
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Luis Alberto Cuellar Hoyos

NOn: Network Function Virtualisation Ontology

Towards Semantic Service Implementation

NOn: Uma Ontologia de Funções Virtualizadas de

Rede para Implementação de Serviços Semânticos

CAMPINAS

2016

Luis Alberto Cuellar Hoyos

NOn: Network Function Virtualisation Ontology

Towards Semantic Service Implementation

NOn: Uma Ontologia de Funções Virtualizadas de

Rede para Implementação de Serviços Semânticos

Dissertation presented to the Faculty of
Electrical and Computer Engineering of the
University of Campinas in partial fulfillment
of the requirements for the degree of Master in
Electrical Engineering, in the area of Computer
Engineering.

Dissertação apresentada à Faculdade de
Engenharia Elétrica e Computação da Univer-
sidade Estadual de Campinas como parte dos
requisitos exigidos para a obtenção do título
de Mestre em Engenharia Elétrica, na Área de
Engenharia de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Luis Alberto Cuellar Hoyos,
e orientada pelo Prof. Dr. Christian
Rodolfo Esteve Rothenberg

CAMPINAS

2016

Agência(s) de fomento e nº(s) de processo(s): FUNCAMP, 4881.1

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

 Cuellar Hoyos, Luis Alberto, 1988-
 C894n CueNon : network function virtualisation ontology towards semantic service

implementation / Luis Alberto Cuellar Hoyos. – Campinas, SP : [s.n.], 2016.

 CueOrientador: Christian Rodolfo Esteve Rothenberg.
 CueDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.

 Cue1. Rede de computação. 2. Análise de rede. 3. Semântica. 4. Serviços na

web - Semântica. 5. Ontologia. I. Esteve Rothenberg, Christian Rodolfo,1982-.
II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de
Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Non : uma ontologia de funções virtualizadas de rede para
implementação de serviços semânticos
Palavras-chave em inglês:
Computing network
Network analysis
Semantics
Web services - Semantics
Ontology
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Christian Rodolfo Esteve Rothernberg
Oscar Mauricio Caicedo Rendón
Luciano Bernardes de Paula
Data de defesa: 01-07-2016
Programa de Pós-Graduação: Engenharia Elétrica

Powered by TCPDF (www.tcpdf.org)

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Luis Alberto Cuellar Hoyos RA: 153844
Data da Defesa: 1 de julho de 2016
Título da Tese:
“NOn: Network Function Virtualisation Ontology Towards Semantic Service Implementation”
“NOn: Uma Ontologia de Funçoes Virtualisadas de Rede para a Implementação de Serviços
Semânticos”

Prof. Christian Rodolfo Esteve Rothenberg (Presidente, FEEC/UNICAMP)
Prof. Dr. Oscar Mauricio Caicedo Rendón (FIET/UNICAUCA)
Prof. Dr. Luciano Bernardes de Paula (IFSP)

Ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no processo de vida acadêmica do aluno.

To my little brother Kike, you make every day worth it.

To my parents Yaneth and Luis, their wisdom and guide made me the person I’m today.

Acknowledgements

Christian, thanks so much for being my tutor, it was a path full of joy and hard work.
Thanks for teach me and guide me on my way of becoming a better person and professional.

Thank to the Innovation Center, Ericsson Telecomunicações S.A., Brazil, for sup-
porting this work.

Dörthe Arndt, Ruben Verborgh and fellows at the Data Science Lab, Ghent Univer-
sity, Belgium, thanks for the technical support on EYE and RESTdesc.

INTRIG, thanks for being my family in this two years, I learned something from
each of you. We were the best group that anyone wants to have.

All my friends in Brazil, thanks for the shared moments. You people made this
journey one of the best experience of my life.

Mayor Domingo, thanks for being my spiritual guide... there is not enough words
to express the gratitude for your help.

Finally thanks to everyone that directly or indirectly has supporting me to achieve
this goal!

Abstract

Network Function Virtualization (NFV) arises as a recent technological trend in networking
aiming at changing the current physical appliance model to a software-based approach to net-
work service implementations. As today, only a set of specifications and guidelines are available
which define NFV architecture views and the functional description of the main components.
These specifications are meant to be read, interpreted, and implemented by human developers,
thus allowing a high degree of freedom on the semantics used to develop NFV elements. As
a consequence, we encounter heterogeneous manners to express the same components and a
lack of common understanding across NFV domains. Moreover, interoperability among NFV
components and domains is still an open challenge generally tackled by using Web Service
(WS) which rely on implicit service descriptions and do not provide means to leverage com-
mon semantics. Furthermore, service integration requires costly and error-prone manual inter-
vention along the processes of reading, interpreting and using service capabilities, resulting
in a inefficient way of achieving interoperability. With the aim of addressing these practical
challenges towards the realization of NFV, this thesis proposes the use of a common and conve-
nient domain language to describe NFV components and to avoid manual intervention process
through an automatic service integration by means of two approaches: NFV Ontology (NOn)
and Semantic nFV Services (SnS). NOn allows describing NFV as a high level framework with
reusable element descriptors following a standardized manner. SnS is the implementation of the
Semantic Services approach in the NFV domain. SnS uses NOn to create explicit service de-
scriptors, allowing smart agents from different domains with heterogeneous implementations to
read, interpret, and consume NFV service capabilities. As a proof of concept for both proposals,
a Generic Client was developed as a smart entity capable of reasoning by means of an infer-
ence engine that allows to create and consume dynamic workflows of WS. Dynamic workflows
are achieved by reading the semantic services descriptions (without the need of a predefined
context) and creating a plan for services consumption. As a result, the interoperability process
becomes more efficient and less costly due to the automatic service integration. A total of five
proof of concept use cases implementations validate the potential of the proposed NOn and SnS
approaches to realize NFV.

Keywords: Network Function Virtualisation, NFV, Web Semantic, Semantic Services, Ontol-
ogy.

Resumo
Virtualização de Funções de Rede (NFV), surgem como uma nova tendência tecnológica em
redes com o objetivo de alterar o modelo atual das implementações de serviço de rede, de uma
abordagem com dispositivos fisicos para uma abordagem baseada em software. Atualmente,
existem disponíveis uma série de especificações definindo a arquitetura de NFV e a descrição
dos componentes principais. No entanto, as especificações são destinadas aos desenvolvedores
para serem lidas, interpretadas e implementadas, permitindo assim um alto grau de liberdade na
definição da semântica usada para desenvolver os elementos de NFV. Como consequência, este
trabalho encontrou modos heterogêneos para expressar os mesmos componentes e uma falta de
entendimento comum entre domínios. Aliás, a interoperabilidade entre diferentes componentes
e domínios continua sendo um desafio aberto que geralmente é resolvido pela implementação
de Serviços Web (WS), os quais são baseados em descrições implicitas e carecem dos meios
para alavancar uma semântica comum. Ademais, ao fim de fazer uma integração de serviços
existe uma intervenção manual de alto custo e propensa a erros, que vem unida com os pro-
cessos de leitura, interpretação e implementação das funcionalidades dos serviços, resultando
assim em uma maneira ineficente de atingir interoperabilidade. Com o objetivo de responder a
estes desafios práticos no domínio de NFV, este trabalho propõe o uso de uma linguagem co-
mum para descrever os componentes de NFV e evitar um processo de intervenção manual por
meio de de uma integração automática do serviço por meio de duas abordagens: Ontologia de
NFV (NOn) e Serviços nFV Semânticos (SNS). NOn permite descrever os componentes de alto
nível e o reuso dos descritores em NFV de uma forma padronizada. SnS é a implementação de
serviços semânticos no domínio NFV. SnS faz uso de NOn para criar descrições explícitas dos
serviços, permitindo aque agentes inteligentes em diferentes domínios e com implementações
heterogêneas consigam ler, interpretar e utilizar as capacidades de serviços de NFV. Como
prova de conceito para as duas propostas foi desenvolvido um Cliente Genérico, capaz de fazer
raciocínio por meio do uso de um motor de inferência que permite a criação e o consumo de
fluxos dinâmicos de WS. Os fluxos dinâmicos são obtidos através da leitura das descrições dos
serviços semânticos (sem a necessidade de um contexto predefinido) e da criação de um plano
para consumir WS. Desse modo, tornando o processo de interoperabilidade mais eficiente e
menos custoso, devido à integração automática de serviços e à redução na intervenção manual.
Foram realizadas um total de cinco provas de conceitos por meio da implementação de casos
de uso, que avaliaram o potencial da proposta, utilizando as abordagens NOn e SnS.

Palavras-chaves: Funçoes Virtualizadas de Rede, Ontologia, Serviços Semanticos, Web Se-
mantica.

List of Figures

Figure 1 – RESTful Web services architecture . 22
Figure 2 – The language layers of the Semantic Web 23
Figure 3 – RDF Example - Inference . 23
Figure 4 – Web Service & Semantic Web Integration 25
Figure 5 – NFV High Level Architecture . 27
Figure 6 – VNFD Base Information Elements Template 28
Figure 7 – OpenBaton Architecture . 29
Figure 8 – NFV Architecture - MANO . 38
Figure 9 – Different NFV Implementations . 39
Figure 10 – NFV Domain Integration . 39
Figure 11 – NOn Implementation Road Map . 41
Figure 12 – Modeling NOn . 43
Figure 13 – NFV Framework Elements . 46
Figure 14 – Extending NOn . 47
Figure 15 – NOn Model . 49
Figure 16 – NOn Classes and Sub-classes - Protégé . 50
Figure 17 – NOn Data and Object Properties - Protégé 52
Figure 18 – NOn Properties Range and Domain - Protégé 52
Figure 19 – NOn Property Cardinality - Protégé . 53
Figure 20 – Parsing OpenBaton Virtual Function Network (VNF) Descriptor (VNFD) File 57
Figure 21 – SnS Adding Semantic Descriptions . 61
Figure 22 – Generating Dynamic WS request . 65
Figure 23 – Creating a Dynamic WS request . 66
Figure 24 – Creating Context Based Workflow . 68
Figure 25 – Creating Goal Based Workflow . 69
Figure 26 – Generic Client Consuming a Goal-Based Workflow 73
Figure 27 – Generic Client Consuming Workflow . 74
Figure 28 – Generic Client Process Cycle . 75
Figure 29 – SnS Not Implemented Use Case . 75
Figure 30 – SnS Use Case I: Semantic VNFD Generator Service 76
Figure 31 – OpenBaton VNF Deployment Process . 82
Figure 32 – SnS Use Case II: Test Scenario . 83
Figure 33 – SnS Use Case II: Sequence Diagram . 85
Figure 34 – SnS Use Case II: Sequence Diagram . 87
Figure 35 – Generic Client - Network Function Virtualization Orchestrator (NFVO) Pro-

posal . 91

List of Tables

Table 1 – Syntax Used to declare a Manager Interface 36
Table 2 – VNFD Base Information Elements . 42
Table 3 – VNFD Elements . 43
Table 4 – Virtual Device Unit (VDU) Base Information Elements 44
Table 5 – NOn VNFD and VDU Low Level Elements 44
Table 6 – NOn Low Level Element Summary . 45
Table 7 – NOn Relationships . 47
Table 8 – Test Parameters . 55
Table 9 – OpenBaton Use Case . 56
Table 10 – OpenMano Use Case . 59
Table 11 – OpenBaton VNFD WS Parameters . 63
Table 12 – SnS Use Case I: Scenario I . 77
Table 13 – SnS Use Case I: Scenario II . 78
Table 14 – SnS Use Case I: Scenario III . 79

Acronyms

API Application Programming Interface. 29, 32, 60, 87–89, 92

CAPEX Capital Expenditure. 17, 26

CORBA Common Object Request Broker Architecture. 18

E2E End-to-End. 17, 26, 27, 30

ETSI European Telecommunications Standard Institute. 18, 20, 27, 28, 34–38, 41, 45, 46, 48,
52, 54, 56–59, 87–90

EYE Euler Yet another proof Engine. 65, 83

GUI Graphical User Interface. 29

HTML HyperText Markup Language. 21, 22

HTTP Hypertext Transfer Protocol. 21, 22, 61, 62, 64–68, 72–74

INDL Infrastructure and Network Description Language. 19, 31, 42, 45

INTRIG Information & Networking Technologies Research & Innovation Group. 82–84

ISG Industry Specification Group. 18

JSON JavaScript Object Notation. 32, 61, 84

MANO Management and Orchestration. 17, 27–29, 37, 39, 46, 60, 90

ML2 Modular Layer 2. 32

N3 Notation 3. 23–25, 58, 60, 63, 64, 98

NF Network Function. 17, 26, 27, 30, 88, 91

NFV Network Function Virtualization. 17–20, 26–30, 32–46, 48, 50, 55, 58–61, 65, 67, 68, 74,
75, 81–83, 86, 88–91, 107–110

NFVI NFV Infrastructure. 17, 27–29, 32, 37, 45, 60, 81, 83, 91

NFVO Network Function Virtualization Orchestrator. 28, 29, 37, 60, 67, 74, 81, 83, 84, 86, 88,
91

NML Network Modeling Language. 19, 31, 42, 45

NO Network Operator. 17, 26, 31, 41

NOn NFV Ontology. 20, 41–47, 49–62, 64, 65, 68, 75, 77–79, 81, 85, 88–91, 98–106, 111–114

NS Network Service. 17, 26, 27, 37

NSD Network Service Descriptor. 17, 27

OPEX Operational Expenditure. 17, 26

OWL Web Ontology Language. 25, 31, 51, 54

OWL-S Semantic markup for Web services. 19

POX Python-based Software-Defined Networking. 32

RDF Resource Description Framework. 19, 22, 23, 31, 51, 54, 58

REST Representational State Transfer. 20–22, 26, 29, 32, 60, 61, 65, 67, 72, 74, 86, 89–91

RIS Resource Information Service. 31

RMI Remote Method Invocation. 18, 28, 87

RPC Remote Procedure Call. 18

SDK Software Development Kit. 29

SDN Software Defined Networking. 32

SLA Service Level Agreement. 27

SnS Semantic nFV Services. 20, 60, 61, 65, 67, 70, 74–81, 83, 85–88, 90, 91, 115–123

SP Service Provider. 17, 26, 41

SWS Semantic Web Service. 19, 25

TAR Tape ARchiver. 81, 82

UNIFY Unifying Cloud and Carrier Networks. 30, 86–89

URI Universal Resource Identifier. 21, 22, 24, 32, 51, 62, 65, 66

URL Uniform Resource Locator. 26

VDU Virtual Device Unit. 44, 46, 53, 58, 64

VIM Virtualized Infrastructure Manager. 28, 29, 32, 37, 46, 74, 77, 79, 80, 83, 86–89

