
QuagFlow: Partnering Quagga with OpenFlow

Marcelo Ribeiro Nascimento,∗ Christian Esteve Rothenberg,∗†
Marcos Rogerio Salvador∗ and Maurício Ferreira Magalhães†

∗ Telecommunications Research and Development Center (CPqD) - Campinas - SP - Brazil
† University of Campinas (Unicamp) - Campinas - SP - Brazil

{marcelon,marcosrs}@cpqd.com.br, {chesteve, mauricio}@dca.fee.unicamp.br

ABSTRACT
Computing history has shown that open, multi-layer hard-
ware and software stacks encourage innovation and bring
costs down. Only recently this trend is meeting the net-
working world with the availability of entire open source net-
working stacks being closer than ever. Towards this goal, we
are working on QuagFlow, a transparent interplay between
the popular Quagga open source routing suite and the low
level vendor-independent OpenFlow interface. QuagFlow is
a distributed system implemented as a NOX controller ap-
plication and a series of slave daemons running along the
virtual machines hosting the Quagga routing instances.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Experimentation, Design

1. INTRODUCTION
Traditionally, implementing IP routing meant buying ex-

pensive, vertically integrated equipment from a reduced num-
ber of players and an equally expensive piece of hardware-
dependent, closed source software in a way that resembles
the mainframes business model [4]. The value proposition of
open source foundations has lead to the emergence of fairly
complete open source routing stack implementations such as
Quagga [2], XORP [8], and BIRD [7] among others. Most
of these run on standard PC hardware and have been suc-
cessfully embedded in commercially available netgear. More
recently, the OpenFlow initiative [6] has attracted attention
as a potential de facto standard interface for updating net-
work routing tables in a hardware-independent manner. The
potential impacts of general purpose computer programma-
bility with the line-rate performance of commercial hardware
are far-reaching.

Towards such an open and multi-sourced layered stack
we propose QuagFlow, a transparent combination of the
popular and mature Quagga routing software suite [2], pro-
viding implementations of OSPFv2, OSPFv3, RIP v1 and
v2, RIPng and BGP-4, and OpenFlow-enabled hardware.
While OpenFlow provides means to treat operational traffic

Copyright is held by the author/owner(s).
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
ACM 978-1-4503-0201-2/10/08.

with legacy protocols embedded control plane of switches,
in this work we explore the feasibility of completely mov-
ing a legacy protocol stack (Quagga) to logically centralized
controllers using the OpenFlow protocol (together with the
config protocol currently under development) as the solely
communication channel with the forwarding engines.

In the short term, we regard QuagFlow as an intermediate
step towards programmable (software-defined) networks to
guarantee interoperability with legacy networks, with the
immediate benefits of a remote partnership between Quagga
and OpenFlow including:
- Cheap network gear with minimal embedded software
- Avoid “centralized” re-writing of proven protocols
- Ensure interoperability with legacy network elements
- Power of innovation to stakeholders, in particular network
operators and service providers

In the longer term however, we look forward to extend
QuagFlow to a multi-tenant environment offering third par-
ties a routing service platform, in the spirit of a Routing
Control Platform [1] — where the users could get controlled
access to manage Quagga instances on a virtual domain-wide
or per element basis. Along this direction, we reckon that,
similar to cloud computing, a QuagFlow-based network vir-
tualization service should evolve beyond overlaying remote
virtual routing instances on top of a shared physical infras-
tructure towards a more convenient ‘Platform as a Service’
model for networking as argued by Keller and Rexford [5].
This poster presents our first pragmatic steps towards a (re-
motely running) complete open-source routing stack.

2. SYSTEM OVERVIEW
One of the design objectives of our first QuagFlow proto-

type is a system without code changes to neither OpenFlow
nor Quagga, in a way that both developments can evolve
independently. Hence, QuagFlow is divided in a QuagFlow
controller (QF-C) application, developed as a user compo-
nent of NOX [3], and a series of QuagFlow slaves (QF-S),
running as transparent daemons in virtual machines (VM)
hosting the Quagga routing software. Together, the discov-
ered OpenFlow-enabled switching topology is replicated in
the virtual control plane environment by configuring the VM
interfaces and their virtual connectivity to mimic the condi-
tions as if they were running directly in the physical devices.
The QF-S monitors Quagga route table changes and informs
the QF-C. Routing protocol packets to external subnets are
delivered over the corresponding physical switch interfaces
and vice versa. Figure 1 presents a high-level overview of a
QuagFlow network and the system architecture.

