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Abstract—The growing popularity of eXtended Reality (XR)
is being driven by technological advancements and the demand
for advanced immersive digital experiences, including the vi-
sion around the metaverse. Within the XR realm, 360-degree
immersive video streaming is essential for Virtual Reality (VR)
adventures and experiences. The use of E2E encryption for con-
tent delivery in 360-VR streaming poses challenges for network
operators, making it difficult to manage their networks and assess
potential Quality of Experience (QoE) impairments, specifically
in 5G and beyond networks. Therefore, we propose a Machine
Learning (ML) approach for inferring 360-VR video QoE metrics
from network-level encrypted traffic. Our solution uses packet-
level information for feature engineering, which serves as input
for the ML model to predict target QoE estimators. We evaluate
our solution using real 4G and 5G drive test traces with
encrypted VR traffic using HTTPS and QUIC protocols. The
experimental results show that the trained ML model yields
reasonable accuracy with minimal residual error in predicting
target VR QoE for both HTTPS and QUIC. Network operators
can use such a model to passively monitor the real-time QoE of
encrypted VR video sessions and optimize network performance.

I. INTRODUCTION

Video streaming is currently a dominant force in Inter-
net traffic growth. Recent advancements in networking and
multimedia technologies are bringing increased attention to
Virtual Reality (VR), specifically 360-degree immersive video
streaming. As an integral part of eXtended Reality (XR)
services, VR is considered a key technology in this field.
Reports1 predicted that VR-associated traffic would increase
12-fold by 2022, and the number of VR headsets (a.k.a., Head-
mounted Displays or HMDs) in use is expected to reach 34
million by 20242. The potential economic impact of VR is
significant, with projections of a $1.5 trillion boost to the
global economy by 20303.

To deliver satisfactory immersive Quality of Experi-
ence (QoE) for 360-VR video, high bandwidth (up to 500
Mbps) and low latency (lower than 9 ms) are required [1],
which are different Key Performance Indicators (KPIs) from
traditional streaming over mobile networks. This is due to
the nature of VR streaming, which requires features such
as viewport awareness, tile-based encoding, and 4K quality.
5G and Beyond (5GB) networks aim to meet these demands
for a smooth user experience, making QoE-driven network

1Cisco VNI - forecast and trends, 2017–2022: Cisco, 2018
2VR headset unit sales worldwide from 2019 to 2024: Thomas Alsop, 2022
3Seeing is believing: PWC tech report, 2019

management for XR/VR services in 5GB networks a relevant
yet challenging topic.

To optimize the network for VR services, network operators
need a deep understanding of the factors that affect the QoE of
users. QoE is influenced by various factors such as human fac-
tors (e.g., immersion and cybersickness), system factors (e.g.,
network and media content), and context factors (e.g., social
and task). However, operators cannot access all of these factors
and are therefore relegated to investigating the perceived QoE
by analyzing the traffic passing over the network and deciding
on proactive capacity planning or reactive resource allocation.

Network operators traditionally relied on Deep Packet In-
spection (DPI) to infer QoE information directly from network
traffic. However, with the rise of E2E encryption, such as
video streaming over HTTPS/TCP or QUIC/UDP protocols,
inferring QoE through DPI has become challenging. More-
over, VR video encryption limits the use of Full Reference
(FR) based objective quality assessment approaches, such as
peak signal-to-noise ratio (PSNR) [2] and structural similarity
index (SSIM) [3], whose metrics calculations are hindered
by encryption blocking access to raw video data. In contrast,
recent significant works [4], [5] have shown the potential of
Machine Learning (ML) based correlation models, generally
classified as No Reference (NR) approaches, for inferring QoE
metrics from encrypted traffic for adaptive video streaming.
Nevertheless, these approaches have limited applicability in
inferring VR service quality, as 360-VR video is spatially
divided into multiple parts known as tiles.

In this context, this work proposes an approach to infer QoE
metrics of VR videos from E2E encrypted network traffic. To
the best of our knowledge, this is the first study demonstrating
an ML-based correlation model for mapping VR QoE metrics
and in-band encrypted Quality of Service (QoS) features. The
main contributions of this paper are as follows:

• We develop an emulated testbed that can generate and
collect traces of 360-VR streaming in a mixture of
HTTPS/TCP and QUIC/UDP traffic under various net-
work conditions, such as 4G and 5G networks.

• We design a non-invasive and lightweight feature ex-
traction heuristic that generates a comprehensive set of
QoS features, relying only on bi-directional network layer
packet-level features.

• We experimentally evaluate an AutoML-based supervised
learning approach that combines shallow and deep learn-



Fig. 1: Tile-Based 360-VR Streaming

ing algorithms to predict objective QoE metrics and QoE
value scores of VR streaming sessions using network-
level QoS indicators. Results show that for predicting
VR QoE, the ensemble model provides a satisfactory fit
model (up to 99%) to the data. Additionally, we made
both the code and datasets utilized in our work available
online4 to enhance reproducibility.

This paper is structured as follows. Section II presents an
overview of the background study, challenges, and a brief
related work. Section III outlines the proposed approach and
experimental setup. Section IV thoroughly analyzes the ex-
perimental results and evaluation of the model’s performance.
Finally, Section V concludes the paper with future directions.