VLD Virtual Link Descriptor. 46

VM Virtual Machine. 27, 83, 88

VNF Virtual Function Network. 17, 27–30, 37, 38, 41–46, 48, 50, 61, 62, 64, 67, 68, 74, 81–85,
88–91

VNF-FG VNF Forwarding Graph. 27

VNFC VNF Component. 27, 28, 44, 59, 64

VNFD VNF Descriptor. 17, 20, 27, 28, 30, 34–36, 39, 42–48, 50, 53–59, 61–65, 67, 69–71,
73–88, 90, 107–113

VNFM VNF Manager. 28, 37, 83, 86, 90

W3C World Wide Web Consortium. 21, 25

WS Web Service. 18, 19, 25, 26, 28, 32, 41, 60–67, 70–72, 74, 76, 79, 81, 83, 84, 86, 88–90

WSMO Web Service Modeling Ontology. 19

XML eXtensible Markup Language. 21, 23, 30–32, 36, 51, 58

YAML YAML Ain’t Another Markup Language. 62, 84

YANG Yet Another Next Generation. 30

Contents

Acronyms .
1 Introduction . 17

1.1 Problem Description . 18
1.2 Approach and Research Objectives . 19

2 Background and Related Work . 21
2.1 Background . 21

2.1.1 Representational State Transfer . 21
2.1.1.1 REST Web Services . 21

2.1.2 Semantic Web . 22
2.1.2.1 RDF . 22

2.1.2.1.1 Notation 3 . 23
2.1.2.2 Ontologies . 24

2.1.3 Semantic Web Service . 25
2.1.3.1 RESTdesc . 25
2.1.3.2 Inference Engine (Reasoner) 26

2.1.4 Network Function Virtualisation - NFV 26
2.1.4.1 NFV Projects . 28

2.1.4.1.1 OpenBaton . 28
2.1.4.1.2 OpenMano . 29
2.1.4.1.3 T-NOVA . 30
2.1.4.1.4 Unify . 30

2.2 Related Work . 30
2.2.1 Ontology Data Models . 30
2.2.2 Interoperability Models . 32
2.2.3 Gap Analysis . 32

3 Research Problem . 34
3.1 Semantics on NFV Descriptors . 34

3.1.1 Comparison of VNFD Files . 34
3.1.2 Comparison Within Same VNFD Files 36

3.2 Semantics on NFV Deployments . 37
3.2.1 NFV Local Domain Scenario . 37
3.2.2 NFV Inter-Domain Scenario . 38

3.3 Concluding Remarks . 40
4 NFV Ontology (NOn) . 41

4.1 Design . 41
4.1.1 Elements . 43

4.1.1.1 NOn Low Level Elements 43
4.1.1.2 NOn High Level Elements 44

4.1.2 Relationships . 46
4.1.3 Model Realization . 47

4.2 Implementation . 50
4.2.1 Classes and Sub-classes . 50
4.2.2 Data and Object Properties . 52

4.3 NOn Use Cases: Semantic VNFD . 55
4.3.1 Use Case I: OpenBaton VNFD . 55
4.3.2 Use Case II: OpenMano VNFD . 58

4.4 Conclusions . 59
5 Semantic NFV Services (SnS) . 60

5.1 Creating Semantic Services . 60
5.1.1 Adding Descriptions to Services . 61
5.1.2 Consuming Semantic Services . 65

5.2 SnS Workflow Inference . 67
5.2.1 Creating Dynamic Workflow . 67
5.2.2 Consuming Dynamic Workflows . 72

5.3 SnS Use Cases: Semantic Services on NFV projects 74
5.3.1 Use Case I: Semantic VNFD Generator Service 75

5.3.1.1 Scenario I: Using OpenBaton Semantic Descriptor 76
5.3.1.2 Scenario II: Using OpenMano Semantic Descriptor 77
5.3.1.3 Scenario III: Using Generic Semantic Descriptor 79

5.3.2 Use Case II: Workflow Inference - Deploying a VNF Semantic Services 81
5.3.2.1 Goal . 81
5.3.2.2 Preconditions and Assumptions: 81
5.3.2.3 Test Data . 81
5.3.2.4 Testing Tools . 82
5.3.2.5 Test Description . 82
5.3.2.6 Postcondition . 85
5.3.2.7 Expected Results . 85
5.3.2.8 Expected vs Obtained Results 85
5.3.2.9 Conclusions . 85

5.3.3 Use Case III: OpenBaton - Unify Integration Proposal 86
5.3.3.1 Goal . 86
5.3.3.2 Preconditions and Assumptions 86
5.3.3.3 Test Data . 86
5.3.3.4 Testing Tools . 86
5.3.3.5 Test Description . 86

5.3.3.6 Postcondition . 88
5.3.3.7 Expected Results . 88
5.3.3.8 Expected vs Obtained Results 88

5.4 Final Remarks . 88
6 Conclusions and Future Work . 90

Bibliography . 93

Annex 97
ANNEX A NFV Ontology Notation 3 File 98
ANNEX B NFV/VNFD Deployment Files 107
ANNEX C NOn Semantic Descriptor Files 111
ANNEX D SnS Workflow Files . 115

17

1 Introduction

Network Function Virtualization (ETSI, 2012a) emerges as a software-centric net-
work device implementation and operational approach with the aim of avoiding typical hazards
of traditional Network Services. Currently, Network Operators (NOs) and Service Providers
(SPs) usually need to design, buy, link and maintain a service chain of physical appliances to
deploy the Network Services (NSs). Thus, when the deployment of NS grows, the use of physi-
cal appliances increases also the Capital Expenditure (CAPEX) 1 and Operational Expenditure
(OPEX)2. Furthermore, physical appliances have short periods of service life, which creates the
need of replace the devices with low or non revenue (ETSI, 2014b). NFV addresses Network
Service deployment on the virtualisation of physical appliances in a software-defined approach.
Therefore, instead of having to link physical devices to create services, the software-centric
approach allows to create NSs by linking Virtual Function Network over a virtualised infras-
tructure.

Network Function Virtualization attempts to reduce CAPEX and OPEX by mak-
ing Network Functions (NFs) easier develop and less costly to maintain. At the top of a NFV
Infrastructure (NFVI) sit the deployed VNFs. NFVI is composed by physical and virtualised
layers of Compute, Storage, and Network nodes and in order to deploy VNFss over the NFVI
relying on the Management and Orchestration (MANO) realm. To do the deployment, MANO
uses a descriptor file as an input. Generally, for deployment purposes, two files are defined, one
containing the operational behavior and deployment configuration of the functions (VNF De-
scriptor), and the other describing the End-to-End (E2E) connection of the network functions,
i.e., the Network Service Descriptor (NSD).

In order to develop and deploy NFV services and Network Services3, there is the
need of creating communication among NFV architecture components, thus gaining interop-
erability4. In this work, NFV interoperability is given by two different ways. Firstly, in a local
domain scenario, by linking components on a same implementation. For example, NFV MANO
A to NFVI A. Secondly, in an inter-domain scenario, by linking NFV implementations from dif-
ferent domains. For example, NFV MANO A to NFVI B. It is important to realize that NFV
interoperability is not just about NFV components but includes also the need to create commu-
nication between NFV services. Therefore, in this document the definition of interoperability
covers the communication among NFV services and components, as well as local domain and
1 Capital Expenditure is the funds spent by a company to acquire or upgrade a long-term asset.
2 Operating Expense is the cost continuously spent to maintain the production of a product or service to keep a

business.
3 NFV service makes reference to those services developed to implement the NFV architecture, such as resource

allocation or VNF instantiation. Hence, NFV services are different from Network Service
4 On NFV interoperability is defined by reference points or communication interfaces.

Chapter 1. Introduction 18

inter-domain scenarios.

1.1 Problem Description

With the aim of achieving homogeneity on NFV implementations, the European
Telecommunications Standard Institute (ETSI) (ETSI, 1988) has produced a series of specifi-
cations describing business and deployment aspects. Currently, NFV is on the second phase of
work and the ETSI NFV Industry Specification Group (ISG), has proposed a series of chal-
lenges to focus in this phase (ETSI, 2014a). Two of them are to achieve NFV interoperability
and to make an interface specification (ETSI, 2012b)(ETSI, 2014b). Due the ETSI plans to
achieve and ensure interoperability between different implementations trough the definition of
interface specifications, both challenges are linked together. Hence, specifications are used as
a guideline for developers to develop and implement interfaces. However, these specifications
are meant to be interpreted by humans, for this reason software agents are not able to follow
this specifications. Thus, generating problems inherent to interface integration, affecting NFV
implementations in a negative manner in a path for achieving interoperability. Furthermore,
software integration process comes along with resource and time costs. Those costs are associ-
ated with the difficulty level in the integration process, with costs increasing in proportion to the
integration complexity. In our work, we identified two of the root problems that turn integration
a difficult task: (i) the lack of common understanding and semantics to express and describe
interfaces, and (ii) the need of manual intervention5 to consume and use interfaces and their
capabilities.

Interoperability on NFV implementations can be achieved by using different wrap-
ping technologies such Remote Procedure Call (RPC), JAVA Remote Method Invocation (RMI)
or Common Object Request Broker Architecture (CORBA), however those technologies have
dependence and communication boundaries such programming language, operating system,
communication protocols or data structure, adding some restrictions to the integration pro-
cess. At the crossroads, Web Service6 is a technology with the goal of removing the mentioned
boundaries. Furthermore, geographical location issues are removed, allowing distributed archi-
tectures to locate components and services around the world7.

WS technology provides implicit descriptions to define their capabilities and fol-
lows a client/server architecture. Due to the implicit descriptions there must be manual inter-
vention to define, interpret, and consume service capabilities. Furthermore, there is not a com-
mon understanding on a domain language to create service descriptions (variables and methods
are defined arbitrarily). Hence, software agents can read but not interpret service capabilities,
5 Manual intervention refers to any task that in order to be accomplish need the intervention of a human.
6 W3C Definition: Software system designed to support inter-operable machine-to-machine interaction over a

network. It has an interface described in a machine-processable format.
7 WS is the technology generally used for the distributed architectures, this work assumes its implementation as

the default mechanism used by WS in order to gain interoperability.

Chapter 1. Introduction 19

therefore manual intervention is needed to do so. Furthermore, in some cases there is the need of
creating brokers or middleware to interpret service descriptions and capabilities for one imple-
mentation to another –increasing the integration cost. This work assumes that problems men-
tioned above for WS are equivalent to the problems previously mentioned on NFV interface
integration.

1.2 Approach and Research Objectives

In 2001, in the seminal work on the The Semantic Web (BERNERS-LEE et al.,
2001), Tim Barners Lee states that the current Web and the Semantic Web are not two different
concepts, both are meant to be complementary technologies 8. Semantic Web, tries to change
the manner of how the Web works today, going from a human interpretation towards a ma-
chine interpretation by relying in the use of Resource Description Framework (RDF) (RDF,
2014) and an ontological representations of real world. Semantic Web attempts to create com-
mon knowledge and share it across the Web, thus creating a homogeneous understanding of
specific concepts. In the other hand, in an effort to reduce manual intervention the Semantic
Web Services (SWSs) technology was created. SWS technology born from the intersection of
Web Services with Semantic Web technology. Semantic Services bases the service creation on
semantic representations, explicit descriptions and ontological representations.

In the networking area, the use of a Semantic Web approach has already been initi-
ated. Ontologies like Network Modeling Language (NML) (HAM et al., 2013) and Infrastruc-
ture and Network Description Language (INDL) (GHIJSEN et al., 2013), are two projects with
the aim of standardizing the terminology of infrastructure and networking resources. However,
both ontologies are used just to create models and store the information on (graph) databases
(e.g., (SOUZA et al., 2015)), with the aim of having a common view of all resources. Therefore,
a semantic service approach has not been fully explored yet.

In the area of semantic services, there are many projects attempting to create ex-
plicit descriptions, such Web Service Modeling Ontology (WSMO) or Semantic markup for
Web services (OWL-S). However, this related work does not fulfill the expectations in terms
of service description or automatic service discover and interoperability (VERBORGH et al.,
2013). RESTdesc (RESTdesc, 2011) appears as a good semantic service technology to avoid
those flaws due a mechanism to describe service functionality, allowing software agents to dis-
cover in a autonomous manner what is offered by a service and how to use it.

In this work, the need of manual intervention to do NFV service integration is seen
as an inefficient manner to achieve interoperability. As NFV is on early years and there are few
commercial implementations until today, in order to overcome the issues related to the expected
8 “The Semantic Web is not a separate Web but an extension of the current one, in which information is given

well-defined meaning, better enabling computers and people to work in cooperation." — Tim Berners-Lee et
al.

Chapter 1. Introduction 20

integration and testing processes early on, this work proposes and implements two proposals.
The first proposal is the design and implementation of a NFV Ontology based on the Semantic
Web approach and using the ETSI specifications as a guideline. The second proposal is the
implementation of semantic services using a RESTdesc approach and the NOn model to create
explicit service descriptions.

As a first step and in order to do bear the NOn design, this work provides a brief
analysis on the currently available data structures and variable definitions present in VNFD
files. The result of the analysis serves as a proof of our assumption on the lack of a common
understanding of the descriptors contained in the NFV specifications. Another result are the
problems in terms of interoperability by not being able to reuse VNFDs files across NFV im-
plementations (i.e., an inter-domain scenario). As a next step, NOn is used to evolve VNFDs
from a syntax level to a semantic level thus creating semantic VNFD files. As a third step, NOn
and other ontologies on the field of computing and networking are used to create Semantic nFV
Services. In this process, Representational State Transfer (REST) services from current NFV
implementations are used and enhanced by adding a RESTdesc description. Finally, as a proof
of concept, a Generic Client was developed to read, interpret, and consume semantic services.
The client –through the use of an inference engine– is capable of creating a chain of semantic
services (workflow) and self adapt to consume those services.

The research objectives of this work can be summarized as follows:

∙ Develop a Network Function Virtualisation ontology (NOn) using as base the ETSI Vir-
tual Function Network Descriptor (VNFD).

∙ Create a semantic representation of the VNFD.

∙ Implement NFV interfaces following a semantic service approach.

∙ Automate NFV service integration by using NOn and a semantic service implementation.

∙ Validate the concept of NFV semantic services by proof of concept implementations
showcasing automatic service integration.

The structure of this work is as follows: Chapter 2 contains the literature review
on background technologies and related work. Chapter 3 introduces the research problem and
includes the NFV descriptor analysis. Chapter 4 describes the design and implementation of
NFV Ontology. Chapter 5 presents the implementation of Semantic nFV Services and the use
cases proposed as a proof of concept. Finally, Chapter 6 provides concluding remarks and a
description of future work.

21

2 Background and Related Work

This chapter presents the theoretical basis of this work and is divided into three
sections, first section includes technological background used to develop the work. In the second
section are the related work, including data and interoperability models. Final section concludes
the chapter.

