
Towards Deep Network & Application Integration:
Possibilities, Challenges, and Research Directions

Danny Lachos

University of Campinas

Qiao Xiang

Yale University

Christian Rothenberg

University of Campinas

Sabine Randriamasy

Nokia Bell Labs

Luis M. Contreras

Telefonica

Börje Ohlman

Ericsson

ABSTRACT
The collaboration between networks and applications pro-

vides opportunities to both applications to improve their

performances and network service providers to increase

business offering. Although many systems are proposed to

support such collaborations, they are point or incremental

solutions. In this paper, we propose the exploration of a

more integrated architecture with huge possibilities taking

a network-application integration (NAI) approach. Specifi-

cally, we explore the NAI possibilities in two concrete aspects:

application-aware networking and network-aware applica-

tions. We review recent progress in these two aspects, and

identify the key challenges in systematically realizing such a

deep integration. To address these challenges, we present the

initial design of a generic NAI possibilities exposure and dis-

covery framework, called PED, based on satisfiability modulo

theories (SMT). The key components of PED include a uni-

fied, abstract representation of network information using

mathematical programming constraints, a declarative lan-

guage for applications to express their intents on discovering

network information, and an efficient compiler to translate

application intents to constraint programming problems and

discover corresponding network information. Preliminary

evaluation results demonstrate the potentials of the PED

framework. At the end of the paper, we also discuss a series

of key future research directions toward deep NAI.
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1 INTRODUCTION
The collaboration between networks and applications in-

creases the quality and hence the business offering of the

former, and the performance of the latter [30, 35]. Data-

intensive science applications (e.g., the large hadron collider,

telescopes, and light sources), for instance, rely on networks

as one of the key components of their infrastructure for local

and global interconnection of laboratories, sites, and data

centres [5]. Another unexpected but evident example is the

current COVID-19 pandemic, with many institutional appli-

cations taking advantage of the network infrastructure to

share data quickly and support collaborative efforts frommul-

tiple communities and disciplines such as medicine, health,

genomics, and disaster mitigation [25, 26]. In the case of

adaptive applications (e.g., DASH), they may only achieve

flow-rate equality when a network view is absent [11]. The

network, given a global view, is in the best position to achieve

QoS- or QoE-level fairness. Therefore, any allocation of re-

sources with a goal beyond flow-based fairness is only possi-

ble when network and applications collaborate [4]. Flexible

inter-domain routing [8, 22, 33] and End-to-End (E2E) net-

work services [2, 6, 9, 13] are also emerging applications that

construct complex data flows between users in the network.

Different systems and mechanisms have been proposed

to support such collaboration. However, they are point or

incremental solutions with various limitations. For exam-

ple, network providers and applications have considered

different nash equilibrium solutions (See Fig. 1a). ISPs, for

example, attempt to improve the application issues through

an infrastructure upgrade, usage-based charging model, rate

limiting, or termination of services [24]. Meanwhile, appli-

cations attempt to improve the network efficiency having

flexibility in shaping communications patterns as well as

having flexibility to adapt to network topologies and con-

ditions [3, 12, 16, 21]. However, such solutions are largely

application/network-oblivious, making the interaction be-

tween them inefficient.

In addition, solutions adopting either a “best-effort” [18,

31] or “blackbox-request” [3, 38] approach (See Fig. 1b) are

also proposed. In the first one, applications submit complete

https://doi.org/10.1145/3405672.3405804
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Figure 1: Different approaches for the interaction of networks and applications: (a) nash equilibrium point, (b)
best-effort/black-box approach, and (c) network-application integration (NAI) approach.

network requirements, and the network computes and en-

forces the optimal resource allocation for applications. In

the second one, applications submit the amount of network

resources needed, and the network returns success or failure

based on the resource availability. These solutions either

have limitations on the privacy of applications and scala-

bility, or have inefficiency in finding the optimal resource

allocation for applications, respectively.

In this paper, we propose to explore a more integrated and

coherent architecture that takes a deep network-application

integration (NAI) approach (See Fig. 1c). Specifically, we

explore the possibilities of NAI in two concrete aspects:

application-aware networking and network-aware applica-

tions. The first one allows applications to specify diverse

requirements for the network infrastructure. The second one

allows networks to expose underlying network information

available to applications.

