptual design.

2. The RouteFlow design

RouteFlow runs OpenFlow switches’ control logic through a virtual network composed

by virtual machines (VMs), each of them executing a routing engine (see Fig. 1(a)). Those

VMs (or virtual environments) are dynamically interconnected to form a logic topology

that mirrors a physical infrastructure – or a simplified version of it. The virtual envi-

ronment is held in (a set of) external servers and communicate with the forwarding plane

through an OpenFlow controller application that receives from the RF server the decisions

made by the routing protocols. As a result, flow rules are maintained in the data plane to

specify how traffic must be handled (i.e. port forwarding, MAC re-writing, TTL decre-

ment). While the control is centralized, it stays logically distributed. This way, it does not

require modification of existing routing protocols. Moreover, legacy infrastructure can be

transparently integrated, given that routing messages, like those of the BGP protocol, can

be sent from/to the virtual control plane.

This approach leads to a flexible, high-performance and commercially competitive

solution to provide IP routing based on: (a) programmable low cost switches and small-

footprint embedded software (i.e. OpenFlow); (b) open-source routing protocols stacks

(e.g. Quagga); and (c) commodity x86 server technology.

2.1. Modes of operation

Separating the control plane from the forwarding substrate allows for a flexible mapping

and operation between the virtual elements and their physical counterparts. Figure 2

shows the three main modes of operation that RouteFlow aims at supporting.

Logical split: This 1 : 1 mapping between hardware switches and the virtualized

routing engines basically mirrors the physical substrate (number of switch ports, connec-

tivity) into the virtual control plane. Two submodes of operation can be defined depending

on whether the routing protocol messages are sent through the physical infrastructure (i.e.

traditional routing) or are kept in the virtual plane.

Multiplexing: This 1 : n mapping of physical to virtual substrate represents the

common approach to router virtualization where multiple control planes run simultane-
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Figura 2. Different modes of operation and scenarios of router virtualization.

ously and install their independent FIBs on the same hardware. Multi-tenant virtual net-

works can be defined by letting control protocol messages flow through the virtual plane

and stitching the data plane connectivity accordingly.

Aggregation: This m : 1 mapping of hardware resources to virtual instances

allows to simplify the network protocol engineering by bundling a group of switches,

such that neighbouring devices or domains can treat the aggregated as if it were a single

element. This way intra-domain routing can be independently defined per software while

traditional inter-domain or inter-zone routing (e.g. BGP) can be converged into single

control unit for signaling scalability and simplified, centralized management purposes.

3. Prototype implementation

The current RouteFlow prototype is a combination of open-source software publicly avail-

able and newly-developed software daemons:1

The RouteFlow Controller and Server: The RF-Controller component is im-

plemented as a C++ application running over NOX [Gude et al. 2008] named routeflowc.

The RouteFlow network protocol is used to let routeflowc communicate with the RF-

Server that interacts with the RF-Slave instances and the virtual switch. To support vir-

tualization tool independence, Libvirt [Bolte et al. 2010] is the framework choosen to

support the needed VM operations. Having the RF-Server as a standalone application

facilitates the interaction with other (remote) OpenFlow controllers.

FIB gathering and rfslaved: Each VM in the virtual topology executes a RF-S

daemon named rfslaved along with its routing engine (e.g. Quagga). rfslaved gathers FIB

updates via the Netlink Linux API and sends the event data to the routeflowc via the RF-

Server. Using Netlink to keep processes aware of connectivity changes renders rfslaved

agnostic of the routing suites as long as it updates the OS FIB in response to the routing

protocols execution.

Virtual topology networking: OpenVSwitch (OVS) [Pfaff et al. 2009] is the

software switch controlled by the RF-Server and used to connect all NICs in a virtual

topology that must be mutually reachable. OVS instances running in different hosts can

be interconnected through a tunnel port. In addition to a distributed virtual topology and

OpenFlow programmability support, our experimental evaluation shows better conver-

gence times when using OVS.

1Available in the RouteFlow project page: https://sites.google.com/site/routeflow/

II Workshop de Pesquisa Experimental da Internet do Futuro 27



4. Conclusions

RouteFlow is an ongoing example of the power of innovation resulting from the blend of

open interfaces to commercial hardware and open-source community-driven software de-

velopment. The RouteFlow architecture allows for a flexible resource association between

legacy routing control protocols and a programmable physical substrate, opening the door

for multiple use cases around virtual routing services. However, a number of challenges

have still to be overcome, and, to fully realize this vision, further work is required to see

the PaaS model meet the networking world [Keller and Rexford 2010].
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