2.1 Background

This section describes the technologies necessaries to understand and develop the
proposal for this work and to implement the defined use cases.

2.1.1 Representational State Transfer

REST architectural style is defined by Roy T. Fielding doctoral thesis (FIELDING,
2000). The Web can be seen as a network-base of architectural styles and software design,
furthermore, each element can be seen as a reference to a resource, additionally each resource
has a resource identifier, such the Universal Resource Identifier (URI). Components of REST
architecture can perform actions over the representation of resources (RICHARDS, 2006), this
means to make an action over any useful information about the state of the resource. In REST,
there are two types of state: one representing the information about the resource (server side)
the other representing the information about resource on the consuming application (client side)
(FENG et al., 2009). This representational state is transferred across the client and server, thus
it receives the name: Representational State Transfer. REST is not a standard or a protocol for
this reason there is no specification done by the World Wide Web Consortium (W3C) or any
other standard institute (COSTELLO, 2007).

2.1.1.1 REST Web Services

Although REST is not a standard, it relies on the use of several standards such
Hypertext Transfer Protocol (HTTP), URI, eXtensible Markup Language (XML) or HyperText
Markup Language (HTML) and does not deal with implementation details. Instead, follows
some constrains in order to do implementations:

∙ Client-Server

∙ Stateless Interactions

∙ Self-descriptive messages

Chapter 2. Background and Related Work 22

∙ Uniform Interface

∙ Named Resources

∙ Interconnected resource representations

∙ Layered components

Client Server

HTTP Packet

HTTP HTTP

HTTP Method:
GET | POST | PUT | DELETE

Resource Representation

Stateless Web Service Conversation

Figure 1 – RESTful Web services architecture

Figure 1 illustrates how is the REST architecture, in which a client access or modify
the state of a resource representation through the use of an HTTP request and one of its methods.

2.1.2 Semantic Web

Current Web works in a way that can be interpreted by humans and not for ma-
chines. The Web is a linked network of Web pages referenced among them, built on the top
of a tag language known as HTML. Despite HTML is a machine language, machines hardly
interpret and process the info contained in Web pages. Furthermore, additionally is necessary
to create other tools in order to allow the data being interpreted and useful to machines.

The Semantic Web, born with the aim of making information contained on Web
pages, can be consumed and interpreted by machines in an autonomous manner, through the
use of ontologies and semantic expressions in the deployment process (BERNERS-LEE et al.,
2001). Semantic Web relies on RDF (RDF, 2014) as the base language and ontology vocabulary
as the structure (Figure 2). Adding semantics to the Web, there is a new path of data processing,
data analysis and data retrieval for smart software agents (WANG; HALANG, 2013).

As an example of the impact in current Web applications, imagine a search engine
using Semantic Web technology. The engine should bring the answer instead of retrieving a list
of Web pages with the possible answer.

2.1.2.1 RDF

RDF is a data model created to represent identified objects or data in the form of a
triples-base structure (subject, predicate and object) and uses the URI to identify each element
in the triples. The concept of using RDF is to map the Web data on an explicit way thus making

Chapter 2. Background and Related Work 23

Figure 2 – The language layers of the Semantic Web

information comprehensible by software agents. RDF involves a graph network to make system
representations of the real world.

RDF has properties (type, subClassOf, subPropertyOf, range, domain, label and
comment), allowing the use of an inference process to infer new facts from other facts. Figure
3 shows and inference example, where it can be inferred that a Firewall is a type of Network
Function. This is due a Virtual Function Network is a sub-class of Network Function and at the
same time a Firewall is a type of Virtual Function Network.

virtual_
network_
function

Firewall

Firewall

Network_
Function

virtual_
network_
function

Network_
Function

subClassOf

type

type

Figure 3 – RDF Example - Inference

Recommendations with the RDF schema are on (RDF Schema, 2014) and with the
syntax are on(RDF Syntax, 2014).

2.1.2.1.1 Notation 3

Notation 3 (N3) is a super set logic language of RDF and extends the data model
through the implementation of formulae. Formulae, are literals representing graphs themselves,
using variables, logical implication and functional predicates, additionally providing a textual
syntax to represent RDF/XML components (NOTATION3, 2011).

Listing 2.1 illustrates the implementation of a rule in N3 language.

Chapter 2. Background and Related Work 24

Listing 2.1 – Simple Rule Using N3

1 @prefix ppl: <http :// example.org/people#>.
2 @prefix foaf: <http :// xmlns.com/foaf /0.1/ >.
3 {
4 ppl:Cindy foaf:knows ppl:John.
5 }
6 =>
7 {
8 ppl:John foaf:knows ppl:Cindy.
9 }.

Above Listing is a rule created using N3. The rule means: IF the object Cindy from
the ontology ppl (ppl:Cindy) has the predicate (property) knows from the ontology foaf
(foaf:knows) linked to the subject John from the ontology ppl (ppl:John) implies that
(=>) the object John from the ontology ppl (ppl:John) has the predicate knows from ontol-
ogy foaf (foaf:knows) with subject Cindy from the ontology ppl (ppl:Cindy). In other
words, if Cindy knows John it implies John knows Cindy. The listing is a simple implication
process:

P(x) => Q(x) (2.1)

Some features of the language are:

∙ URI implementations using namespaces and @prefix N3 parameter (lines 1 and 2).

∙ Allows RDF to be expressive.

∙ Allows repetition of multiple objects for a same subject and predicate using a comma ",".

∙ Allows repetition of multiple predicates for a same subject a semicolon ";".

∙ Allows formulae through the quote of N3 graphs using brackets "{}".

∙ Allows rules quantification through the quantification of variables.

∙ Readable and natural through its consistent and simple grammar.

2.1.2.2 Ontologies

An ontology can be seen as a knowledge representation of a specific domain (e.g.
Gene Ontology). For the Semantic Web, an ontology is a set of properties, rules and a defined
taxonomy in a software domain (ALESSO; SMITH, 2004). Taxonomy defines classes, sub-
classes and relationships among the objects of the domain. One of the purposes for the creation
of an ontology is to have a shared vision and a common understanding of the specific domain
(NOY et al., 2001).

The main components of an ontology are:

∙ Class: a group of objects sharing common characteristics.

Chapter 2. Background and Related Work 25

∙ Individuals: an instance of a Class. An object in a domain.

∙ Properties:

– Object Property: Relationships among classes.

– Data Property: Relationships among classes and primitive objects (e.g Integer)

The Web Ontology Language (OWL) has been created as a mechanism “To develop
ontologies that are compatible with the WWW" (SEMANTIC-WEB-AFFINITY-GROUP, 2007).
Proposed by the W3C, OWL is an effort to give a structure, to enhanced RDF in order to make
the Web easier to interpret by machines.

2.1.3 Semantic Web Service

Semantic Web Service born where the Semantic Web crosses with the Web Service
(Figure 4). Generally, WS descriptions are written in an implicit manner, this implies to have
a context or background in order to use and consume the service capabilities. Instead, the se-
mantic service technology has the aim of doing service descriptions in an explicit manner, thus
allowing to use the service capabilities without previous knowledge. Furthermore, semantic
service clients must be able to consume the services by reading just the descriptions and using
ontologies to interpret them.

Semantic
Web

Web
Services

Semantic Web
Services

Figure 4 – Web Service & Semantic Web Integration

In order to do the implementation of Web Service in a semantic and dynamic man-
ner, the services must be coded in an explicit manner, thus, a software agent consuming the
services should know how, what and when to do, by reading the service description. Conse-
quently, implementations with SWS attempt to be autonomous systems. Thus, creating a new
path of intelligent services and environments (GUDIVADA; KALAVALA, 2005).

2.1.3.1 RESTdesc

RESTdesc (RESTdesc, 2011) is a project attempting to remove the manual interven-
tion on the WS consumption, through the implementation of semantic descriptions. RESTdesc
is a description method for RESTful services, implemented on N3 language. Service descrip-
tions in RESTDesc are centered on the service capabilities and relies on the use of an inference

Chapter 2. Background and Related Work 26

engine and smart agents to perform the interpreting and the consumption process. RESTdesc
uses ontologies to make service descriptions, for this reason does not need any variable dec-
laration in order to describe functionalities. Indeed, the Uniform Resource Locators (URLs)
used to consume services or to access resources are created in a dynamic and automated way
through the inference engine. The engine creates a context in runtime according with the service
descriptions and ontologies received as inputs (VERBORGH et al., 2011b), then it builds the
REST requests based on those inputs. The implementation of RESTdesc, additionally allows
the creation of workflows, this means, a plan with a sorted list of WSs to be consumed in order
to achieve one objective, a specific goal (VERBORGH et al., 2011a).

2.1.3.2 Inference Engine (Reasoner)

Inference Engines are software components implemented in the Semantic Web to
deduce new knowledge from an already defined knowledge, generally using If/Then implica-
tions (e.g. Formula 2.1). This kind of engines infers new facts from a set of predefined rules by
searching inside the knowledge base with the aim of achieve the rules. If a rule can be satisfied,
then is placed in a plan (ALESSO; SMITH, 2004).

There exist two types of inference engine:

∙ Backward Chaining: for this type is given to the engine an hypothesis (goal or objective)
and the engine backtracks the knowledge base to prove if the hypothesis is valid.

∙ Forward Chaining: for this type is given to the system some data and the engine attempts
to reach a conclusion by using and inference process.

2.1.4 Network Function Virtualisation - NFV

Nowadays, NO and SP use a model of physical appliances to create NF, for example
Load Balancer, Firewalls or WAN Accelerators. Each appliance represents one function and a
service chain of the functions represents an E2E connection, known as NS. Additionally, in
order to make the E2E connection (NS) feasible, it is necessary to use as many appliances as
functions are needed. Thus, making the CAPEX and OPEX cost to increase, in addition, most of
these appliances have some interoperability constrains, such vendor locks. For this reason, some
appliances and NFs do not work properly with appliances and functions from different brands.
Furthermore, updating, upgrading or adding new functions must be done in place, causing an
increase on the OPEX costs for NO and SP. As an example, it can be considered the cost of
updating a routing table from a switch.

Born in 2012, NFV has the aim of changing the current model of NSs deployment,
thus, attempting to remove typical constraints of the appliance model as the vendor locks or
the high costs of CAPEX and OPEX. This is planned to be achieved with the implementa-

Chapter 2. Background and Related Work 27

tion of a software defined approach. Figure 5 shows the high level architecture of NFV. In this
architecture, NFs are decoupled from the physical layer (the appliances) and deployed as virtu-
alised applications over a software layer. These applications are created under the name of VNF
and hosted at the top of the NFV Infrastructure. Different from the current model, the NFVI
has three main components: physical resources (Compute, Networking, Storage), virtualisation
layer (abstracting resources in a software plane) and the virtualised resources (Virtual Compute,
Virtual Networking and Virtual Storage).

NFV Infrastructure (NFVI)

Hardware

NFV Management
and Orchestration

(MANO)

Service, VNF
and

Infrastructure
Descriptions

Virtual Network Functions (VNFs)

Virtual
Compute

Virtual
Storage

Virtual
Network

Compute Storage Network

Virtualization Layer

VNF

VNFC VNFC

VNF

VNFC VNFC

NFV Main Reference Points

Figure 5 – NFV High Level Architecture

As mentioned above, a VNF is a software defined NF and is composite with one or
more VNF Component (VNFC). These components are software deployments linked between
them and can represent a Network Function itself. For this reason one VNF can be composite
with more than one function. NFVI provides the resources necessaries (e.g.memory, bandwidth)
to deploy a VNF in one or more Virtual Machines (VMs). VMs are configured using the pa-
rameters included in a description file created for each VNF. This files is named as VNFD
and has the operational behavior (Management Operations) and deployment configuration to
be setup over the NFVI (including resources, components and relationships). Figure 6 shows
some information elements defined for the VNFD. In order to deploy a NS, is necessary to
make a service chain of VNFs using a VNF Forwarding Graph (VNF-FG) file to structure and
link the functions. The file includes the E2E service description, named as NSD. These descrip-
tions files are predefined guidelines in the ETSI specifications and does not represent a defined
implementation.

In the right side of the above figure is shown the NFV Management and Orchestra-
tion component, aiming to orchestrate and manage all the aspects related to the NS and VNF
deployment. These aspects include a Service Level Agreement (SLA), life cycle (instantiate,

Chapter 2. Background and Related Work 28

scale, update, upgrade and terminate) or resource allocation (physical or/and virtual) or com-
munication interfaces. In order to do the deployment MANO component reads, interpret and
execute the descriptor files over the NFVI.

Identifier Type Cardinality Description

Id Leaf 1 ID (e.g., name) of this VNFD.

Vendor Leaf 1 The vendor generating this VNFD.

descriptor
_version

Leaf 1 Version of the VNF Descriptor

version
Leaf 1 Version of VNF software, described by the

descriptor under consideration

vdu
Element 1...N This describes a set of elements related to a

particular VDU

virtual
Link

Element 0...N Represents the type of network connectivity
mandated by the VNF vendor between two or
more Connection Points

connection
_point

Element 1...N This element describes an external interface
exposed by this VNF enabling connection with a
VL.
NOTE: The connection between the VNF and the
VL is expressed by the VLD referencing this
Connection Point. The Connection Point may
also be attached to internal Virtual Links (vnfd:
virtual_link:id).

Figure 6 – VNFD Base Information Elements Template

To create communication among components, ETSI defined the Reference Points
(communication interfaces). The dotted lines in the NFV architecture represent these Reference
Points. In the case of VNF composition, internal interfaces link VNFC among them, addition-
ally, these interfaces can change their configuration without affecting external interfaces. Such
the ETSI does not define how, to implement reference points, this work assumes their imple-
mentation as a WS interface (ETSI GS NFV-MAN, 2014) (ETSI GS NFV-SWA, 2014) (ETSI
GS NFV, 2014) (ETSI, 2012b) (ETSI, 2014b).

2.1.4.1 NFV Projects

2.1.4.1.1 OpenBaton

Openbaton is a compliant implementing the NFV Network Function Virtualization
Orchestrator component and is based on the ETSI specifications. Openbaton is a project coded
in JAVA and uses the RMI architecture aiming make to it easily extensible. Openbaton uses
OpenStack as a Virtualized Infrastructure Manager (VIM) component for the orchestration of
NFVI resources (OpenBaton, 2014).

The main components of OpenBaton are:

∙ A fully designed and implemented NFVO following ETSI specifications.

∙ A generic VNF Manager (VNFM) to manage VNF life-cycle using its VNFD.

Chapter 2. Background and Related Work 29

∙ A Software Development Kit (SDK) to build proprietary components.