II. BACKGROUND, CHALLENGES AND RELATED WORK

360-VR Streaming. 360-degree VR videos, whether tradi-
tional or stereoscopic, have gained significant research atten-
tion, differ from traditional 2D video streaming in terms of
content capturing, encoding-decoding, and bandwidth require-
ments, and allow a user to explore the scene in all directions.
However, due to the challenges associated with transmitting
high-bandwidth 360-VR video over cellular networks, tile-
based [6] streaming is considered the most common imple-
mentation among several approaches for 360-VR streaming
(Figure 1). In a tile-based solution, a 360-degree device
captures the content, which is mapped, encoded, segmented,
and placed on an HTTP server. A headset (e.g., Oculus/GVR
HMD) tracks the client’s head movement and viewport, while
a dynamic bitrate algorithm selects the video quality for each
tile based on bandwidth and viewport coordinates. The content
is then requested, buffered, and displayed on the headset. We
further explain some key aspects of VR streaming [7], [6].
Content Acquisition and Stitching: Capturing an entire 360-
degree scene demands an omnidirectional camera (e.g., Gear
360, Ricoh theta). A stitching process (e.g., planar represen-
tation) later requires aligning the different camera views.
Projection: After content capturing and stitching, a 360-degree
sphere is projected to a 2D plane format before encoding and
transmission. Different projection techniques are used, such as
equirectangular, cubic, and pyramid projection, with equirect-
angular being the most prevalent and involving flattening a
sphere on a 2D surface.
Tile-based Encoding: The resulting content is then encoded
in different representations by encoders (e.g., HEVC/H.265)

4https://github.com/sajibtariq/360-VR-QoE-In-band-QoS

and segmented temporarily and spatially. Spatial segmentation
refers to dividing a frame into several areas, known as tiles,
with tile-based streaming prioritizing viewport quality while
reducing other areas to address bandwidth concerns.
Transmission: To transmit all the encoded tiles in tile-based
streaming, the most prominent MPEG-DASH framework is
generally used to manage the viewport’s quality based on
available network conditions. Such a DASH framework can
be over HTTPS/TCP or QUIC/UDP.
Display: On the client side, 360 video display on a headset
with a viewport prediction algorithm. In practice, such a
heuristic solution predicts near-future user head position (e.g.,
viewport) and takes advantage of a tile-based structure to
download only the tiles that belong to the viewport proactively.
Later, taking input from viewport prediction information, a
dynamic bitrate algorithm is responsible for downloading each
of the tiles of the following video segment by prioritizing the
viewport’s tiles in high quality.
Challenges for Network Operator. In video streaming,
the objective QoE metrics (e.g., initial delay, stall, quality
variation) significantly impact user engagement [4]. Unlike
traditional streaming, tile-based 360-VR streaming added new
factors which affect the user’s QoE. Specifically, frequent
quality changes on the temporal and spatial levels can be
an unpleasant experience and create some physical problems
(e.g., cybersickness and confusion). Poor QoE can happen for
various reasons, such as overloaded servers (content provider’s
end), inadequate resources/network congestion (network oper-
ator’s end), and weak signal/low bandwidth (user’s network).

To mitigate QoE problems due to network issues, operators
need to be able to measure and monitor QoE metrics. Unlike
content providers, network operators only have control over
network traffic information to evaluate QoE metrics. However,
subjective measurement and objective PSNR/SSIM-based so-
lutions are complicated and unfeasible for operators. More-
over, the use of E2E encryption protocols such as HTTPS or
QUIC makes DPI more challenging to read the quality of video
directly from the network traffic payload. Hence, operators can
use a parametric packet model based on encrypted header info
to predict QoE using input features from bi-directional video
stream traffic.

Identifying target 360-video traffic stream and video session
detection is challenging and complex for operators. Previous
works [4], [5] discussed some heuristic approaches for such
challenges. Nevertheless, we assume the operator can identify
a video content provider’s traffic streams and video sessions.



Fig. 2: Overview of the Proposed Approach

Related Work. Recent studies [4], [5], [8] proposed using
ML to assess QoE for traditional 2D videos by observing
network traffic, notably encrypted traffic. These studies use
ML to infer application-level objective QoE metrics, such
as quality, stall events, and quality variations, by correlating
extracted network-level QoS features. For 360-VR videos,
research mainly focused on subjective and FR-based objective
QoE assessment. In literature, subjective QoE was examined
by observing user characteristics and feedback, considering
factors such as cybersickness, presence, motion sickness, per-
ceptual quality, head motion, and content characteristics [9].
Objective QoE assessment of 360-VR has been conducted
using metrics such as PSNR [2] and spherical SSIM [3].
Additionally, [10] proposed ML model to predict QoE metrics
of tile-based 360-VR videos by incorporating out-of-band
network features, such as the enforced network configuration
and tiling scheme used during the controlled experiment.
However, our proposed method aims to improve upon this
approach by utilizing only in-band network features extracted
from encrypted traffic. We believe this to be a more robust
and accurate method for predicting QoE in 360-VR streaming
from the network operators’ perspective.