Despite the huge possibilities of NAI, systematically re-

alizing it is non-trivial. The key challenge is the lacking of

generic mechanisms for exposure and discovery of NAI pos-

sibilities. Existing solutions either fail to provide accurate

resource sharing information [14, 35], or expose the com-

plete information of the network [10, 32], raising scalability

and security concerns.

To fill this gap, we develop a generic NAI possibilities ex-

posure and discovery framework, referred to as PED, based

on satisfiability modulo theories (SMT). The core of PED

is the use of mathematical programming constraints as a

unified abstract representation of network information. Sec-

ond, PED provides a declarative language for applications to

express intents on discovering network information. An effi-

cient compiler is also developed to translate an application

intent to a constraint programming problem and discover

the corresponding network information. Examples of em-

bodiment scenarios to implement the PED design are the

network resource reservation systems [31, 38]. Such appli-

cations looking for optimal configurations in data center

network topologies (e.g., fat-tree [1]) where a large num-

ber of paths are designed between any pair of end hosts to

achieve full bisection bandwidth.

Themain contributions of this paper are as follows:

• We conduct a systematic review of the large variety of pos-

sibilities in designing and implementingNAI by application-

aware networking and network-aware applications (Sec-

tions 2 and 3);

• We identify the key challenges for systematically realiz-

ing NAI, and present the initial design and evaluation of

PED, a generic NAI possibilities exposure and discovery

framework based on SMT (Section 4);

• We discuss a series of future research directions toward

deep NAI (Section 5).

2 POSSIBILITIES OF NAI:
APPLICATION-AWARE NETWORKING

Applications have varying needs for network latency, band-

width, packet loss, etc. However, such applications’ require-

ments are often unknown to the network due to applications

and networks are decoupled. Thus, one concrete aspect of

NAI is adding application knowledge to the network so that

applications can express finer granularity requirements.

There are substantial possibilities in designing and imple-

menting NAI by application-aware networking. For example,

the network infrastructure can provide better support for

applications introducing different capabilities. Table 1 shows

a set of transport differentiation capabilities for applications

and the newer trend where applications can also provide

in-network computation or in-network storage.

Research contributions. Several research activities have

been proposed exploring the possibilities of adding appli-

cation knowledge to the network layer [7, 19, 30, 36]. Mag-

ellan [36], for instance, is a programming environment for

users to specify a global packet/in-network processing logic

which is expressed in a general-purpose language. Then,

Magellan automatically generates both datapaths in every

single network device and runtime for control plane. Schmidt
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Table 1: Application-aware networking: possibilities.

Example Capability Network Support

Provide Transport Differentiation
• At app-level granularity

Create different networks/slices/QoS Classification; Scheduling

• At sub-app granularity

Scheduling each packet according to

app-level deadline [27]; Distinguish

application-level structures (e.g., I
frame vs P frame); Co-flow schedule

Classification; Network

State; Scheduling

• Cross-app/protocol dependency
Identify full dependency (e.g., DNS-
>handshake->. . . )

Classification; Network

state; Scheduling

Provide In-Network Storage/Compute
• Application state inside the network

Key-Value Store Programmable networking

• Application compute inside the network

Paxos algorithms Programmable networking

et al. [30] introduce Socket Intents as a proactive, application-
expressed approach for multi-access network connectivity.

Socket Intents allow applications to share information, in

a generic way, about their communication patterns such

as preferences (e.g., bandwidth optimization), characteris-

tics (e.g., expected packet rates), expectations (e.g., paths
availability), and resiliences (e.g., handle certain error cases).

Application-aware IPv6 Networking (APN6) [19] proposes

a framework for using IPv6 extensions header to convey

the application requirements along with the packet to the

network. The application awareness introduced by APN6

can benefit different use cases, such as SLA guarantee, net-

work slicing, and network measurement. Ferguson et al. [7]
introduce the concept of participatory networks in which the

network provides a configuration API for applications to con-

trol a software-defined network. The proposed API, called

PANE API, is used in different use case applications (Ekiga,

SSHGuard, ZooKeeper, and Hadoop) in which information

from applications benefits network flexibility, configuration,

and performance.