Figure 7 shows the architecture of OpenBaton. At the top of the figure are the
Graphical User Interface (GUI) component and a VNF Package containing the VNF to be
deployed. The NFVO and VIM components are represented by OpenBaton and OpenStack
Projects respectively and the other elements on the figure are remaining components of the
NFV architecture.

Figure 7 – OpenBaton Architecture

2.1.4.1.2 OpenMano

OpenMano is an open source project aiming to implement the NFV MANO func-
tional block (OpenMano, 2014). The project has three main components:

∙ openvim: is an implementation of the NFV VIM component. It offers and REST based in-
terface to communicate (openvim Application Programming Interface (API)) with NFVI
components.

∙ openmano: is an implementation of NFVO component. it communicates with openvim
through a REST based interface (openmano API).

∙ openmano-gui: a GUI interacts with the openmano component through the REST inter-
face.

Chapter 2. Background and Related Work 30

2.1.4.1.3 T-NOVA

The T-NOVA Project (XILOURIS et al., 2014) has the aim of providing NFV as
a Service (NFVaaS) in a business environment. This implementation has a new concept of a
Network Function Store, which is to offer VNFs as apps are offered in a typical app store
(such Google Play or Apple Apps Store). Furthermore, giving the possibility of third party
developers to publish their own VNFs and to Service Provider to buy as they need. At the
top of the T-NOVA architecture exists a set of northbound RESTful interfaces (with the issues
mentioned above), each VNF uploaded into the NF Store has a metadata file in order to describe
functionalities and how to manage them. However, such a VNFD and the metadata file has a
lack of a semantic approach, leaves a gap in how to represent common components from one
VNF to another (this gap additionally affects in an inter-domain plane). An ideal world for the
future VNF developers will be to code a VNF once and reply n-times over different NF Stores
or NFV domains. However, so far NFV orchestrators are programmed to read descriptor from
syntactic and static file (such the metadata descriptor) and NFV interfaces are created base on
specific needs and generally using Web Services. This Web Services are used in order create
interoperability between components.

2.1.4.1.4 Unify

Unifying Cloud and Carrier Networks (UNIFY) is a project focused on the research,
development and evaluation of means for the orchestration, verification and observation E2E
service delivery networks by through the use of core networks to data centers (UNIFY, 2014).
Under UNIFY project is created a component called Virtualizer, an element responsible for
resource allocation of networking, computing and storage components and other execution en-
vironments (SZABó et al., 2014). Virtualizer uses a Yet Another Next Generation (YANG) data
model to make the resource allocation. Listing B.2 of Annex B represents the Virtualizer data
model in an XML format.

2.2 Related Work

This section is a brief summary of related work covering objectives similar to this
work. Literature review of this section is divided in two different areas: (i) ontology data mod-
els for networking and computing infrastructure, (ii) interoperability models across domains.
Finally, there are the general conclusions for the section.

2.2.1 Ontology Data Models

In Semantic Distributed Resource Discovery for Multiple Resource Providers (PIT-
TARAS et al., 2012) is proposed a mechanism to discover and share information about the

Chapter 2. Background and Related Work 31

physical resources for resource providers (aka peers) in an inter-domain scenario. Currently,
peers have proprietary models and databases to create and store their resource descriptions.
However, there is a gap in terms of interoperability and variable definition to share those mod-
els across domains. For this reason, aiming to supply the absence of a standardized data model
to describe resources, INDL ontology was created. In addition to the data model, also an ex-
ternal component with name Resource Information Service (RIS) was created. This component
is capable of synchronize, translate and abstract resource information into a triple store, named
as RIS database. RIS, acts as an independent middleware for the resource providers, taking the
information from the providers databases and parsing it into the INDL data model, thus, mak-
ing information available in a same language with other peers implementing the RIS module.
Aiming to achieve interoperability between providers, RIS has an additional module (discovery
module). Nevertheless, the discovery module finds only the providers with the RIS component
implemented, thus, adding a constrain to the interoperability process.

Although, Semantic Distributed Resource Discovery for Multiple Resource Providers

has some similarities with our work, such the implementation of an ontology, this work denotes
two major weak points: (i) the sync between databases, them cannot be fully synchronized in
real time, (ii) the implementation of an external component to create interoperability across
domains.

In A Semantic-Web Approach for Modeling Computing Infrastructures (GHIJSEN
et al., 2013) is described an evolution of the INDL ontology. The information model was im-
proved from a standalone to a Semantic Web approach. This change was done aiming the reuse
of other Semantic Web models, e.g. NML (HAM et al., 2013). Additionally to the new ap-
proach, is aimed re-usability of the model and an independence of the implementing technology.
INDL was built as an extension of NML ontology and is used to create or enhance other onto-
logical representations. As a proof of concept, INDL was implemented to make resource and
networking descriptions of three different projects, Cinegrid, NOVI and GEYSERS (GHIJSEN
et al., 2012). NML (HAM et al., 2013) is mentioned for INDL as the base project. NML is
known as a common effort to create a standardize manner to make networking description, this
effort is leaded by specialists in the networking field conforming the Open Grid Forum (OGF,
). NML data model contains all the components necessaries to create high level and detailed
networking topologies, thus, giving flexibility to NOs for building models according specific
needs. In addition, creating a common understanding across domains.

NML was developed using two types of syntax, one, using pure XML and XML
Schema and the other using the Semantic Web approach with OWL RDF/XML and OWL
schema. In some implementations using NML and INDL can be appreciated the reuse of other
knowledge representations, thus, crating new representations and enhance current ones.

Chapter 2. Background and Related Work 32

2.2.2 Interoperability Models

As an example, it is taken the mechanism done by OpenStack1 (OpenStack, 2011)
and Open DayLight2 (OpenDayLight, 2013) projects to gain interoperability between them. It
was implemented an external plugin, named Modular Layer 2 (ML2) (ML2, 2013), to parse
request across the projects. ML2 additionally provides communication between OpenStack and
other third party projects (such Brocade Mechanism Driver or Cisco Nexus Mechanism Driver,
soft-switches), however, for each project exist the need of having a specific module in the plugin
to create the communication. Consequently, a need of creating and coding as many modules as
projects exists, is generated.

On the other hand, OpenStack is not a one project implementation, instead, is a
stack of multiple projects (e.g. Neutron, Nova, Horizon) aiming to work together in order to
create the platform. In consequence, a simple installation of OpenStack relies on reading of a
hundred pages manual. Installation process includes: installing and configuring each component
separately, then each component must be setup to communicate with the other components.
Thus, attempting to make implementations easier, arises the need of developing external tools,
such Ubuntu JUJU (Ubuntu, 2014) or make installation scripts, like RDO Project (RDO, 2016).

REST API Design Patterns for SDN Northbound API (ZHOU et al., 2014), is an
effort to create a more flexible northbound interface to SDN controllers, in addtion, there are
shown some gaps that current northbound APIs have. For example, the use of static URIs to
identify resources creates issues in terms of adaptability, thus, if the URI changes the response
type (e.g. from JavaScript Object Notation (JSON) to XML), the interface client will be useless
to face the change. With the aim of reducing this gap, it was developed a "truly" REST north-
bound interface. This new interface is done using all REST style pattern designs, thus giving
a loosely-coupled architecture. However, service consumption process still relying in the de-
veloper entity and the use of the interface must be done through an external plugin to connect
OpenStack Neutron project (and other cloud projects) with the Python-based Software-Defined
Networking (POX) (POX, 2016) controller.

2.2.3 Gap Analysis

The use of a Semantic Web approach appears as an appealing manner to repre-
sent and use common data models in real scenarios. These models can be used as a common
language to represent same concept across different kind of domains. Additionally, the knowl-
edge can be reused to enhance other models. However, common knowledge is an initial step to
achieve towards the creation of an automated interoperability across NFV domains.

On the other hand, communication interfaces and WS are developed to solve prob-
1 A cloud orchestrator. It can be seen as a VIM for the NFVI component
2 A Software Defined Networking (SDN) Controller

Chapter 2. Background and Related Work 33

lems in specific scenarios and using specialized coding languages, thus, limiting interoperability
to one domain. In addition, there is not a standardized manner for software developers to code,
and interfaces usually cannot be consumed from one software to another software implemen-
tation without using an external components. Hence, aiming to remove above limitations, this
work proposes the definition of a common data model to represent NFV components and the
implementation of semantic services.

34

3 Research Problem

At least three main problems can be identified when attempting to integrate NFV
technologies: (i) lack of well defined semantics (i.e. domain specific language), (ii) absence of a
common understanding (i.e. shared vision) of NFV, and (iii) need of manual intervention to in-
terpret, use and integrate components. Currently, software components, interfaces and services
require manual intervention (e.g., to adapt interfaces, translate the semantics of variable names,
parameters, tool chains, etc.) when attempting to inter-work and integrate different pieces of
the NFV puzzle. While the NFV methodology to describe interfaces and abstractions (ETSI
GS NFV-INF, 2014) is a guideline for developers to be followed, this document is subject to
interpretation and by any means interpretable by software services and components. As a con-
sequence, problems inherent to interface integration negatively affect NFV implementations
contributing to the time and development costs along the path towards NFV services discovery
and interoperability.

3.1 Semantics on NFV Descriptors

In order to understand how semantics are used to describe NFV elements and how
the lack of a shared representation affects implementations, a brief analysis was done over two
equivalent pieces of VNFD files. The syntax used to declare was compared a management inter-
face from a Virtual Firewall defined by the ETSI (ETSI GS NFV-INF, 2014) and the OpenMano
Project (OpenMano, 2014), Listings 3.1 and 3.2 respectively. In order to do, the comparison fol-
lowing questions were considered:

∙ How NFV components are described?

∙ How NFV definitions are done?

∙ How NFV terminology is defined?

Towards solve questions above, was decided to divide the analysis in two parts. One
comparing descriptions between VNFD files. The other comparing descriptions within same
VNFD file.

3.1.1 Comparison of VNFD Files

Table 1 shows the comparison items from the files. First column, is the name of
the component declared by the ETSI. Second and third columns represent the declaration of the
component of the files (listings 3.1 and 3.2). Although the components on table above represents

Chapter 3. Research Problem 35

same concepts (defined by the ETSI), they can be seen as syntactically different from each other.
However, on the description field can be noticed the same definition for both descriptor files.
Therefore, using human reasoning, it can be deduced that the objects described are equal or
equivalents.

Listing 3.1 – VNFD ETSI File
1 <connection -points >
2 <management -port>
3 <name>mgmt -interface </name>
4 <description >Management interface </description >
5 </management -port>
6 </connection -points >
7 <pkt -in>
8 <name>pkt -in</name>
9 <description >Interface for packet in</description >

10 </pkt -in>
11 <pkt -out>
12 <name>packet -out</name>
13 <description >Packet out interface </description >
14 </pkt -out>

For humans, doing a reasoning process based on contexts is an easy task. Further-
more, when exist a lack of information to do process, people start to make questions in order
to understand or enhance the context. For example, on Table 1 a person may ask to himself: is

a connection point is the same concept of an external connection?, what is a connection? what

does a management interface mean?. The answer to those questions can be solved by reading
NFV specifications, thus filling information gaps by the improving in the context and making
implicit deductions. Due NFV specs are not meant to be interpreted by machines, the specifica-
tions do not represent meaningful information in a software-centric reasoning process. Hence,
manual intervention is needed to make a reasoning process and a syntax interpretation.

Listing 3.2 – VNFD OpenMano File
1 vnf:
2 name: TEMPLATE
3 description: This is a template to help in the creation

of your own VNFs
4 - name: mgmt0
5 type: mgmt
6 VNFC: TEMPLATE -VM
7 local_iface_name: mgmt0
8 description: Management interface

Due VNFD files belong to different implementations domains (OpenMano and
ETSI) and have different syntax them are useless on an inter-domain scenario, from one domain
to the other. Aiming to remove the syntax boundary is necessary to do manual intervention and
create a parsing mechanism to translate syntax across domains.

Chapter 3. Research Problem 36

Table 1 – Syntax Used to declare a Manager Interface

Component Listing 3.1 Listing 3.2
Connection Point connection-points external-connections

Management Interface management-port {type:} mgmt
Name mgmt-interface mgmt0

Description Management Interface Management Interface

Making a review of each component and doing simple human reasoning process,
following conclusions were done:

∙ connection point and an external connection may or may not be equivalent or equal
components.

∙ as mgtm is not a real word does not have meaningful information. It may or may not be
and an abbreviation for management and may or may not be equivalent to a management
port. There is not additional information to clarify.

∙ names are chosen in and "arbitrary" way without a general pattern, the fact of being
different ways to express equal components evidence this.

∙ description field gives information that can clarify the described component, however
machines are not able to interpret it.

∙ to understand the components it is necessary to have some previous background/context.
For example, read the ETSI specifications.

Going into the VNFD files composition, is denoted that each file is done with pro-
prietary manner to describe components in the modeling language (e.g. XML, YAML) and
a different structure. In both cases, the machines are able to read descriptors. However, due
implicit descriptions are necessary to have a predefined context and/or background (such a de-
scriptor schema or software code) in order to interpret and use the files.

Due the implicit descriptions and different NFV syntax, an inter-domain scenario is
less feasible without using middleware or parser mechanisms. Thus, it can be concluded that the
lack of a common understanding makes necessary manual intervention to integrate components
and even though, ETSI specifications acts as a guideline to make deployments, by following
them there is not guarantee a higher interoperability across domains.

3.1.2 Comparison Within Same VNFD Files

In this part of the analysis, it was taken equivalent components from a same de-
scriptor file and compared their definitions. In Listing 3.1, description and name variables were
taken from the components pkt-in and pkt-out. Assuming them as similar components

Chapter 3. Research Problem 37

(clarifying that one acts as an input and the other as an output) it was easy to denote that:
although them are equivalents there is not a structure to define the variables. To support the
previous affirmation, additionally it was compared the variable name, defined as "pkt-in" for
component pkt-in but defined as "packet-out" for component pkt-out. As them are formal
descriptions (from ETSI specifications) and equivalent variables should have some structure or
conventions on definitions. For example "pkt-in" and "pkt-out" or "packet-in" and "packet-out".
This is also more noticeable in the description variable for pkt-in component is defined as
an "Interface for packet in" and for the pkt-out component is defined as "Packet out interface".
Finally, looking at the names given to some variables and components, them were defined by
this work as word abbreviations without a meaningful expression for people with the correct
background. In Listing 3.1, is defined the contraction of the word packet as pkt and in Listing
3.2, the word management as mgmt. This last file also has terms that without a description are
useless (e.g. local-iface-name).

From the previous analysis is concluded that both terminology and definitions were
made in an arbitrary manner and predefined for each context.