III. METHODOLOGY/PROPOSED APPROACH

Overview. Motivated by existing practices in supervised ML-
based QoS and QoE correlation for traditional video streaming,
we employ an ML-based approach to estimate 360-VR QoE
from in-band encrypted QoS features. Though operators can
store packet information for network traffic, spatial segmenta-
tion of 360-VR videos poses challenges for the operator for
QoS-QoE correlation as segment requests for each tile create
massive traffic for a small fraction of a video, unlike traditional
streaming. Figure 2 shows a synopsis of our proposed ML-
assisted approach to predict VR QoE metrics for encrypted
video traffic features. Our approach for extracting network-
level features is non-invasive and lightweight, utilizing IP-level
header information from bi-directional network traffic without
requiring computationally expensive application-level segment
detection and feature extraction methods. We computed a
wide range of network QoS features from the packet and

Fig. 3: 8x5 Tiling Scheme Example: 3 Zones with Center
Having the Highest Quality, Followed by Adjacency, and Outer

window-based statistics for each independent VR streaming
session. Our work focused on a supervised ML model to
make the QoS-to-QoE correlation model for assessing VR user
QoE metrics which requires ground truth from VR streaming
performance for labeling the dataset. Thus the workflow has
two operational phases: training and inference.

The training phase involves streaming extensive 360-VR
videos under diverse network conditions and collecting traffic
traces in the network premises and VR playout performance
metrics (e.g., QoE metrics) as ground truth from the VR player.
The raw packet traces are fed into proposed feature engineer-
ing techniques to yield a comprehensive set of features from
IP-level header information. After extracting the features, the
dataset, which includes the features and their corresponding
ground truth, is used to train supervised ML models for various
QoE metrics. In the inference phase, network features from
testing data are fed into the trained model to generate predicted
QoE metrics. The performance of each model is evaluated with
the normalized residual errors between predicted and ground
truth values. Operators can utilize predicted QoE to optimize
network performance. As proposed in [11], such a QoE predic-
tion engine can fit into the Network Data Analytics Function
(NWDAF) in a service-based 5G architecture. NWDAF can
gather network-level and application-level KPIs, followed by
ML training and inference. Other network functions, including
the Policy Control Function (PCF) and User Plane Function
(UPF), can leverage NWDAF insights for optimization actions.
Experimental Setup. To implement and evaluate the perfor-
mance of our work, we conducted a controlled experiment.
The testbed includes Mininet-WiFi5 to emulate network topol-
ogy comprising one Access Point (AP) and one Open vSwitch
(OvS) with an OpenFlow reference controller. A headless VR
client [1] was connected to the AP, and a dedicated Caddy
HTTP web server, specifically for streaming the encoded 360
videos, was linked to the OvS. The VR client is written
in C language using Curl6 (specifically libcurl) to download
content over HTTP protocol. It supports tiling scheme and
batches the tile into multiple Zones, as shown in Figure 3.
It also has a Viewport Prediction Algorithm (VPA) with a
controlled error injection module. VPA takes user head move-
ment coordinates from pre-collected viewport traces dataset

5https://github.com/intrig-unicamp/mininet-wifi
6https://curl.se/libcurl/



with regular intervals (e.g., 20 ms). Moreover, the VR client
supports two dynamic Adaptive Bitrate (ABR) algorithms, Full
Delivery (FD) [12] and Full Delivery Basic (FDB) [13] to
select appropriate quality representation for each tile by taking
the benefits of VPA. The detailed functionality of the VR client
can be found in [1].

To support E2E encryption, HTTPS and QUIC require a
security certificate setup on both ends (client and server).
Thus, for both ends, we made a self-signed certificate with
OpenSSL. In the testbed, we modified the VR client to support
E2E encryption for both HTTPS and QUIC transport protocols
where application protocol HTTP/1.1 was used as default,
and HTTP/3 (using nghttp3 library) was built over ngtcp2
(an implementation of QUIC) in Curl. Note that HTTP/3 is
a new version of the HTTP protocol that runs over QUIC
and aims to improve performance compared to earlier versions
like HTTP/1.1. However, it is still in the experimental phase
and has yet to be fully adopted. Additionally, the present
(as of this writing) Curl (libcurl) based HTTP/3 implemen-
tation is experimental and not yet fully optimized for all use
cases. It lacks key features such as multiplexing, server push,
and other HTTP/3-specific extensions, resulting in potential
performance issues in experiments. The modified VR client
utilized HTTP/1.1 persistent and non-persistent connections
over HTTPS and HTTP/3 persistent connections over QUIC to
download tile-based VR content for each Zone. The persistent
approach downloaded all tiles for each Zone under the same
connection, while the non-persistent approach created a new
connection for each tile.

To emulate diverse network conditions dynamically, we
used Linux TC reconfiguration on the virtual interfaces be-
tween the AP and OvS in intervals of 1 second each, following
the downlink bandwidth patterns from 4G and 5G cellular
network traces. The traffic traces were generated using Irish
telecommunication operators over different mobility [14], [15].
However, we arbitrarily selected ten traces, five for 4G (Mean=
18.59, Std= 11.99 (Mbps)) from bus, car, static, pedestrian,
and train mobility, and five for 5G (Mean= 86.49, Std= 78.06
(Mbps)) from only static mobility.