Real deployment examples. BigData Express [20] is a

data transfer service for big data science. It provides an

application-aware SDN-enabled network service to program

networks with fast provisioning of multi-domain E2E net-

work paths at run-time and with guaranteed QoS. BigData

Express is currently deployed in several research institu-

tions, including UMD, FNAL, StarLight, KISTI, KSTAR, and

Ciena. The SDN for E2E Networked Science at the Exascale

(SENSE) [23] is another system providing an intuitive intent-

based interface to allow applications to express high-level

Table 2: Network-aware applications: possibilities

Example Capability Network Support

Conduct Transport Selection
• Time adaption

Bandwidth time window Network state; Capability

information

• Server/Path adaption

e.g., Which servers to use in multiple

replicas

Network state; Capability

information

• Rate adaption
Congestion control (reacting to

packet loss/delay/ECN bitdelay,

ECN bit [29]/ INT [15]); Adaptive

streaming; Lower-than-best-effort

(e.g., LEDBAT); Multi-path TCP.

Network state; Capability

information

Conduct Network Compute Selection
• Network function instantiation and invocation

e.g., Function as a service (FaaS) Programmable networking

service requirements. A multi-institution testbed has been

deployed at DOE Laboratories and Universities facilities, in-

cluding Caltech, Fermilab, UMD, NERSC, among others.

3 POSSIBILITIES OF NAI:
NETWORK-AWARE APPLICATIONS

Applications running over networks face challenges due to

the lack of network state and information. Applications can

benefit from network information exposure to make them

more flexible in terms of rate adaptation, transmission time,

server/path selection, among others. Therefore, the other

side of designing and implementing NAI is network-aware

applications, and there are many possibilities as well.

Table 2, for instance, illustrates that applications have pos-

sibilities to conduct transport selection capabilities based on

network state (e.g., packet loss, INT), performance metrics

(e.g., throughput, max reservable Bandwidth), capability in-

formation (e.g., delivery/acquisition protocol), and locality

(e.g., servers location and paths). Besides, if network can

provide programmability support, then applications can also

use that support to conduct network compute selection.

Research contributions. There are different proposals in-
troducing the benefits of network awareness for applications.

For example, P4P (Provider Portal for Applications) [35] is a

framework to enable a better cooperation between network

providers and network applications. P4P iTrackers accel-

erate the content distribution and optimize the utilization

of ISP network resources. Another maturing example of

NAI protocols is ALTO [14]. ALTO exposes network state

and capabilities to support efficient construction of diverse

network-aware applications models, such as CDN model,
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swarm model, dataflow/streaming model, etc. Network infor-

mation is exposed as abstractions (e.g., network/cost maps) to

protect the information privacy and improve the scalability.

Real Deployment Examples. Comcast, a large cable broad-

band Internet Service Provider (ISP) in the U.S., deployed a

P4P-based open framework [37]. Specifically, P4P iTrackers

are used to allow P2P networks to optimize trafficwithin each

ISPwhile improve P2P download performance for P2P clients.

Another much larger deployment is Flow Director [28], the

first-ever ISP-hyper-giant collaboration system. Flow Direc-

tor starts with the ALTO protocol but goes further, designing,

building, rolling-out, and operating a large scale system that

enables automated cooperation between one of the largest

eyeball networks and a leading hyper-giant.

4 APPROACH
The preceding discussion exposes huge possibilities of

NAI. However, there still exists a major lacking in systemati-

cally realizing such a deep integration. Different NAI possibil-

ities are not uniformly deployed due to economy, autonomy,

and architecture evolution concerns. Different possibilities

have heterogeneous requirements on information exposure,

manipulation, and interaction. As such, existing realizations

are complex point solutions, and could raise scalability and

security concerns. In this section, we first review the key chal-

lenges for systematically realizing NAI possibilities. Next,

we present the initial design of a systematic framework for

NAI possibilities exposure and discovery.