3.2 Semantics on NFV Deployments

Current software implementations are done using variables and methods defined by
developers. These implementations have a semantic domain limited by the scope of a specific
implementation. In other words, syntax and semantics used to develop a software are only useful
to the software itself. Software syntax is defined without the use of common conventions or
structure and cannot be extended to other complementary domains or in some cases can not
be reused by components of same domain. For this reason and in order to have a common
understanding of the communication syntax, is necessary the use of manual intervention to
interpret syntax or create external elements to translate vocabulary from one domain to another.
Furthermore, generating integration costs in order to achieve interoperability. With the aim of
understanding how the issues above affect NFV implementations, it was done two scenarios of
study: (i) A NFV local domain implementation. (ii) A NFV inter-domain implementation.

3.2.1 NFV Local Domain Scenario

Figure 8 In Figure 8 a more detailed view of NFV MANO components is presented.
NFVO: incorporates new NS and VNF Packages, manage NS life-cycle 1 and manage global
resources. VNFM: manage the life-cycle of the VNF instances. VIM: controls and manage the
NFVI resources (computing, storage and networking).
1 The life-cycle includes instantiation, scale-out/in, performance measurements, event correlation, termination

of the instances

Chapter 3. Research Problem 38

MANO

VNFM

NFVO

NFVI VIM

Service, VNF and
Infrastructure Descriptions

VNFs

Figure 8 – NFV Architecture - MANO

From the figure above, it can be seen how NFV elements are connected among
them by some defined interfaces (reference points). These interfaces allow to have interop-
erability between NFV elements and are defined in the ETSI specifications. However, NFV
components as well as the reference points can be implemented by different developers, using
different technologies, communication protocols and syntax. Thus, opening the possibility for
the creation of different types of semantics and data structures to represent same concepts, such
VNFs deployment process or the services developed at the top NFV.

The differences mentioned above generate the need of manual intervention in order
to create interoperability. This manual intervention refers to the necessity of having people
reading, interpreting and using (according to own purposes) descriptions and capabilities of
components, interfaces and services. In other words, people must understand the capabilities
and descriptions to integrate one component to another component within the same domain.

3.2.2 NFV Inter-Domain Scenario

Figure 9 shows two different NFV implementations with the same components and
interfaces. Assuming deployments from different providers it may be found different semantics,
coding technologies and communication protocols representing same ETSI concepts. Thereby,
generating a need of manual intervention2 in order to create interoperability across domains.
For implementation A, components and interfaces are represented by doted lines and the font
Droid Sans represents the semantics. In implementation B, straight lines are used to represent
same concepts and Courier New font is used to represent the semantics.

In the figure above implementations are connected to each other through interfaces.
However, interfaces from domain A only can interpret its semantics (Droid Sans) and can use
dotted line capabilities (same thing occurs with domain B but opposite). This is due the software
2 This work refers as manual intervention to the necessity of having humans reading, interpreting and using

descriptions and capabilities of components, interfaces and services.

Chapter 3. Research Problem 39

NFV IMPLEMENTATION A

NFV Infrastructure A
(NFVI A)

Virtual Network
Functions (VNFs)

NFV
Management

and
Orchestration

A
(MANO A)

VNF
A1

VNF
A2

VNF
A3

NFV IMPLEMENTATION B

NFV Infrastructure
B (NFVI B)

Virtual Network
Functions (VNFs)

NFV Management
and

Orchestration
B

(MANO B)

VNF
B1

VNF
B2

VNF
B3

AVNF Descriptors B

Figure 9 – Different NFV Implementations

developments are done in a syntactically manner and using implicit descriptions, without a
common understanding. Hence, for NFV implementations, same components and interfaces
are implemented with different syntax and descriptions. Furthermore, them is necessary to have
the correct background/context.

To create interoperability across domains is necessary to do manual intervention
to re-write code or to do an implementation of a middleware (Figure 10) to parse requests
across domains in order to add the capability to interpret and use the semantics and components.
Furthermore, this problem is more noticeable when a NFV MANO attempts to use VNFD
from other implementation. For example, MANO A reading VNFD B. As shown on Figure
10, manual intervention can give multiple kinds of integration. (i) has an external component
(Parser) to translate descriptors from domain B to domain A. In this case interface A remains
equal. (ii) in this scenario the parser transforms requests from domain A into domain B format
and vice-versa. For this case, interfaces are connected to the parser and the parsing process is
not noticed by either of both domains. (iii) a new layer is added on components of domain A and
B to interpret requests from both domains. For this integration, interfaces from both domains
can be used.

Descriptor

MANO A

NFVI B

P
a
r
s
e
r

Descriptor
i

ii

iii

Figure 10 – NFV Domain Integration

Integration mentioned above gives interoperability to NFV. However, it involves
inherent costs associated with the new developments. Furthermore, if the number of domains
increases, the number of integration processes grows as well as the costs.

Chapter 3. Research Problem 40

3.3 Concluding Remarks

Because of the semantics problems and implicit descriptions discussed above, man-
ual intervention is found as an essential part of integration process. This intervention can be seen
from two different perspectives: (i) to read and interpret NFV implementations (components,
services and interfaces), and (ii) to use capabilities and functionalities. Both perspectives are
correlated to each other (ii can not be done without i.) but seen separately due to the different
costs involved. There are time and resource costs involved. For i, in workshops, training or self-
learning (not mentioning the time spend writing manuals) and in ii for the integration process.
Integration can include the modification of current developments or the development of an exter-
nal middleware. Furthermore, if capabilities or semantics change in the service provider (server
side) it may produce/bring modifications about the integration already done, thus increasing the
costs. Concluding this section we found that currently manual intervention is needed to achieve
interoperability for NFV in local and inter domain scenario.

41

4 NFV Ontology (NOn)

With the aim of solve the analyzed issues on the last section, this work proposes
NOn, a common data model representation of NFV for SP, NO and developers. The main goal
of NOn is to reduce software integration costs generate by a lack of a common manner to
express semantics in NFV descriptors and WS.

1. Reading 2. Abstracting 3. Making
Relationships 4. Designing 5. Building

Figure 11 – NOn Implementation Road Map

This chapter presents the design and implementation process of NOn. Figure 11
shows the path followed to implement the ontology. In phase one, trough the reading of the
ETSI specifications, were identified the elements of the ontology. Then, in phase two, the ele-
ments identified were abstracted and divided on two main groups: NFV descriptor elements and
NFV framework elements. In phase three, data and object properties were modeled, in order to
define the relationships among the ontology elements. In the last phase, using the abstracted
elements, properties and relationships an Entity/Relation diagram was designed. Finally, using
the resulting model the ontology was implemented.

4.1 Design

The implementation of NOn is based on the ETSI specifications (ETSI GS NFV-
MAN, 2014) (ETSI GS NFV, 2014) (ETSI GS NFV-SWA, 2014) (ETSI, 2014b), and the model
was created using as a guideline Ontology Development 101: A Guide to Creating Your First

Ontology (NOY et al., 2001). To design and create NOn data model, it was followed each step
recommended for the development of an ontology. However, some steps were followed in a
more rigorous manner than others. This work sees the ontology design as an iterative process,
consequently the design went back and forward through the steps aiming to improve the model.

Aiming to give an overall view of the design process, the following list enumerates
the steps for an ontology design. Each item contains a brief summary of the actions executed:

1. Determine the domain and scope of the ontology: in order to define the scope and the
domain, the necessary elements to deploy a VNF were considered. Starting from the

Chapter 4. NFV Ontology (NOn) 42

VNFD base information elements (Table 2) and going up to the NFV framework elements
(Figure 8)

2. Consider reusing existing ontologies: in section 2.2.1 were considered the use of NML
and INDL ontologies as the base of NOn. However, as the elements contained in the
data models are considered not necessary to create the VNFD information elements, in
consequence, both ontologies are not reused in NFV Ontology. Nevertheless, some key
intersection points were highlighted further in the chapter, aiming to make reuse in the
future.

3. Enumerate important terms in the ontology: in this item were included the important
components from the VNFD base information elements1. For example, deployment fla-
vor, connection point or virtual image. These components are bounded by the defined
scope.

4. Define the classes and the class hierarchy: the ontology classes were created from the
components of the NFV architecture and those elements composing the VNFD. This
work used a Down-Up strategy to create the hierarchy, starting from descriptor elements
and going up to functional blocks.

5. Define the properties of classes (slots): the properties were created in accordance with
the relationships defined for the VNFD and NFV framework elements.

6. Define the facets of the slots: the principal facets defined for the slots were cardinality and
type values. For example, type value string for description_version element.

7. Create instances: the instances created were based on existing VNFD models for current
NFV research projects. These models were mapped using the components defined in
above items.

Table 2 – VNFD Base Information Elements

Identifier Type Cardinality Description
vendor Leaf 1 The vendor generating this VNFD.

vdu Element 1...N
This describes a set of elements related
to a particular VDU, see clause 6.3.1.2.

connection
_point

Element 1...N
This element describes an external interface
exposed by this VNF enabling connection with
a Virtual Link, see clause 6.3.1.4 (see note).

As is presented in Table 2, base information elements (ETSI GS NFV-MAN, 2014)
are used to define VNF descriptor elements. Above table shows three base information elements
of a VNF descriptor. For the design process, first column was used to abstract and give the
1 An important term is considered to those elements necessaries to deploy a VNF

Chapter 4. NFV Ontology (NOn) 43

name for the components of the ontology. Type column, was used to define components as a
resource or as a data objects (Element and Leaf respectively). Cardinality column, gives the
slot facet cardinality for components. Finally, Description column was used to define properties
and to create the relationships among elements. As an example, elements above were defined
as follows: vendor field is as a data property with String value and cardinality: 1. vdu and
connection_point were defined as resources with resource property has_component (has_vdu,
has_connection_point) and cardinality: minimum 1.

Figure 12 shows the resulting graph of modeling elements and the relationships
from Table 2. In the following subsections is explained in more detail how was the process to
obtain the elements and relations of the graph.

VNFDstring

VDU

vendor Connection_Pointhas_connection_point

has_vdu

1 1..n

1...n

Figure 12 – Modeling NOn

4.1.1 Elements

To abstract the elements for NOn, the process was divided in two parts: (i) abstract-
ing the elements contained on the VNF descriptor, named as NOn low level elements. (ii) ab-
stracting main components of the NFV architecture, named as NOn high level elements. Thus,
attempting to fulfill basic deployment variables and creating an initial data model for NFV.

4.1.1.1 NOn Low Level Elements

Table 3 shows the elements of NFV taken from the VNFD information base (Table
2) and used to create low level elements of the ontology. The first column is the name given to an
element in the ontology. Second column, classifies the elements: as an Object, if is composted
by other elements or as a Slot, if does not have any composition. Forth column, is the cardinality
defined for each element and fifth column, is the value for the elements defined as slots (e.g
String). In last column, is defined to which descriptor belongs each element.

Table 3 – VNFD Elements

Element Type Cardinality Slot Type Descriptor
vnfd Object 1...* N/A VNFD
vdu Object 1...* N/A VNFD
vendor Slot 1 String VNFD

Afterwards, all components from the VNFD information base were abstracted, the
process continued with the abstraction of other elements defined as Objects. For example, it

Chapter 4. NFV Ontology (NOn) 44

were taken the VDU information base elements (Table 4) to continue with the abstraction. The
elements from below Table 4 were used to extend the data model. Additionally, two variations
were noticed in the vm_image field:

∙ Cardinality value, maximum 1.

∙ Description field makes clarity on "provides a reference", thus, it was decided to have a
link value (anyURI value) for the Slot Type field.

Table 4 – VDU Base Information Elements

Identifier Type Cardinality Description

id Leaf 1

A unique identifier of this VDU within the
scope of the VNFD, including version functional
description and other identification information.
This will be used to refer to VDU when defining
relationships between them.

vm_image Leaf 0...1 This provides a reference to a VM image

vnfc Element 1...N
Defines minimum and maximum number of
instances which can be created to support scale //out/in.

Table 5 is the result of mapping VDU and add them to the VNFD elements (Table 3).
In this table can be observed how new object elements are defined (e.g. VNFC). The modeling
process continues with the abstraction of the new objects. Thus, the process goes until all the
object elements necessaries (considered as important) to deploy the VNF were abstracted.

Table 5 – NOn VNFD and VDU Low Level Elements

Element Type Cardinality Slot Type Descriptor
vnfd Object 1...* N/A VNFD
vdu (Virtual Device Unit) Object 1...* N/A VNFD
vendor Slot 1 String VNFD
virtual_memory_resource_element Slot 1 Integer VDU
computation_requirement Slot 1 Integer VDU
id Slot 1 String VDU
vm_image Slot 0...1 anyURI VDU
vnfc Object 1...* N/A VDU

As a final result, a table with the elements mapped from the NFV components was
created. These elements, are meant to be included in the ontology as a Class or as a Slot. Table
6 is a summary of the final abstraction.

4.1.1.2 NOn High Level Elements

To model NOn top level elements, the NFV framework architecture (Figure 8) was
abstracted. Figure 13 shows the resulting hierarchic tree model obtained from the abstraction

Chapter 4. NFV Ontology (NOn) 45

Table 6 – NOn Low Level Element Summary

Element Type Cardinality Slot Type Descriptor
vnfd Object 1...* N/A VNFD
id Slot 1 String VNFD
descriptor_version Slot 1 String VNFD
vnf_version Slot 1 String VNFD
vdu (Virtual Device Unit) Object 1...* N/A VNFD
vendor Slot 1 String VNFD
deployment_flavor Object 0...* N/A VNFD
connection_point Object 1...* N/A VNFD
virtual_memory_resource_element Slot 1 Integer VDU
scale_in_out Slot 0...1 Integer VDU
computation_requirement Slot 1 Integer VDU
id Slot 1 String VDU
vm_image Slot 0...1 anyURI VDU
vnfc Object 1...* N/A VDU
id Slot 1 String VNFC
connection_point Object 1...* N/A VNFC
type Slot 1 String Connection Point
id Slot 1 String Connection Point

process. The elements included on the tree are classified by the ETSI as functional blocks of
the NFV Architectural Framework (ETSI GS NFV-MAN, 2014), for this reason the root of the
tree is the functional_blocks object. The second level of the tree represents the main
components of NFV architecture, which includes mano, nfvi, vnf and descriptor ob-
jects. In third level, are the objects composing the main elements. For example, for the mano
element are the nfvo, vnfm and vim objects and for nfvi element are defined hardware,
virtualisation and hypervisor objects. Finally, for the descriptors element, there
are the descriptors necessaries to deploy a VNF instance. Consequently, in this element was
done a merge with the low level elements defined in section 4.1.1.1. The subsequent levels on
the tree are the elements defined by the ETSI to composite NFV superior level components.
Hence, the first definition of classes for NOn was made.