The server offers two VR videos [10], “Google Spotlight-
HELP” and “Freestyle Skiing”, which are equipped with two
different tiling schemes, 8x4 and 12x4, respectively. Each
tiling scheme was encoded into three distinct quality represen-
tations, including 720p-1.8 Mbps, 1080p-2.7 Mbps, and 4K-6
Mbps. To enhance the streaming experience, each of these
quality representations has been further divided into 1-second
segments. We capture raw network traffic at the AP interface
during a VR streaming session. For the extensive analysis,
we run experiments with fixed parameters for each streaming
session (up to 60-second duration), including the type of
information on network traffic traces, transport and application
protocol, VR video, tile scheme, ABR algorithm, viewport
traces and error rate, buffer size, and segment number.
Network-level QoS Features Engineering. To collect and
analyze encrypted VR streaming session traffic from a vantage
point, we employed Tcpdump, a widely-used command-line

Algorithm 1 Network-Level QoS Feature Engineering
1: Input: captured PCAP file
2: Output: stats of four basic features for up and downlink
3: procedure FEATURE EXTRACTION
4: bin, win thresh ← 1
5: time start, time start100, time diff , time diff100 ← 0
6: win start, vol, pkt cnt, vol100, pkt cnt100 ← 0
7: wtp, wpc, piat, pps ← []
8: wtp100, wpc100, piat100, pps100 ← []
9: for each packet i in PCAP do

10: if win start ≤ timestamp(i) ≤ win thresh then
11: vol += (packetlength(i) × 8)
12: pkt cnt += 1
13: if tcptype(i) and packetlength(i) ≥ 100B then
14: vol100 += (packetlength(i) × 8)
15: pkt cnt100 += 1
16: end if
17: else
18: Append vol

bin
to wtp

19: Append pkt cnt to wpc

20: Append vol100
bin

to wtp100

21: Append pkt cnt100 to wpc100
22: vol, pkt cnt, vol100, pkt cnt100 ← 0
23: vol += (packetlength(i) × 8)
24: pkt cnt += 1
25: if tcptype(i) and packetlength(i) ≥ 100B then
26: vol100 += (packetlength(i) × 8)
27: pkt cnt100 += 1
28: end if
29: win thresh ←win thresh + 1
30: win start ←win start + 1
31: end if
32: time diff ← timestamp(i) - time start
33: Append time diff to piat
34: Append packetlength(i) to pps
35: time start ← timestamp(i)
36: time diff ← 0
37: if tcptype(i) and packetlength(i) ≥ 100B then
38: time diff100 ← timestamp(i) - time start100
39: Append time diff100 to piat100
40: Append packetlength(i) to pps100
41: time start100 ← timestamp(i)
42: time diff100 ← 0
43: end if
44: end for
45: stats ← statistics calculation of all the arrays
46: return stats

tool. Tcpdump was chosen due to its efficiency and low
resource utilization. It utilizes the libpcap library to capture
packets from a network interface. We applied to filter criteria
to the captured traffic (identified by the IP/port four-tuple) and
offloaded the raw packets to a PCAP file for later analysis.
We then utilized the PCAP file as input for our proposed QoS
feature engineering approach, as outlined in Algorithm 1.

The feature engineering process begins by initializing sev-
eral variables and an empty array of four basic features:
throughput (wtp), packet number (wpc), interarrival time (piat),
and packet size (pps) (lines 4-7). These network-layer fea-
tures are defined based on the concept presented in earlier
works [4], [5]. The calculation of these features involves
various network-level statistics and is performed solely on IP
header information, including IP addresses, packet timestamps,
and corresponding volume from upstream and downstream
encrypted traffic. This makes the feature engineering suitable
for various services, platforms, protocols, and other use cases.
Note that, to save space, the pseudo-code depicts the feature
extraction process in a general manner, but in actual implemen-
tation, the algorithm distinguishes upstream and downstream
flow based on source IP addresses. The feature extraction
process is further segmented into two operations: window-level



TABLE I: Summary of Extracted QoS Feature Statistics
Applied Statistics

QoS KPI Entire F25, L25
Session F50, L50

Throughput(TP) avg, max, min, medn, std, 10-90p avg
Packet Count (PC) total, avg, max, min, medn, std, 10-90p total

Interarrival Time (IAT) avg, max, min, medn, std, 10-90p avg
Packet Size (PS) avg, max, min, medn, std, 10-90p avg

Abbreviation Details
avg, max, min, medn, std average, maximum, minimum, median, standard deviation