4.1 Key Challenges of NAI
Network information exposure. The first challenge of

NAI is that applications are lacking of visibility of available

and shared network resources (e.g., bandwidth of shared

resources for a set of flows), resulting in poor performance.

Existing network resource exposure mechanisms, including

graph-based abstractions [10, 32] and the one-big-switch

abstractions [14, 35], either expose all sensitive information,

or fail to capture the resource sharing between virtual flow

requests. How to expose network information to applications

in a unified, abstract representation is still an open challenge.

Network information discovery. The second challenge

is the lacking of a generic, flexible mechanism for appli-

cations to specify and discover the network information

they need for NAI, from the network. Existing solutions

(e.g., [14, 28, 35]) provide application interfaces to discover

E2E cost information of different packet spaces. However,

this information is derived from the network’s fixed resource

allocation (e.g., fixed route assignment) to the corresponding

packet spaces, and applications are not provided the flexibil-

ity to discover additional network resources (e.g., on-demand

routing) that can satisfy their needs (e.g., waypoint routing).
Security and privacy. Network information exposure and

discovery play an important role in realizing NAI, but can

Application

Network
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Language
Compiler

Decomposition

Encoder

Constrain
Programming

Solver

Resource
Discovery
Query

Resource
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(3)

(4)

(5)

Figure 2: Architecture/Workflow of SMT-based PED
framework.

also raise security and privacy concerns. For example, appli-

cation’s queries may expose proprietary information (e.g.,
internal data flow policies) or may reveal too much infor-

mation about individual clients. From the network side, too

much network information may be exposed if aggregation

or transformation mechanisms are not considered.

4.2 An SMT-based PED Framework
To address the aforementioned challenges, we propose the

initial design of a generic PED framework based on satisfia-

bility modulo theories (SMT). The PED framework consists

in three novel design points: a resource abstraction, a declar-

ative resource query language and a compiler to find and

return qualified resources to users. In particular, first, the

PED framework uses generic mathematical programming

constraints as a unified, compact representation of network

information. Second, PED utilizes the equivalence between

relational algebra and first order logic to provide a SQL-style

language for application to express their intents on discover-

ing resources in the network. Third, PED develops a compiler

to translate an application’s resource discovery intent into a

constraint programming problem with a set of logical con-

straints, whose feasible solutions correspond to qualified

configurations for application. In addition, to improve the

efficiency of finding qualified configurations, PED also de-

velops a search space decomposition (SSD) algorithm that

decomposes the compiled constraint programming problem

into a series of subproblems with smaller, disjoint search

space. Figure 2 presents the architecture and workflow of

the PED framework.

Designpoint 1:mathematical programming constraints
as a unified, compact resource representation. In PED,

when the network needs to expose the information for a set

of flows to applications, it uses mathematical programming

constraints to capture the resource availability and sharing

information of these flows, providing a unified resource rep-

resentation.

Specifically, suppose PED receives the resource discovery

request of a set of flow 𝐹 . For each flow 𝑓𝑗 ∈ 𝐹 , we use 𝑥 𝑗 to

denote an available resource (e.g., bandwidth) the application



Network Information Exposure and Discovery NAI’20, August 14, 2020, Virtual Event, NY, USA

l1
l2 l5l3 l4

l8 l11l9 l10

l6

Each link: 100 Mbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

10.0.0.1

10.0.0.3

S1

S1 l7

10.0.0.2

10.0.0.4

D1

D2
l12

Figure 3: An example where an application tries to dis-
cover information of tow flows from the network.

can reserve for this flow. Upon receiving this request, PED

first checks the routes – computed by the underlying routing

protocol – for each flow 𝑓𝑗 . Then all the links are enumerated.

For each link 𝑙𝑢 , it generates a linear inequality:∑
𝑥 𝑗 ≤ 𝑙𝑢 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒,∀𝑓𝑗 that uses link 𝑙𝑢 in its route.