Having in count, the resulting hierarchic tree of NFV and the NML (HAM et al.,
2013) and INDL (GHIJSEN et al., 2013) data models, this work highlights on the NFVI block a
match between the elements of the ontologies. Thus, generating a possibility of reusing elements
from NML and INDL in NOn. The matching elements can be observed embraced between
brackets ({}) on Figure 13. The reuse of elements is feasible due, NFVI can be seen as a resource
provider (networking elements included). However, these elements are not necessary for the
VNFD to make the deployment of a VNF. For this reason, reusing NML and INDL ontologies
is considered as out of the scope in this work.

Chapter 4. NFV Ontology (NOn) 46

Functional_Blocks

Manager and Orchestrator (MANO)

NFV Orchestrator Component

VNF Manager Component

VIM Component

NFV Infrastructure {INDL}

Hardware Components {Resources}

Compute Component

CPU {Node_Component}

Memory {Node_Component}

Network Component {SwitchingMatrix}

Storage Component {Node_Component}

Virtualisation Components

Virtual Compute Component {Virtual_Node}

Virtual Network Component {Virtual_Node}

Virtual Storage Component {Virtual_Node}

Hyper-visor

Descriptors

VNFD

Virtual Link Descriptor (VLD)

VDU

VNF

Figure 13 – NFV Framework Elements

4.1.2 Relationships

Afterwards, the elements in the ontology were defined, a process to create a rela-
tion among them took place. For high level elements the only relationships created were Class
and Subclass. This is due, our focus is the definition of the elements necessaries in the VNFD
to deploy a VNF. As is shown in Table 6, there are two types of elements associated with a
descriptor file, Objects and Slots. In the descriptor, the Slot acts as a property with same Car-
dinality and Slot Type defined in the table. Instead, Objects are composite by other objects and
slots, furthermore, with the aim of creating relationships, it was necessary to use the descrip-
tion field from base information elements (Table 2). In addition, the property has_object

was defined to be use with those elements composted by other elements. For example, VNFD
instance has_vdu VDU instance.

Table 7 shows the relationships obtained from the analysis of ETSI specifications
and NOn low level elements (Table 6). First column, represents an element of the ontology.
Second column, represents the properties attached to the element. Third and fourth column

Chapter 4. NFV Ontology (NOn) 47

represent, slot facets of the properties.

Table 7 – NOn Relationships

Element Property Carinality Value
VNFD id 1 String

descriptor_version 1 String
vnf_version 1 String
has_vdu 1...* vdu
vendor 1 String
has_deployment_flavor 0...* deployment_flavor
has_connection_point 1...* connection_point

VDU virtual_memory_resource_element 1 Integer
scale_in_out 0...1 Integer
computation_requirement 1 Integer
id 1 String
vm_image 0...1 anyURI
has_vnfc 1...* vnfc

VNFC id 1 String
has_connection_point 1...* connection_point

Connection Point type 1 String
id 1 String

4.1.3 Model Realization

The abstraction of NOn elements, was an iterative and incremental process. Thus,
the project started by modeling the elements and relationships from the VNFD and was extended
with other modeled elements. Figure 14 illustrates how, NOn is being extended from Figure
12, using new relationships and elements. The modeling process continued by adding all the
abstracted elements.

anyURI

vnfc

VNFDstring

VDU

vendor Connection_Pointhas_connection_point

has_vdu

has_vnfcstring id

vm
_im

age

1..n

1...n

1

1 1..n

0...1

Figure 14 – Extending NOn

In ontology modeling, there exists non restriction on the size of an ontology in terms
of elements, relationships or slots. Furthermore, an ontology model is not a view of one person
or a group, instead, it must be a shared vision of a domain. For this reason, the model is based on

Chapter 4. NFV Ontology (NOn) 48

a set of ETSI specifications (developed with a common vision of experts on NFV) and limited
by the elements necessaries to create a VNFD file for a VNF deployment.

The final design for the first version of NOn is presented in Figure 15, using the
entity relationship diagram annotation. The figure contains all the abstracted elements, slots and
slot facets (cardinality and value) from the previous sections. Due above figure is and overall of
the abstracting process, the implementation is mainly based on this design.

C
hapter

4.
N

F
V

O
ntology

(N
O

n)
49

VNFD VDUhas_vdu VNFChas_vnfcstring id

string
descriptor_version

string
vnf_version

string vendor

Connection Point
has_connection_point

has_connection_point

stringid

string id

anyURI
vm_image

integer virtual_memory_resource_element

integer
computation_requirement

integer
virtual_network_bandwidth_resource

Connection Point

integer scale_in_out

string lifecycle_event

Connection Point id_referencevirtual_link_reference

stringid

Typehas_type

Deployment Flavour has_deployment_flavour VLDhas_virtual_link stringid

Typeconnectivity_type

id_referenceconnection_points_referencesstring id

Constituent VDUhas_constituent_ vdu integernumber_of_instances

id_referencevdu_reference

id_referenceconstituent_vnfc vnfd:vdu:vnfc:connection_point:id
vnfd:connection_point:id

vnfd:vdu:vnfc:id

vnfd:vdu:id

vnfd:virtual_link:id

min:2

Figure 15 – NOn Model

Chapter 4. NFV Ontology (NOn) 50

4.2 Implementation

Using as a reference point the model in the Figure 15, the data and resource prop-
erties and elements were implemented using Protégé modeling tool (Protégé, 2016). As a first
step, the Classes and Subclasses of the ontology were implemented. Then, data and object prop-
erties (slots) were created. Finally, VNFD instances were created using as guideline different
descriptor models, taken from a NFV implementation. thus semantic VNF Descriptor files were
created.

4.2.1 Classes and Sub-classes

The implementation process started with the creation of classes and Subclasses
(high and low level elements). Figure 16 shows the resulting hierarchic tree from modeling
elements in Protégé. Elements from level one2 and two of the image are considered as top level
classes. Level three, is considered as middle level classes and below level forth are bottom level
classes.

Figure 16 – NOn Classes and Sub-classes - Protégé

From the above figure, can be noticed a top level class (not modeled) named as
Misc. This class was created in order of classifying elements that does not belong to any NFV
functional blocks or descriptor files.

Each element of the ontology has the following structure:

Name_Space:Class

2 NFV is considered as root level of the ontology. Subsequent levels start at level one (functional_blocks level)

Chapter 4. NFV Ontology (NOn) 51

Name Space variable, represents an abbreviation for the URI containing the on-
tology (e.g. http://www.intrig.com/ontology/non.owl) and Class variable, represents the class
name (e.g. mano). For example, instead representing ontology classes with the complete URI:

http://www.intrig.com/ontology/non.owl#mano

http://www.intrig.com/ontology/non.owl#vdu

RDF allows to present a short version using of name spaces, thus, it is defined a
@prefix for the ontology, and subsequent objects from the ontology are defined using the
prefix.

@prefix non: <http://www.intrig.com/ontology/non.owl>

non:mano

non:vdu

After the class implementation was done on Protégé we generate the first data model
was. Listing 4.1 presents the class data model of NOn generated by the modeling tool. The data
model is generated in RDF/XML format.

Listing 4.1 – NOn Data Model: Classes and Sub-classes
1 <owl:Class rdf:about="#functional_blocks">
2 <rdfs:subClassOf rdf:resource="#nfv"/>
3 </owl:Class>
4 <owl:Class rdf:about="#mano">
5 <rdfs:subClassOf>
6 <owl:Class rdf:ID="functional_blocks"/>
7 </rdfs:subClassOf>
8 </owl:Class>
9 <owl:Class rdf:about="#descriptors">

10 <rdfs:subClassOf>
11 <owl:Class rdf:about="#functional_blocks"/>
12 </rdfs:subClassOf></owl:Class>
13 <owl:Class rdf:ID="vnfd">
14 <rdfs:subClassOf>
15 <owl:Class rdf:about="#descriptors"/>
16 </rdfs:subClassOf>
17 </owl:Class>

Even though, at this point none of the properties of NOn are implemented, users of
the ontology can use some degree of inference through the inherited rules from RDF and OWL.
Following example shows how, an inference process can be achieved:

(i) <non:descriptors><rdfs:subClassOf><non:functional_blocks>
(ii) <non:vnfd><rdfs:subClassOf><non:descriptors>

From (i) and (ii) rules, (iii) can be inferred:

Chapter 4. NFV Ontology (NOn) 52

(iii) <non:vnfd><rdfs:subClassOf><non:functional_blocks>

The pattern adopted to name NOn elements is the same defined in the ETSI infor-
mation elements. Using lowercase and underscore symbols (_).

4.2.2 Data and Object Properties

Afterwards ontology elements were implemented, modeling properties was the fol-
lowing step. Each descriptor and misc classes were used to add their corresponding data and
object properties.

Figure 17 – NOn Data and Object Properties - Protégé

Figure 17 shows the implemented data and object properties. The structure of prop-
erties is similar to class structure, name_space:property. Left side of the figure represents
object properties and right side represents data properties. In addition to the implementing pro-
cess, there exist the need of adding a relationship between the ontology elements. Thus, it is
necessary to create a domain and a range for the properties.

Figure 18 – NOn Properties Range and Domain - Protégé

Domain defines the classes allowed to use the property, and Range defines the slots
type. Figure 18 shows the process for the Domain and Range creation. As an example, in the
figure is shown the data property non:id with the Range string value (slot type) and the

Chapter 4. NFV Ontology (NOn) 53

Domain limited by four classes, descriptors, vnfc, connection point and deployment flavour.
Finally, when all the properties were created and relationships were done, cardinality facet was
added to the slots3.

Figure 19 – NOn Property Cardinality - Protégé

Figure 19 shows the cardinality added to the elements (objects and slots) of the
VNFD class. Cardinality property works as follows: min and max restrictions are used respec-
tively for greater or equal than (>=) and less or equal than (<=) facets. exactly restriction is
used for equality (=) facet. For example, a VNFD has one to many (1...*) VDU and is repre-
sented as: non:has_vdu min 1.

The result of implementing the properties can be seen in Listing 4.2. At the top of
the listing (lines 1 to 15) are the object properties and in bottom (lines 15 to 29) are the data
properties. In addition, the listing shows the domain and range of the properties. However,
due cardinality restriction is added in the classes through the slots, is not presented in the listing.

Listing 4.2 – NOn Data Model: Data and Object Properties
1 ### Object Properties
2
3 <owl:ObjectProperty rdf:about="#has_vdu">
4 <rdfs:range rdf:resource="#vdu"/>
5 <rdfs:domain rdf:resource="#vnfd"/>
6 </owl:ObjectProperty>
7 <owl:ObjectProperty rdf:about="#has_deployment_flavour">
8 <rdfs:range rdf:resource="#deployment_flavour"/>
9 <rdfs:domain rdf:resource="#vnfd"/>

10 </owl:ObjectProperty>
11 <owl:ObjectProperty rdf:about="#has_vnfc">
12 <rdfs:range rdf:resource="#vnfc"/>
13 <rdfs:domain rdf:resource="#vdu"/>
14 </owl:ObjectProperty>
15
16 ### Data Properties
17
18 <owl:DatatypeProperty rdf:about="#vnf_version">
19 <rdfs:domain rdf:resource="#vnfd"/>
20 <rdfs:range rdf:resource="http ://www.w3.org /2001/

XMLSchema#string"/>
21 </owl:DatatypeProperty>

3 Cardinality facet was added one by one to each element of the ontology.

Chapter 4. NFV Ontology (NOn) 54

22 <owl:DatatypeProperty rdf:about="#dependency">
23 <rdfs:domain rdf:resource="#vnfd"/>
24 <rdfs:range rdf:resource="http ://www.w3.org /2001/

XMLSchema#string"/>
25 </owl:DatatypeProperty>
26 <owl:DatatypeProperty rdf:about="#virtual_link_reference">
27 <rdfs:domain rdf:resource="#connection_point"/>
28 <rdfs:range rdf:resource="http ://www.w3.org /2001/

XMLSchema#string"/>
29 </owl:DatatypeProperty>

In ontology modeling cardinality facet is presented as a subclass of RDF and an
property of OWL and added to the classes as a slot. Listing 4.3 shows cardinality as an RDF
subclass of (line 5) OWL restriction class (line 6), additionally has the OWL minimum cardi-
nality property with the RDF data type property integer and value one (line 8).

Listing 4.3 – NOn Data Model: Cardinality Restriction
1 <owl:Class rdf:ID="vnfd">
2 <rdfs:subClassOf>
3 <owl:Class rdf:about="#descriptors"/>
4 </rdfs:subClassOf>
5 <rdfs:subClassOf>
6 <owl:Restriction>
7 <owl:onProperty><owl:ObjectProperty rdf:ID="has_vdu"/></

owl:onProperty>
8 <owl:minCardinality rdf:datatype="http ://www.w3.org /2001/

XMLSchema#int">1</owl:minCardinality>
9 </owl:Restriction>

10 </rdfs:subClassOf>
11 </owl:Class>

When all the cardinality facets were implemented, the first version of NOn is con-
sidered as finished. As a consequence of the implementation process, additionally, a first se-
mantic VNFD template was created. This template follows the ETSI specification and is ready
to be used for instance creation.

Chapter 4. NFV Ontology (NOn) 55

4.3 NOn Use Cases: Semantic VNFD

Aiming to test NOn in real NFV implementations, two VNFD descriptors from dif-
ferent NFV implementations were parsed into NOn VNFD instances. In following use cases,
descriptors from current implementation were taken and attempted to be matched with the ele-
ments and components included in the ontology. Protégé tool was used to create the instances.

Table 8 – Test Parameters

Parameter Description
Goal The main objective to be achieved by executing the test.

Preconditions and Assumptions
Which are the conditions or assumptions necessaries
to perform the test.

Test Data Which are the data inputs to perform the test.
Description Description of the Test process.
Testing tools Tools needed to perform the test.
Post-Conditions After performing the test which is the expected state.
Expected Results Which are the expected results after executing the test.

Expected vs Obtained Results
A comparison between the expectations and the reality
after perform the test.

Table 8 shows the parameters included in the analysis for each use case. First col-
umn, is the name of the parameter to define each use case and the second column is the descrip-
tion of the parameter. For each use case the following process was executed:

∙ Take a VNFD file from current NFV deployments (e.g. Listing 4.4).

∙ Use Protégé GUI to parse elements (Figure 20).

∙ Made a comparison among the original descriptor and the semantic one.

The above process is explained in detail in Subsection 4.3.1. Hence, subsequent use
case omits the detailed explanation, instead contains the results of the test.

4.3.1 Use Case I: OpenBaton VNFD

Table 9 shows the test parameters and the results obtained for the OpenBaton use
case.

Use Case Process:

Through the use of Protegé tool, was created a VNFD instance from a OpenBaton
descriptor file (Listing 4.4). To create the semantic VNFD, there exist two options, a Top-Down
and Down-to-Top mapping process. First option, starts by creating the VNFD instance (Fig-
ure 20) and going down to create lower level elements (e.g. non:vdu) and their subsequent

Chapter 4. NFV Ontology (NOn) 56

Table 9 – OpenBaton Use Case

Parameter Description

Goal
Parse a OpenBaton VNFD file, into a semantic file using
NOn vocabulary.