10-90p the distribution of the 10th to 90th percentile (in steps of 10)
F25, L25, F50, L50 first and last 25% and 50% of streaming session

and packet-level.
Window-level feature extraction refers to calculating fea-

tures for all packets that arrive within a specific time window.
Let W be the time window and P be the set of all packets
within that window. Features(W) = F(P), where F is a
function that calculates various features or statistics of the
packets in set P. Note that the window duration, W, is an
important factor affecting the accuracy and granularity of the
features calculated. In this study, a one-second bin is used to
collect window-level features. The algorithm iterates through
each packet in the PCAP file using a for loop, where it checks
if the packet’s timestamp is within the current window of time
specified by the (win start) and (win thresh) variables. The
volume (vol) and packet count (pkt cnt) are updated if the
packet is within the window. If the packet is not within the
current window, the volume frequency in bits and total packet
count are appended to their respective arrays (wtp) and (wpc),
and the window is incremented (lines 10-31). On the other
hand, packet-level features refer to calculating statistics or
characteristics for each individual packet rather than a group
of packets within a specific time window. Let S be a session of
network traffic, and P be the set of all packets that belong to
that session. Features(S) = F(P), where F is a function
that calculates various features or statistics of each packet in
the set P. The algorithm tracks each packet and calculates
the time difference between two consecutive packets and the
current packet’s volume in bytes. The computed values are
then appended to their respective arrays (piat) and (pps), and
reset the variables (lines 32-43).

It is worth noting that TCP streams often contain many
small control packets (e.g., SYN, ACK, RST). Therefore, for
the TCP stream, the same features are additionally calculated
for packets whose length is greater than or equal to 100 bytes
(lines 8, 13-16, 20-21, 25-28, 37-43) In this study, the VR
session is considered for different phases, including the entire
session, the first and last half of the session, and the first and
last quarter of the session. In the final stage, the algorithm per-
forms various statistical calculations for all arrays in different
session phases (line 45) and returns the statistics as output (line
46). As a result, a total of 292 features were extracted for the
HTTPS/TCP connection and 146 features for the QUIC/UDP
connection. Each computed QoS feature is given a name for-
mat: kpi traffic-direction session-phase statistic. All the
extracted QoS features for both upstream and downstream are
summarized in Table I.
VR QoE Metrics as Ground Truth. Previous study [16]
shows that objective QoE metrics are crucial in determining
user engagement with video streaming services. In this study,

we used a VR emulator that provides performance metrics
to characterize a VR streaming session objectively. These
metrics include tile transmission quality frequency per Zone,
quality switching frequency per Zone, stall time, and startup
delay. These metrics are significant because, in tile-based VR
streaming, each Zone’s combined performance considerably
impacts user immersion. A QoE model using these metrics can
provide a comprehensive understanding of the user’s immer-
sive experience and aid in identifying areas for improvement.
However, creating a QoE model for tile-based VR streaming
is more complicated than traditional video streaming, as it
involves a more complex pipeline. In this study, we adopt a
QoE model using VR performance metrics, as outlined below,
proposed in [10], [17].

QoEper Zone = q(R)− µ · tstall − λ ·Qswitch − ω · T startup (1)

Qswitch =
∑

∀z∈all Zones,∀z∈all segments

|q(Rnew)− q(Rold)| (2)

QoEoverall = α1 ·QoEZone 1 + α2 ·QoEZone 2 + α3 ·QoEZone 3 (3)

In Equation 1, the first term characterizes the streaming
quality and is represented by the mapping function q(R),
which refers to the bitrate of the streaming. Additionally,
the degradation effects of the streaming experience, such as
stall time, quality switch, and startup delay, are also taken
into account. These factors are represented by the terms tstall,
Qswitch, and T startup, respectively, and are assigned weighting
factors (µ, λ, ω) that reflect their relative importance in
determining the QoE of each Zone. A stall event refers to
an interruption in the streaming caused by the buffer drain,
while a quality switch refers to variations in the quality of
consecutive segments (as per Equation 2). The startup delay
is the time it takes for the initial buffer threshold to be filled
and the video to start playing, and it remains constant. In tile-
based streaming, the user’s experience is affected differently
depending on the viewing region. The central (Zone 1) region
has the strongest impact on the user’s perception, followed
by the adjacent (Zone 2) and the outer (Zone 3) regions.
Therefore, the overall QoE is calculated (as per Equation 3)
by summing the resulting QoE measurements per Zone from
Equation 1, with weighting factors (α1, α2, α3) that reflect
the relative importance of each Zone. In this study, we used
nearly identical values for the weighting factors (µ = 4.3, λ
= 1, ω = 4.3, α1 = 0.7, α2 = 0.2, and α3 = 0.1), except
for α2 and α3 based on work [10]. Unlike work [10] which
assumed no influence of Zone 3 and set α3 to 0, we considered
a minor influence and set α3 to 0.1, with a reduced value
of 0.3 to 0.2 for α2. Finally, to train the ML model for VR
streaming sessions, the following objective QoE metrics were
used as ground truth: Quality in terms of average bitrate
per Zone, Quality Switch per Zone, cumulative Stall
Time, and Startup Delay, along with the QoE model
value.
Supervised ML Implementation. We used AutoGluon-
Tabular [18], an advanced AutoML toolkit, to automate fea-
ture selection, model selection, and optimization by tuning
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Fig. 4: The Distribution for Quality, Quality Switch, Stall Time, Startup Delay Metrics and Calculated QoE Value