To illustrate this formulation, consider the network topol-

ogy in Figure 3, where an application wants to reserve band-

width for two flows 𝑓1 : (𝑆1, 𝐷1) and 𝑓2 : (𝑆2, 𝐷2). The routes
for the two flows share common links, i.e., 𝑙3 and 𝑙4, hence
it infeasible for both circuits to each reserve a 100 Mbps

bandwidth. Therefore, the PED framework will generate the

following set of linear inequalities:

𝑥1 ≤ 100, ∀𝑙𝑢 ∈ {𝑙1, 𝑙2, 𝑙5, 𝑙6 },
𝑥2 ≤ 100, ∀𝑙𝑢 ∈ {𝑙7, 𝑙8, 𝑙11, 𝑙12 },
𝑥1 + 𝑥2 ≤ 100, ∀𝑙𝑢 ∈ {𝑙3, 𝑙4 }.

(1)

Where 𝑥1 and 𝑥2 represent the available bandwidth that

can be reserved for (𝑆1, 𝐷1), and (𝑆2, 𝐷2), respectively. Each
linear inequality represents a constraint on the reservable

bandwidths over different shared resources by the two flows.

Design point 2: Resource discovery language. PED in-

troduces a declarative language that allows applications to

express flexible resource discovery intents. Specifically, the

language uses a resource-filtering design, which allows ap-

plications to define predicates on packet spaces (i.e., different
sets of flows), and predicates on resources (i.e., particular
resource attributes that applications are interested in dis-

covering). Leveraging the equivalence between relational

algebra and first-order logic, the language uses SQL-style

semantics, which are familiar to both application and net-

work engineers. Figure 4 gives an example to discover the

bandwidth information of two flows (based on the configu-

ration in Fig. 3), where the bandwidth of both flows must be

at least 100 Mbps.

1 flow_1: {src_ip = 10.0.0.1 and dst_ip = 10.0.0.2};
2 flow_2: {src_ip = 10.0.0.3 and dst_ip = 10.0.0.4};
3 flow_set: {flow_1, flow_2};
4 req_1: flow_2.bandwidth >= 100 Mbps;
5 req_2: flow_2.bandwidth >= 100 Mbps;
6 select bandwidth from flow_set
7 where req_1 and req_2;

Figure 4: An example resource discovery query.

Design point 3: a compiler to translate resource discov-
ery query into network information exposure. Given a

resource query (Step 1 of Fig. 2), PED first compiles the re-

quirement filter predicates into a set of logical constraints

(Step 2), and then leverages state-of-the-art solvers (e.g., the
Z3 SMT solver) to search for qualified configurations that

satisfy the application requirements. Specifically, given a

resource query, a qualified configuration is defined as the

network paths (i) that can be used to route the traffic of the

packet space specified in the query, and (ii) along which

available resources to the specified packet space satisfy the

resource predicates in the query.

To preserve the privacy of network, in PED the network

has the flexibility of deciding how many qualified configura-

tions to search for and how many of them can be returned to

the application. This can be achieved by tuning correspond-

ing options in problem solvers.

Topologies of networks, especially data center networks,

have a large number of possible paths for each source-destination

pair, resulting in a large search space and a higher latency

for finding qualified configurations. As such, we develop

the SSD algorithm to decompose the compiled constraint

programming problem on the whole network into multiple

sub problems on smaller, disjoint partitions of the network

(Step 3). These sub problems can be solved efficiently and

in parallel. In this way, the efficiency of finding qualified

configurations for application is substantially improved.

After qualified configurations are found (Step 4), PED

encodes the resource information of the configurations (e.g.,
bandwidth sharing) in a set of mathematical programming

constraints and sends to the application (Step 5). For example,

from the bandwidth availability query in Figure 4, PED will

provide the linear inequality 𝑥1 + 𝑥2 ≤ 100 indicating that

both flows share a common resource and thus, the sum of

their bandwidths can not exceed 100 Mbps.

After receiving the network information, the application

can then optimize resource allocation for its flows using the

retrieved information, together with its private constraints.

Preliminary evaluation. We evaluate our design proposal

in different scales of fat-tree topologies [1] using different

workloads. Specifically, we study the performance of two

versions of our design: (i) SSD: the full version of PED where

the SSD algorithm is enabled; (ii) Baseline: a simplified

version of PED where the SSD algorithm is disabled. We

measure the resource discovery latency of both versions as

the elapsed time from the time when the compiler finishes

the compilation to the time when a feasible configuration of

the original search problem is found.