Preconditions and Assumptions VNFD file must be working in a real implementation.

Test Data
OpenBaton VNFD file (OpenBaton VNFD, 2014). Listing
4.4 shows a descriptor from an OpenBaton example.

Description

Use a OpenBaton VNFD file to create a semantic
descriptor using an ontology modeling tool. In this process
each element contained in the descriptor is interpreted
and attempted to be parsed with the elements in NOn.

Testing tools Protegé, for instance creation.
Post-Conditions Semantic VNFD created.

Expected Results
All ETSI OpenBaton VNFD elements mapped with NOn.
Proprietary OpenBaton elements not mapped

Expected vs Obtained Results

All the elements belonging to ETSI specifications were
able to be included in the semantic descriptor. Proprietary
elements such type or event (lines 4, 21) were not able
to be mapped in the semantic descriptor. Properties such
name can be mapped using non:id element. However, if
OpenBaton is reserving this field for orchestration
purposes, it can generate conflict. Other properties like
endpoint or vimInstancename can be included
using elements from other NOn objects, such non:vnfm
and non:vim respectively.

elements (e.g. non:vnfc). The other option starts by creating low level elements of the Open-
Baton VNFD (e.g. non:connection_point) and continue creating upper level elements
that contain lower components (e.g. non:vnfc). Both options are finished when all elements
are mapped.

Listing 4.4 – OpenBaton VNFD

1 { "vendor":"fokus",
2 "version":"0.1",
3 "name":"iperf -client",
4 "type":"client",
5 "endpoint":"generic -vnfm",
6 "vdu":[{
7 "vm_image":["iperf_client_image"],
8 "virtual_memory_resource_element":"1024",
9 "virtual_network_bandwidth_resource":"1000000",

10 "vimInstanceName":"10.1.1.25 -vim -instance",
11 "vdu_constraint":"",
12 "scale_in_out":2,
13 "vnfc":[{
14 "connection_point":[{
15 "virtual_link_reference":"private"
16 }]}]}] ,
17 "virtual_link":[{"name":"private"}],
18 "lifecycle_event":[{
19 "event":"INSTANTIATE",
20 "lifecycle_events":["install.sh"]},

Chapter 4. NFV Ontology (NOn) 57

21 {"event":"CONFIGURE",
22 "lifecycle_events":["server_configure.sh"]
23 }
24],
25 "deployment_flavour":[{
26 "df_constraint":["constraint1","constraint2"],
27 "costituent_vdu":[],
28 "flavour_key":"m1.small"
29 }]
30 }

Since in this work is attempted to execute a sequential process to map the elements
we opt for a Top-Down technique allowing Protégé to guide the creation. When a top level class
is being created, Protégé underline mandatory classes and slots to be instantiated. Furthermore,
giving the opportunity of creating those elements from the top level class. Figure 20 shows the
VNFD mapping process. In the main software window, can be seen the mapping process of the
VNFD elements. Small software window , is used to create non:vdu lower element.

Figure 20 – Parsing OpenBaton VNFD File

The red frames show the facets defined as an exactly or min one cardinality,
which means a mandatory property. However, the Protegé tool allows creating instances of the
classes without instantiation of mandatory properties. In the mapping process, the elements and
properties defined by the ETSI were created. However, there exists proprietary elements defined
by OpenBaton in the descriptor file that were not able to be mapped. Other properties included
in the OpenBaton file, defined by the ETSI and modeled in the ontology but not included in the
base information elements, can be mapped using NOn top level classes. However, as Protégé
tool uses inference to create the instances and currently for NOn there is not a direct relation
between descriptors and some top level elements this mapping must be done directly on the
semantic file (Listing 4.5).

Chapter 4. NFV Ontology (NOn) 58

Listing 4.5 – OpenBaton Semantic VNFD File

1 @prefix non:https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl.

2 ### non:#ob-iperf -client
3 non:ob -iperf -client rdf:type owl:NamedIndividual ,
4 non:vnfd;
5 non:descriptor_version "0.1"^^xsd:string;
6 non:lifecycle_event "CONFIGURE"^^xsd:string ,
7 "INSTANTIATE"^^xsd:string;
8 non:vendor "fokus"^^xsd:string;
9 non:id "iperf -client"^^xsd:string;

10 non:has_deployment_flavour non:m1.small;
11 non:has_vdu non:ob_iperf_client_vdu;
12 non:has_connection_point;
13 non:ob_ipfer_client_connection_point;
14 non:has_virtual_link non:op_iperf_client_vld.
15
16 ### non:# ob_iperf_client_vdu
17 non:ob_iperf_client_vdu rdf:type owl:NamedIndividual ,
18 non:vdu;
19 non:virtual_network_bandwidth_resource "1000000"^^xsd

:int;
20 non:virtual_memory_resource_element "1024"^^xsd:int;
21 non:scale_in_out "2"^^xsd:int;
22 non:vm_image "iperf_client_image"^^xsd:anyURI;
23 non:has_vnfc non:ob_iperf_client_vnfc.

Listing 4.5 shows the resulting file for the OpenBaton VNFD instance4 and its sub-
sequent VDU instance (implemented in Figure 20). Above file, is written in RDF/N3 (NO-
TATION3, 2011) language5, a compact and readable alternative to RDF/XML. Line 11 and
12 shows the object property (non:has_element) between non:vnfd instance and the
non:vdu and non:connection_point instances. Hence, using this relationship an infer-
ence process can be executed.

Due OpenBaton has developed its components (such descriptors) following ETSI
specifications, this work assumes OpenBaton descriptor model as an excellent option to test
NOn model. In addition, some interesting elements included in OpenBaton descriptor were
found as an opportunity to enhance and increase the model, for example, lifecycle_events
(lines 22, 23). However, possible new elements must be in consideration with NFV community
(including ETSI) before being added the into the model.

4.3.2 Use Case II: OpenMano VNFD

Table 10 shows the test parameters and the results obtained for the OpenMano use
case.

This work finds OpenMano as a project that does not follow ETSI specifications to
define its components and uses proprietary syntax. Thus, increasing difficulty of the mapping
process. Furthermore, this work foresees interoperability issues of OpenMano with other NFV
4 To see complete file refer to Annex C Listing C.1
5 From now on listings with pieces of semantic code will be represented on N3 language

Chapter 4. NFV Ontology (NOn) 59

Table 10 – OpenMano Use Case

Parameter Description

Goal
Parse OpenMano VNFD file into a semantic file using
NOn vocabulary.

Preconditions and Assumptions
VNFD file must be working in a real implementation.
External Connection and Bridge-ifaces are
connection points

Test Data OpenMano VNFD.

Description

Use an OpenMano VNFD file to create a semantic
descriptor using an ontology modeling tool. Through
the use of a Down-to-Top process is interpreted each
element contained in the descriptor and tried to make a
match with the elements in NOn.

Testing tools Protegé, to create VNFD instance.
Post-Conditions Semantic VNFD created.

Expected Results
ETSI OpenMano VNFD elements mapped with NOn.
OpenMano elements not mapped.

Expected vs Obtained Results

non:connection_point and non:vnfc were
able to be mapped. However, as in OpenMano file there
is not a direct relation between VNFC and VNFD
elements in the OpenMano file, it was not possible to
create a relationship between them. It is possible to make
this relationship and the mapping of non:vm_image
property, creating a non:vdu element. It was found
that some elements not mapped with NOn are elements
defined in the ETSI specifications.

implementations. However, the elements not included in the ontology, but defined by the ETSI
and included in OpenMano descriptor are seen as an opportunity to enhance and increase the
model.

For more information about the VNFD file and NOn VNFD file, refer to Annex B
(Listing B.1) and Annex C (Listing C.2) respectively.

4.4 Conclusions

NOn represents an initial step to reduce gaps of interoperability in terms of vocabu-
lary among different NFV implementations. Due mapping reasons NOn is a more appropriated
solution for those implementations following ETSI specifications in the element definitions.
However, as NOn is a language and not a semantic instance implementation, in addition, by
adding more effort in the mapping process is possible to create/increase more elements mapped
from VNFD files to the semantic approach. To do this its necessary to create files without the
use of a modeling tool. Furthermore, it is possible to add proprietary syntax (with Semantic
Web approach) not included on ETSI specifications, for proprietary components.

60

5 Semantic NFV Services (SnS)

The definition of Web Service methods, capabilities and semantics are particular
for each implementation, additionally, relying in the developing entity. In software develop-
ment each software can be considered a different world. Thus, the process to create definitions
is something that cannot be standardized in a multi-domain scenario. Even though, REST pro-
tocol1 attempts to be self descriptive, due its implicit service descriptions, is necessary to have
a context or background to consume and use the service capabilities, consequently, manual in-
tervention is needed. With the aim of exploring the above-mentioned issues in an NFV context,
imagine a scenario in which the MANO component from one provider attempts to consume
NFVI services from a different provider. In this case, an integration process is impossible to
achieve without manual intervention.

This chapter presents the concept and implementation of Semantic nFV Services
(SnS) validated with a few open source Network Function Virtualization projects. SnS is a pro-
posal aiming to add semantic service descriptions to NFV Web Service (interfaces and APIs), in
order to reduce manual intervention to integrate services.SnS attempts to reuse current software
technologies (such REST and N3 language) and NFV projects, instead, creating new technolo-
gies or develop new components with the same capabilities, for example a semantic NFVO.

Firstly, we show the process of creating semantic services for NFV and developing a
Generic Client to consume those services. Secondly, we present the implementation of an infer-
ence process to create a goal based semantic services workflows. Additionally, an improvement
for the Generic Client is presented by adding the capability of creating and consuming inferred
workflows. Finally, we describe a Proof of Concept implementation to prove the usability for
Generic Client in existing NFV projects.

5.1 Creating Semantic Services

One of the goals of SnS is to reuse current technologies, consequently, this work
have chosen RESTdesc (RESTdesc, 2011) technology to create the semantic service descrip-
tions. RESTdesc allows the reuse of existing ontologies (e.g. NOn) and already developed REST
services. Furthermore, its implementation does not require modifications in the service capabil-
ities and methods, instead provides a mechanism to describe and enhanced them.

With the implementation of semantic service technology, this work aims to reduce
the need for manual intervention. However, to introduce semantic technologies, is necessary
to use or implement smart agents and inference engines in order to consume the semantic de-
1 This work assumes the use of WSs for NFV implementations. Particularly REST protocol

Chapter 5. Semantic NFV Services (SnS) 61

scriptions. Thus, adding extra components in the service deployment process. In addition, the
implementation of new components and the creation of descriptions, increases the developing
cost, in terms of time and resources, nevertheless, this cost can be compensated by reducing the
creation of manuals, training or services integration.

The implementation of SnS was done in two stages: (i) adding semantic descriptions
to (current and new) REST WS; (ii) creating a generic REST client to consume the services.

5.1.1 Adding Descriptions to Services

The Figure 21 shows an abstraction of how the service descriptions are added in
current Web Service. In the left side of the figure is shown the semantic descriptions (based on
NOn data model). In the right side of the figure is represented the WSs themselves. Addition-
ally, by adding semantic descriptions to the services, the normal behavior of the WS and its
capabilities are not affected, instead, the usability is enhanced.

This work names as Semantic nFV Services, to the combination of semantic de-
scriptions and the NFV Web Services.

RESTdesc Unify VNFD WS

RESTdesc OpenBaton VNFD WS

RESTdesc VNFD WS

Figure 21 – SnS Adding Semantic Descriptions

With the aim of adding semantic descriptions to NFV services, this work developed
Web Services with the capability of generating files used by OpenMano and OpenBaton projects
to deploy VNFs, such VNF Descriptor. These services were implemented using JAVA Spring
Framework (Spring Framework, 2002).

Initially, and using OpenBaton VNF deployment process as reference, two services
were created2:

∙ A service with the HTTP GET Method retrieving a JSON file with the corresponding
VNFD format, Listing 5.1.

2 This process will be discussed in section 5.3.2

Chapter 5. Semantic NFV Services (SnS) 62

∙ A service with HTTP GET Method retrieving a YAML Ain’t Another Markup Language
(YAML) file containing associated Metadata (Listing 5.4) for VNF Descriptor, Listing
5.5.

Both services, receive deployment parameters as inputs (e.g. vm_image) and re-
trieve a file filled with those parameters (e.g Listing 4.4).

Listing 5.1 – OpenBaton VNFD WS

1 GET /nfv/parser/openbaton/vnf/vnfd?
2 vendor="value"&
3 version="value"&
4 name="value"&
5 type="value"&
6 endpoint="value"&
7 vim_instance="value"
8 configurations="value"&
9 vm_image="value"&

10 virtuallink="value"&
11 minCPU="value"&
12 minBW="value"&
13 minRAM="value"&
14 lifecycle="value"&
15 dev_flavour="value"&
16 provides="value"&
17 scaleinout="value"&
18 HTTP /1.1
19 Host: localhost :8080
20 Content -Type: application/json

Listing 5.1 is the representation of the VNFD service. Line 1, represents the service
method and the service URI. Lines 2 to 17, represent the parameters accepted by the service.
Line 18, represents the communication protocol. Lines 19 and 20 respectively are: the Host IP
and the type of the retrieving file. From the listing, using human reasoning process and having
an adequate background, developers can interpret some parameters in the listing, for example,
vendor or minCPU. In addition, the background can be used to consume the service. However,
to people without a manual, background or service description, it is difficult to understand and
use each parameter to consume the service.

Table 11, shows a brief summary with the parameters used to develop VNFD Web
Service. In the first column, the elements are taken from OpenBaton3 file, in second column is
the name given to the parameters in the service. With the description of above table, parameters
in Listing 5.1 are easier to understand and use. However, the interpretation of service capability
can not be achieved without manual intervention.

To remove or reduce the manual intervention constrain the WS consumption pro-
cess, a semantic service description was created and added to the service using RESTdesc and
NOn and HTTP data models. Thus, service method, content type and URI were described using
an ontology defined for HTTP and the query parameters were described using NOn.
3 To see specification of each parameter refer to openbaton.github.io/documentation/vnf-descriptor/

Chapter 5. Semantic NFV Services (SnS) 63

Table 11 – OpenBaton VNFD WS Parameters

OpenBatonVNFD Parameters WS Parameter
vendor vendor
version version
name name
type type

endpoint endpoint
vim_instance vim_instance
configurations configurations

vm_image vm_image
virtual_link virtuallink

computation_requirement minCPU
virtual_network_bandwidth_resource minBW
virtual_memory_resource_element minRAM

life_cycle lifecycle
deployment_flavour dev_flavour

provides provides
scale_in_out scaleinout

Listing 5.2 shows the service description4 done for OpenBaton VNFD Web Ser-
vice. From the listing, can be observed how, RESTdesc description is implemented using N3
language and divided in three parts:

Listing 5.2 – OpenBaton VNFD Semantic Service Description

1 {#Pre -conditions
2 ?vnfd a non:vnfd;
3 non:id ?vnfd_id;
4 non:descriptor_version ?ver_des;
5 non:has_vdu ?vdu.
6 ...
7 ?vdu a non:vdu;
8 non:vm_image ?vm_image
9 ...