hyperparameters and model ensembling for a given set of
features and labels as it outperforms other AutoML tools. We
selected a regression approach for our generated datasets to
achieve finer granularity in QoE prediction. The toolkit offers
a range of base model options for each QoE metrics pre-
diction problem, including various Tree-based methods (such
as Random Forest, Extra Trees, XGBoost, LightGBM, and
CatBoost), Deep Neural Networks, and K-nearest Neighbors-
based regressors. To select the best model, we split each
HTTPS and QUIC dataset into a 75% training and 25%
testing ratio. To save computational resources/time, we set
medium_quality_faster_train as the presets pa-
rameter during training, which allowed us to train a model with
good performance quickly. We then employed bagging with 10
folds to reduce the variance of the model by training multiple
versions of the same model on different subsets of the data and
averaging the predictions. We set no limit for model training
time to achieve the best possible model. Lastly, we used
root_mean_squared_error (RMSE) as the evaluation
metric. AutoGluon uses this metric to evaluate the model’s
performance during training and selects hyperparameters from
AutoGluon-defined sets to optimize the model by minimizing

the RMSE on the validation set. In the following section, we
evaluate the performance of each trained base model as well
as their weighted ensemble model using the testing datasets.

IV. EXPERIMENTAL RESULTS AND MODEL EVALUATION

Distribution of QoE Ground Truth. In this section, we
discuss the characteristics of the ground truth dataset. Note
that for ML model training purposes, we considered two
datasets separately entitled HTTPS and QUIC. However, for
a better understanding, we are presenting the ground truth
distribution focusing on enforced network mode (e.g., 5G,
4G) and application protocol (e.g., HTTP1.1-persistent/non-
persistent, HTTP/3) from both datasets. Figure 4 shows the
distribution of different target QoE. The x-axis denotes ground
truth values, and the y-axis represents Empirical Cumulative
Distribution Function (ECDF).

In terms of Quality metric for Zone 1 (Figure 4(a)), we
observed that using an HTTP/1.1 persistent (http-1.1 p) con-
nection for VR streaming sessions over 5G networks resulted
in higher bitrates, with 95% reaching up to 4 Mbps and 97%
reaching up to 3 Mbps over 4G. Using an HTTP/1.1 nonper-
sistent (http-1.1 np) connection resulted in lower bitrates, with



TABLE II: RMSE and r2 Across Different Objective QoE Metrics and QoE Value Prediction Models

D
at

as
et Random Extra K Nearest Light Cat XG Neural Weighted

Forest Trees Neighbors GBM Boost Boost Networks Ensemble
RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2

Quality-Z1 H -0.25 0.92 -0.26 0.92 -0.34 0.86 -0.22 0.94 -0.22 0.93 -0.22 0.94 -0.28 0.90 -0.22 0.93
Q -0.05 0.93 -0.05 0.93 -0.06 0.90 -0.05 0.93 -0.05 0.93 -0.05 0.93 -0.05 0.93 -0.05 0.93

Quality-Z2 H -0.34 0.99 -0.34 0.99 -0.72 0.97 -0.32 0.99 -0.32 0.99 -0.32 0.99 -0.36 0.99 -0.32 0.99
Q -0.02 0.99 -0.02 0.99 -0.03 0.97 -0.02 0.99 -0.02 0.99 -0.02 0.99 -0.02 0.99 -0.02 0.99

Quality-Z3 H -0.24 0.99 -0.20 0.99 -0.48 0.98 -0.18 0.99 -0.18 0.99 -0.22 0.99 -0.19 0.99 -0.17 0.99
Q -0.01 0.99 -0.01 0.99 -0.01 0.98 -0.01 0.99 -0.01 0.99 -0.01 0.99 -0.01 0.99 -0.01 0.99

Quality H -1.39 0.80 -1.38 0.80 -1.57 0.75 -1.36 0.81 -1.38 0.80 -1.42 0.79 -1.43 0.79 -1.37 0.81
Switch-Z1 Q -2.02 0.55 -2.00 0.56 -2.16 0.48 -2.00 0.55 -2.01 0.55 -2.02 0.54 -2.02 0.54 -2.00 0.55

Quality H -1.26 0.81 -1.23 0.82 -1.52 0.73 -1.25 0.81 -1.24 0.82 -1.25 0.81 -1.35 0.78 -1.27 0.81
Switch-Z2 Q -1.57 0.76 -1.55 0.76 -1.85 0.66 -1.55 0.76 -1.56 0.76 -1.57 0.76 -1.58 0.75 -1.53 0.77

Quality H -1.16 0.87 -1.13 0.87 -1.66 0.74 -1.14 0.87 -1.12 0.88 -1.14 0.87 -1.27 0.84 -1.16 0.87
Switch-Z3 Q -0.86 0.68 -0.84 0.69 -0.96 0.60 -0.84 0.69 -0.84 0.69 -0.86 0.67 -0.87 0.67 -0.84 0.69

Stall H -2.49 0.99 -1.33 0.99 -6.13 0.99 -1.40 0.99 -1.44 0.99 -2.11 0.99 -1.71 0.99 -1.18 0.99
Time Q -2.85 0.99 -2.14 0.99 -8.15 0.96 -1.84 0.99 -2.68 0.99 -1.76 0.99 -1.77 0.99 -1.51 0.99