We generate different application workloads by randomly

selecting different amounts of end host pairs to compose

different flow sets, and divide them 3 different cases, each
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Figure 5: The resource discovery latency of PEDw/ and
w/o SSD: (a) 4-ary fat tree with varying numbers of
flows; (b) 40 flows with varying fat tree sizes.

of which has a different ratio of resource sharing require-

ments (e.g., QoS metrics) in the original logical constraints.

For example, baseline-100% indicates that all original logical
constraints are QoS metric requirements for all flows.

Figure 5a plots the resource discovery latency of two PED

versions in a 4-ary fat tree topology as the number of flows

changes. Results show that the PED with SSD enabled al-

ways has a lower discovery latency than the one with SSD

disabled, regardless of the ratio of resource sharing require-

ments.When this ratio is fixed, the improvement of discovery

latency increases as the number of flows does. Specifically,

when there is no resource sharing requirement, SSD im-

proves the discovery latency by up to 15 times (i.e., 30000 ms

vs. 2000 ms with 80 flows), demonstrating the efficiency of

the first phase of search space decomposing in SSD. When

all constraints are resource sharing ones, SSD improves the

latency by 2-4 times, demonstrating the efficiency of the sec-

ond phase of search space decomposing. Similar results can

also be observed in Figure 5b. Although a 2000 ms resource

discovery delay may still seem high in practice, we argue

that this result is preliminary and as future work, we are ac-

tively exploring the use of precomputation and caching [34]

to significantly improve the discovery latency and scalability

of the PED framework in practice.

5 FUTURE RESEARCH DIRECTIONS
Multi-domain information exposure. Many novel appli-

cations require the orchestration of multiple resources across

multiple domains (technological or administrative) where

dynamics and topologies are completely different [17]. Ex-

posing network information for a multi-domain setting in-

troduces a basic challenge because each domain can have its

own representation of the same network infrastructure. To

fully benefit from the network awareness in applications, it is

necessary to design multi-domain composition mechanisms,

so that network information in multiple domains are adapted

together to a single and consistent “virtual” abstraction.

Control exposure for NAI. A programmable network can

provide opportunities to both applications to optimize E2E

routing control and network service providers to increase

business offering. However, traditional inter-domain routing

protocols (e.g., using the traditional BGPmodel) provide very

limited mechanisms for network operators and applications

to achieve flexible, E2E route control. Thus, more research

efforts in this direction are required to expose more control

(ultimately programmability) beyond just information.

Computation complexity optimization. As already men-

tioned, resource discovery techniques are characterized by

increased optimal resource allocation but at the cost of com-

munication and computation overhead of resource discovery.

Therefore, solutions to reduce the delay as well as number

of messages for resource discovery are necessary. A possible

optimization consists in proactively discover the resource

information. Another alternative to explore is to use those

pre-computed abstractions to quickly project to get the re-

source abstraction for application’s requests.

Security/privacy preserving. PED may rise to privacy and

security issues. Therefore, it is necessary to ensure that

queries to the network can provide enough information with-

out compromising the privacy of clients/applications. To deal

with the network information exposure issues, mechanisms

to ensure that information is transformed and aggregated

need to be also developed.

6 CONCLUSIONS
The collaboration between networks and applications

brings benefits to both parties, yet realizing it is non-trivial.

In this paper, we review huge possibilities in designing and

implementing NAI by application-aware networking and

network-aware applications. We design PED, an NAI pos-

sibilities discovery and exposure framework to address the

key challenges of systematically realizing NAI. Preliminary

experiments show the potentials of this framework. Besides,

we also discuss future research directions toward deep NAI.

For future work, we plan to extend the PED architecture

to include different southbound interfaces such as intra/inter

protocols (ISIS, OSPF, BGP) and flow-based protocols (Net-

Flow, sFlow) in order to provide flexibility and obtain up to

date network information. Experimental evaluation in more

complex/real environments under different sizes of networks

and network dynamics is also in our roadmap.
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