441



QuagFlow: Partnering Quagga with OpenFlow

Goal QuagFlow ArchitectureSeamless union of unmodified Quagga open source routing suite 
(OSPFv2-v3, RIPv1-v2, RIPng and BGP-4 ) with OpenFlow networks

Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg, Marcos R. Salvador and Maurício F. Magalhães 
Telecommunications Research and Development Center (CPqD) - University of Campinas (Unicamp), Brazil

Benefits

Preliminary results

- Registers to PacketIn, DatapathJoin 
and DatapathLeave events.
- Manages VM connectivity and QF-S.
- Forwards routing protocol packets 
from switches to QF-S and vice versa.
- Installs flow entries received from the 
QF-S in Openflow switches.

- Create TAP interfaces to represent 
the switch's ports.
- Send/receive packets to/from 
Quagga through TAPs.
- Monitor route table for changes and 
translate to flows.

- QuagFlow transparently arbitrates between Quagga & OpenFlow switches.

- Control plane has worked successfully 
between OpenFlow and legacy switches. 
- Routes from Quagga FIB are properly 
converted into flow entries.
- Data plane packets are correctly 
forwarded

QuagFlow-Slave:

QuagFlow-Controller:

Open issues & outlook
- Replicate data plane events in 
the virtual environment
- Extensive evaluation on 
realistic networking conditions
- OpenFlow table abstractions
- Towards a routing control PaaS

- QuagFlow (QF) is implemented as a NOX controller application (QF-C) 
and one slave daemon (QF-S) per VM running Quagga.
- QF replicates the physical topology by configuring and "stitching" the 
VMs into a virtual topology running the Quagga control plane
- QF sets the OpenFlow tables according to Quagga FIB updates and 
dispatches routing control messages to from/to legacy subnets

Approach

- Cheap network gear with minimal embedded software
- Provide interoperability with legacy network elements
- Avoid re-writing legacy protocols in a centralized fashion
- Innovation power to stakeholders (network operators, service providers)

Figure 1: QuagFlow’ poster preview.

3. PRELIMINARY RESULTS AND FUTURE
WORK

In the prototype implementation, we were able to ver-
ify the correct interaction between a QuagFlow subnet and
legacy networks running unmodified routing protocols. Route
changes in the Quagga-generated FIB tables are properly
detected by the QF-S daemons, converted into flow entries,
and pushed in turn to the OpenFlow switches. Conversely,
routing control packets from legacy network elements are
correctly passed from OpenFlow switches to the correspond-
ing Quagga appliance. Routing control messages among
QuagFlow nodes are kept inside the high-performance server
running all VMs. This way, the complete QuagFlow network
control plane is contained within a safe, low-delay, resource-
rich computing environment, in which we can leverage virtu-
alization techniques to, e.g., take VM snapshots and easily
migrate or roll back to stable configurations.

QuagFlow is however far from being a complete solution
nor ready for an operational deployment (yet). There are
a number of issues that still deserve careful considerations
and extensive practical evaluation, including the replication
of data plane events (e.g., link failures) in the virtual envi-
ronment, optimizing protocol timers and the QF-S polling
mechanisms, the VM managing framework, and so on. Cer-
tainly, more challenges will arise as we scale the system to
real networking conditions. Along this journey, we expect
to contribute to the evolution of the OpenFlow ecosystem
(e.g., flow table abstraction, config protocol, FlowVisor).

This exploratory work is not limited to the feasibility of
progressively putting OpenFlow networks in operation but
also aims at devising opportunities in offering “virtual rout-

ing services,” starting by enabling network operators/users
to conveniently manage Quagga instances to customize the
routing on and from/to their allocated network slices.

All in all, QuagFlow brings line-rate forwarding to open-
source routing in an example of work towards a networking
model of rapid innovation and rich network control at a frac-
tion of the cost.

4. REFERENCES
[1] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,

A. Shaikh, and J. van der Merwe. Design and
implementation of a routing control platform. In
NSDI’05, May 2005.

[2] GNU Quagga Project. http://www.quagga.org.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: towards an
operating system for networks. SIGCOMM Comput.
Commun. Rev., 38(3):105–110, 2008.

[4] J. Hamilton. Networking: The last bastion of
mainframe computing.
http://perspectives.mvdirona.com/2009/12/19/ Net-
workingTheLastBastionOfMainframeComputing.aspx.

[5] E. Keller and J. Rexford. The ’Platform as a Service’
model for networking. In INM/WREN 10, Apr. 2010.

[6] OpenFlow Switch Consortium. Official website.
http://www.openflowswitch.org.

[7] The BIRD (BIRD Internet Routing Daemon) Project.
http://bird.network.cz.

[8] The XORP (eXtensible Open Router Platform)
Project. http://www.xorp.org.

442