Startup H -0.31 -0.26 -0.29 -0.15 -0.31 -0.32 -0.27 0.03 -0.27 0.01 -0.29 -0.13 -0.26 0.05 -0.26 0.05
Delay Q -0.60 -0.44 -0.56 -0.27 -0.56 -0.29 -0.50 -0.01 -0.50 -0.01 -0.55 -0.21 -0.50 -0.03 -0.50 -0.02

QoE H -0.08 0.99 -0.07 0.99 -0.19 0.97 -0.06 0.99 -0.05 0.99 -0.07 0.99 -0.06 0.99 -0.05 0.99
Q -0.11 0.98 -0.10 0.98 -0.14 0.97 -0.10 0.99 -0.09 0.99 -0.10 0.98 -0.09 0.99 -0.09 0.99

80% reaching up to 2 Mbps over 5G and 97% reaching up to
1 Mbps over 4G. Using HTTP/3 (http-3) resulted in the lowest
bitrates, with 98% reaching up to 1 Mbps over 5G and 99%
reaching up to 0.5 Mbps over 4G. In Zones 2 (Figure 4(b))
and 3 (Figure 4(c)), we found http-1.1 p resulted in higher
bitrates over both 5G and 4G networks. Specifically, 95% of
sessions in Zone 2 and 90% of sessions in Zone 3 achieved
a bitrate of up to 14 Mbps over 5G networks, and 99% of
sessions in Zone 2 and 95% of sessions in Zone 3 achieved a
bitrate of up to 10 Mbps over 4G networks. The performance
of http-1.1 np and http-3 connections in these Zones followed
a similar pattern and resulted in very low bitrates. It is worth
noting that the heuristic used for VR streaming provides a
higher representation rate (4K, 1080p, 720p, respectively) for
each tile in Zone 1, followed by Zone 2, and finally, Zone
3. However, the overall average bitrates in the distribution for
Zone 1 are lower than those of Zone 2 and 3. This is because
Zone 1 contains only 1 tile, whereas Zone 2 contains 8 tiles
and Zone 3 contains the rest for every single frame of the
content.

For the Quality Switch metric in Zone 1 (Figure 4(d)),
most sessions (over 95%) had a single change in quality
while using the http-1.1 p over 4G and 5G networks. This is
likely because streaming typically begins with a low resolution
(720p). The high bandwidth in this Zone allows for a seamless
transition to a higher resolution (4K) using a VR streaming
heuristic approach. However, http-1.1 np and http-3 over both
5G and 4G had up to 10-time quality changes in 90% of
the sessions. In Zone 2 (Figure 4(e)), a high percentage
(above 75%) of sessions also experienced a single change in
quality while using the http-1.1 p over 4G and 5G networks.
Additionally, up to 35-40% of sessions using the http-1.1 np
and http-3 over 4G networks showed no quality changes,
streaming at a low resolution (720p). In contrast, Zone 3
(Figure 4(f)) had a large percentage of sessions (50-95%)
that showed no quality changes, indicating that the video was
streamed at the lowest resolution.

The cumulative Stall Time results (Figure 4(g)) show
that, as expected, http-1.1 p outperforms the others. It was
found that 80% of the sessions experienced up to 10 seconds
of stalling on both networks. However, over 60% of sessions

did not experience any stalling over 5G, and up to 25%
did not experience any stalling over 4G. In contrast, both
the http-1.1 np and http-3 experienced significant stalling
events across all conditions. Later, in terms of Startup
Delay (Figure 4(h)), a majority of sessions, up to 80%,
experienced a very negligible delay during initial playback
under all conditions. The remaining sessions showed some
variation, but the delay was at most 8 milliseconds. Finally,
using the aforementioned QoE model equation, we normalized
the calculated values on a scale of 0 to 5 for the QoE score. The
results (Figure 4(i)) indicate that for above 80% of sessions,
http-1.1 p connection achieved QoE score of up to 4 over 5G
and 3 over 4G networks, respectively. However, http-1.1 np
and http-3 scored between 0 and 1 across all conditions.

The takeaway is that VR performance using HTTP/1.1
persistent outperforms HTTP/1.1 non-persistent connection
due to reduced overhead from establishing and tearing down
connections for each request. However, despite the general
expectation of better performance, we observed that HTTP/3
performs worse in all scenarios under the same conditions,
possibly due to its implementation not being fully optimized,
as mentioned in Section III.
Model Performance Evaluation. Table II shows the RMSE
(rounded to 2 decimals) and r2 (coefficient of determination)
for each base model and their corresponding weighted ensem-
ble model from both HTTPS (H) and QUIC (Q) test datasets.
Note that generally, a higher RMSE value is considered worse
performance. However, the AutoGluon tool that we used
internally assumes that higher values are better, so it flips the
sign of the RMSE and reports them as negative values. On the
other hand, r2 measures the accuracy of a regression model’s
fit. A value nearer to 1 signifies a more precise fit, while a
negative value indicates a worse fit than a horizontal line. We
found that the weighted ensemble model outperforms in most
cases. Thus we selected it and evaluated its performance using
residual error calculated as |Predicted - Actual|/N,
where N is the normalizing factor that refers to an average
of Actual values from test data.

In the prediction model for Quality in Zone 1 (Figure
5(a)), the residual error was less than 20% for 82% of the
cases in both HTTPS and QUIC datasets. For the rest of the
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Fig. 5: Residual Error for Quality, Quality Switch, Stall Time, Startup Delay Metrics and Calculated QoE Value

cases, the residual error was up to 85% and 40% in HTTPS
and QUIC, respectively. On the other hand, in Zones 2 (Figure
5(b)) and 3 (Figure 5(c)), the residual error was close to zero
for 45% of the cases in both datasets. The error was up to 20%
in HTTPS and QUIC in Zone 2 and up to 20% and 10% in
HTTPS and QUIC, respectively, in Zone 3 for the remaining
cases. The overall error rate was minimal in both datasets,
indicating high prediction accuracy. However, in some cases,
the QUIC dataset performs slightly better.

The prediction model for Quality Switch in Zone 1
(Figure 5(d)) had a minimal error in up to 40% of the cases
in HTTPS dataset and an error rate of 50% in 40-80% of cases
in the same dataset. The error rate was up to 50% in 80% of
cases in QUIC dataset. The model in Zone 2 (Figure 5(e))
showed a similar trend to Zone 1. In Zone 3 (Figure 5(f)), the
prediction model showed minimal error for up to 45% of the
cases in both datasets. The error was up to 50% for 45-80%
of the cases in HTTPS dataset and 40-70% of the cases in
QUIC dataset. Overall the prediction model in HTTPS dataset
performed relatively better compared to the QUIC dataset.

The Stall Time prediction model (Figure 5(g)) yielded
an error rate of up to 5% and 2.5% for 98% of cases in HTTPS

and QUIC datasets, respectively, indicating high prediction
accuracy. It performed slightly better in the QUIC dataset
compared to the HTTPS dataset. The Startup Delay
prediction model (Figure 5(h)) showed a high residual error in
both datasets. The r2 values for this prediction model in Table
II indicate a poor fit of the model to the data, with negative
values indicating that the model’s predictions were worse than
simply predicting the average of the target variable. Further
investigation needs on how to enhance performance in this
regard. Finally, the QoE value prediction model (Figure 5(i))
exhibited high accuracy with up to 10% error in up to 97% of
the cases in both datasets. Overall the regression approach used
in this study demonstrated decent accuracy in its predictions
of all the target QoE metrics (except for Startup Delay)
and the QoE value based on the extracted in-band network
features.
Feature Importance. To gain a deeper understanding of the
importance of features in predicting target QoE from our
trained predictor using test data, we utilized AutoGluon’s built-
in method based on permutation shuffling. However, we briefly
discuss only QoE value prediction feature importance due to
space limitations.
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Fig. 6: Most Influential Features for Predicting QoE Value in
HTTPS (Top) and QUIC (Bottom) Datasets

Figure 6 illustrates the ten most crucial features that strongly
influence QoE value prediction. Across both datasets, features
related to the downlink direction play the most prominent role.
The most significant features in the HTTPS dataset were the
average throughput (with and without TCP control packets),
measured explicitly during the first quarter and half of the
session, and packet size (up to 70th percentile) measured
during the entire session (with and without TCP control
packets). In contrast, in the QUIC dataset, packet count (70th
to 90th percentile) and throughput (standard deviation mainly)
features for the entire session had the most influence. Since
HTTPS and QUIC datasets have different patterns of traffic,
and thus, the importance of features varies in each scenario.

Such feature importance evaluations for each target QoE can
provide in-depth knowledge of key features that significantly
influence the prediction. This knowledge can aid in optimizing
feature engineering by carefully crafting a minimal set of QoS
features, leading to more efficient processing with reduced
time and memory consumption.

V. CONCLUSIONS AND FUTURE WORK

The widespread adoption of encryption hinders the assess-
ment of 360-degree VR QoE for XR services. In this work, we
propose a machine learning-based approach for predicting var-
ious objective QoE metrics, including Quality, Quality Switch,
Stall Time, and Startup Delay, as well as the QoE value
for 360-VR streaming, using network-level information as
indicators. We develop a method for extracting network-level
QoS features by observing bi-directional IP-level headers and
evaluated it in an emulated environment. Our approach was
tested on 360-VR streams over HTTPS/TCP and QUIC/UDP
under emulated 4G and 5G network conditions, resulting in
datasets that were used to train machine learning models. The
results showed that our method achieved satisfactory accuracy
in predicting VR QoE over generated datasets. However, the
limitations of this work include considering only the emulation
environment, unvalidated model QoE value with subjective
measurement, no model generalization/reevaluation, inability
to determine poor QoE root cause, and lack of integration with
radio access and deployment in 5G and beyond networks.

In the future, the proposed approach can be extended by
considering more complex network scenarios and incorporat-
ing the HTTP/2 protocol to take advantage of multiplexing

and server push. It would also be valuable to apply the
proposed approach over an actual setup, including using real
VR headsets and networks. Another promising area for future
research is to explore the potential of using the QoS-to-
QoE model for XR services directly in the data plane by
investigating the use of P4 or OpenRAN architectures as x-
App/r-App.
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