10 ?vl a non:vld;
11 non:connectivity_type ?vl_type.
12 }
13 =>
14 {#Process
15 _:request http:methodName "GET";
16 http:MessageHeader "Content -Type: application/json";
17 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor="?vendor"&version="?ver_des"&
vm_image="?vm_image"&virtuallink="?vl_type"");

18 http:resp [http:body json:openbaton_vnfd].
19 #Post -conditions
20 ?vnf non:has_vnfd ?non_vnfd.
21 }.

∙ Pre-Condition: Lines 1 to 10, represent the set of rules that must be executed in order
4 Due practical manners, there are some of the parameters implemented in the service description but removed

from the lsiting, such, ontology parameter @prefix

Chapter 5. Semantic NFV Services (SnS) 64

to consume the service capability. For this WS, NOn ontology is used to perform the
variable declaration. Furthermore, in the description exists a match between each element
of Table 11 and the elements defined in NOn. For example, vendor variable match with
non:vendor element. Additionally, in N3 language, is necessary to pass the elements
taken from an input file to a variable in the descriptor file, thus, variables can be used on
execution time. For example, non:vnfd pass all the elements belonging to the VNFD
semantic file (Listing 4.5) to ?vnfd variable, then, all the elements taken from ?vnfd

belongs to the descriptor file and can be used without referencing the file, question mark
(?) represents the variable declaration in N3. Line 7, illustrates last process. In the listing,
is not necessary to make reference to a specific VDU element, instead, when it refers to a
non:vdu, is inferred that the reference is to all VDU elements contained on the ?vnfd
variable.

∙ Process: These are the actions to be executed if the rules from preconditions item can be
achieved. For example, an HTTP request.

∙ Post-Condition: These are the actions to perform or the is state to be achieved, if the
process is executed. For example, VNF Descriptor file created.

The describing process for semantic services, is not an easy task, developers must
have good knowledge of the services to be described, capabilities, the describing language (N3)
and the ontologies to used (e.g. NOn). For example, due there are several objects in NOn using
the data property id, such VNFD, VDU or VNFC, in line 4 of Listing 5.2 may be an ambiguity
in the variables, however, this ambiguity is removed by the previous line. In line 3 on same
listing, is defined non:vnfd as a variable and the line is finalized using a semicolon (;).

The use of a semicolon implies that, subsequent lines are making a reference to the
variable previously declared. To end this reference (in order to declare other objects in a dif-
ferent context) is necessary to use a dot (line 4). Thus, the interpretation for VNFD declaration
(lines 2 to 5) is:

∙ if there exist an element with the type non:vnfd, take the element and pass it to ?vnfd
variable.

∙ then, if there exist an element with the type non:id and belongs to the ?vnfd variable,
take it and pass it to the ?vnfd_id variable.

∙ then, if there exist an element with the type non:descriptor_version and belongs
to the ?vnfd variable, take it and pass it to the ?ver_des variable.

∙ then, if there exist an element with the type non:has_vdu and belongs to the ?vnfd
variable, take it and pass it to the ?vdu variable.

Chapter 5. Semantic NFV Services (SnS) 65

Same process, is implemented with other elements included in the description, such
?vdu. Precondition process continues until whole rules are satisfied. Finally, above description
can be read as: if there exist an element with the type non:vnfd and has the parameters
below (non:vdu, non:vld, etc.), execute the HTTP call. then, the non:vnf variable must
be created and associate it with non:vnfd variable.

The OpenBaton Metadata Web Service is explained and used in Section 5.2.

5.1.2 Consuming Semantic Services

To consume Semantic nFV Services, is necessary to use a client capable of adapt-
ing itself, in order to consume different types of REST descriptions. Hence, in this work was
developed a JAVA based client, named as Generic Client. This client, does not have predefined
parameters to consume services, such headers or methods and its coding was done using basic
libraries. Thus, instead using JAVA REST frameworks, this work opted to use the default JAVA
library for HTTP connections, java.net. This was done just to proof the simplicity of creating a
client.

Inference EngineGeneric Client

VNFD

Service
Descriptor

Rest Request
Workflow

Figure 22 – Generating Dynamic WS request

On the other hand, Generic Client implements an external inference engine to make
reasoning processes, Euler Yet another proof Engine (EYE) (Jos De Roo, 2009). EYE inference
engine, receives some facts and make inference process to retrieve some other deduced facts.
Figure 22 illustrates how the inference engine interacts with the Generic Client. First, the engine
receives a set of rules (service description) and a context (Semantic VNFD) from the Generic

Client, then, it retrieves a workflow with the inferred REST request. It is important to denote
that NFV service descriptions containing a query requests, are not possible to do without NOn.

Listing 5.3 shows an example of one response given by the inference engine. This
workflow can be read as:

∙ An HTTP GET request, called _:sk0 is done to the /nfv/parser/openbaton/vnf/vnfd
URI exists.

∙ The request, has the header type application/json.

Chapter 5. Semantic NFV Services (SnS) 66

∙ The request response represents of a json:openbaton_vnfd file and is given by the
element _:sk1.

Listing 5.3 – Inference Engine Response

1 _:sk0 http:methodName "GET".
2 _:sk0 http:MessageHeader "Content -Type: application/json".
3 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf -client" "&vm_image=" "iperf_client_image"^^
xsd:anyURI "&virtuallink=" "private" "&lifecycle=" "
CONFIGURE" "&dev_flavour=" "m1.small" "&scaleinout=" "2"^^
xsd:int "").

4 _:sk0 http:resp _:sk1.
5 _:sk1 http:body json:openbaton_vnfd.

In execution time, and using the resulting workflow (Listing 5.3), Generic Client

builds up the request and consumes the service. The process to create a request is as follows:

∙ Client, uses the http:methodName and http:requestURI (line 1 and 3 respec-
tively) as fixed parameters. This means, for all requests is mandatory to the use both
parameters.

∙ The other parameters, are implemented in an if -then implication process. For example, if

there exists a http:MessageHeader) then put the header in the request.

Header ParamsResponse

Request
Workflow

Generic
Client

URI ParamMethod

Method: GET

URI:
...vnf/vnfd?vendor=fokus..

Rest Request

Content-Type: application/json

Figure 23 – Creating a Dynamic WS request

Figure 23 shows how, is the process when Generic Client reads the workflow file.
In first step, client puts the URI and Method parameters into the JAVA request, then, the client
performs an algorithm to make a match between the parameters in the file and the possible pa-
rameters composing the HTTP request. This matching process is done according to the defined
method, for example, a POST method can have a body file, but a GET method cannot. In other
words, if a parameter is in the file then, is added to the JAVA request. In consequence, the client
adapts itself according parameters included in descriptions and using the subsequent inference
workflow, thus, none of the parameters are predefined.

Chapter 5. Semantic NFV Services (SnS) 67

Thereby, the Generic Client born, a REST client that was created once, and is ca-
pable of consuming different REST Web Service without manual intervention to interpret ca-
pabilities.

5.2 SnS Workflow Inference

In the last section was used the term "workflow", to make a reference to the re-
sponse given from the inference engine. This response included, the process and the parameters
necessaries to create an HTTP request in order to consume a REST Web Service. In this section,
same term is used to make a reference to the response given by the inference engine, with a plan
including a sorted list of HTTP requests. In addition, the list is built with the aim of achieving
a predefined goal.

Listing 5.4 – OpenBaton Metadata File

1 name: vnfPackage_name
2 scripts -link: scripts_link
3 image:
4 upload: option
5 ids: list_of_ids
6 names: list_of_names
7 link: image_link
8 image -config:
9 name: image_name

10 diskFormat: disk_format
11 containerFormat: container_format
12 minCPU: min_cpu
13 minDisk: min_disk
14 minRam: min_ram
15 isPublic: is_public

In first part of the section both SnSs5 (Listings 5.1 and 5.5), were taken and used to
create a workflow in order to deploy a VNF using the OpenBaton NFVO. In the second part,
Generic Client was improved with the capability of consuming the new workflow.

5.2.1 Creating Dynamic Workflow

Listing 5.4 shows the file defined by OpenBaton to create the Metadata associated to
a VNFD file, and Listing 5.5 shows the definition of the REST Web Service with the capability
of retrieving this Metadata file.

Listing 5.5 – OpenBaton Metadata WS

1 GET /nfv/parser/openbaton/vnf/metadata?
2 name="value"
3 scriptslink="value&
4 imaname="value"&
5 upload="check"&
6 link="value"&
7 diskFormat="value"&

5 From now on is referred as SnS to the WS created for NFV and with semantic descriptions

Chapter 5. Semantic NFV Services (SnS) 68

8 containerFormat="value"&
9 minCPU="value"&

10 minDisk="value"&
11 minRam="value"&
12 isPublic="value"&
13 scaleinout="value"&
14 HTTP /1.1
15 Host: localhost :8080
16 Content -Type: application/json

Inference engines, have the feature of infer a context and deduce facts from a given
knowledge. In addition, and using the new facts to get a context, these engines are able to create
a plan containing a sequence of HTTP requests. The inference process done by the engine is as
follows:

∙ Knowledge Definition: In this step are defined the inputs for the inference engine. For
example, NFV service descriptions, VNF semantic descriptor or NOn.

∙ Reasoning Process: Using given inputs, the inference engine makes a process to deduce
new facts. For example, are used the properties defined for the ontologies and the rules
defined in the descriptions.

∙ Create a Workflow: if, the rules and the deduced facts can be achieved with the given
input, then, inference engine uses sing service descriptions to create a plan with a sorted
sequence of services to be consumed.

Figure 24 illustrates above process. Instead, this work uses the capability of "en-
forcing" the engine to create a plan in order to achieve a specific goal, this plan is known as:
Goal-Based Workflow.

Service
Descriptions

Service 1

Service 2

...

Service n

Logic Workflow
Inference Engine

Semantic
VNFD

Figure 24 – Creating Context Based Workflow

For goal-based workflows, the context is created in order to achieve a specific task
(in contrast, reasoning process above, creates a task based on the deduced context). With the aim
of doing the goal-based reasoning process, the engine creates a plan to achieve a proposed goal6.
6 A goal is the desired state to be reached, when a service wokrflow is consumed.

Chapter 5. Semantic NFV Services (SnS) 69

In addition, another input file must be provided to the engine, this file includes the description
of the goal 7. The inference process done by the engine to achieve a goal is as follows:

∙ Assuming Facts: Inference engine starts assuming one fact as true. A fact, is a desired
state in a service description (postcondition) or a predefined goal. For example, if the fact
is a goal, then, engine assumes that the goal was achieved.

∙ Collecting Proofs: To support facts, engine must recollect proofs using the inputs and a
reasoning process. Proofs are "proven", by analyzing the postcondition section of services
descriptions or using other input data.

– if, a service with the desired state (postcondition) is found, then, the inference engine
goes to precondition section and attempts to prove the rules of the service. To prove
the rules, engine uses postconditions from other service descriptions and other data
inputs. or example a VNFD file.

– then, if preconditions can be proven, the service is added in a workflow.

∙ Creating a Workflow: As some preconditions from service descriptions can be a postcon-
dition from other service description, previous steps are repeated until the whole precon-
ditions and postconditions are proven and there is not more proofs to be done. Conse-
quently, proven services are added into the workflow, then, a plan is created.

Above process is known as backwards reasoning, this is due, inference engine goes
backwards through the service descriptions attempting to create a workflow in order to achieve
a goal. Summarizing the process, once a goal defined, engine finds a service to achieve this
goal. Then, the service became the new goal and the engine attempts to achieve this new goal.
The process continues until all the goals are achieved.

Service
Descriptions

Goal

Service n
Precondition: n-1

Postcondition: Goal

Service n-1
Precondition: 1

Postcondition: n-1

Service 1
Precondition: VNFD

Postcondition: 1

Logic Workflow
Inference Engine

Semantic
VNFD

Goal

Figure 25 – Creating Goal Based Workflow

Figure 25 illustrates backwards reasoning process. In the figure, can be seen how
the inference engine provides a goal-based workflow. Workflow, starts with the last service to
7 With the aim of doing goal-based workflows, this project uses a backwards inference engine

Chapter 5. Semantic NFV Services (SnS) 70

be consumed, and goes down to the first service to be consumed. Additionally, in the figure
is shown the postconditions of some services as preconditions from other services aiming to
achieve the goal.

Listing 5.6 – OpenBaton Metadata Semantic Service Description

1 {
2 ?vnfd a non:vnfd;
3 non:vendor ?vendor;
4 non:descriptor_version ?ver_des;
5 non:id ?des_name;
6 non:lifecycle_event ?lifecycle.
7 ?vdu a non:vdu;
8 non:vm_image ?vm_image;
9 non:computation_requirement ?minCPU;

10 non:computation_requirement ?minRam.
11 ?vnf non:has_vnfd ?non_vnfd.
12 }
13 =>
14 {
15 _:request http:methodName "GET";
16 http:MessageHeader "Content -Type: application/yaml";
17 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/metadata?name=" ?des_name "&link=" ?
vm_image "&minCPU=" ?minCPU "&minRam=" ?minRam);

18 http:resp [http:body yaml:vnf_metadata].
19 ?vnf ob:has_metadata yaml:vnf_metadata.
20 }.

In Listing 5.6 is the semantic description done for OpenBaton Metadata service. In
this description, some rules can be achieved with the semantic VNFD file, however, the pre-
condition has_vnfd (added in line 11), is described as a postcondition in the VNFD semantic
service (Listing 5.2, line 20). Consequently, before consuming Metadata Web Service, is nec-
essary to consume VNFD Web Service. In contrast, in Listing 5.7 is described a goal defined
as a postcondition in the Metadata service description. Thus, in order to achieve the goal, is
necessary to consume both services

Listing 5.7 – OpenBaton Metadata Semantic Service Goal

1 {?vnf ob:has_metadata yaml:vnf_metadata }=>
2 {?vnf ob:has_metadata yaml:vnf_metadata }.

Using the inference engine, OpenBaton Semantic nFV Services and above goal, a
goal-based workflow was created. Listing 5.8 shows a piece of the workflow retrieved by the
inference engine8. In the listing, is presented the backwards reasoning process performed by
the. The process is executed as follows:

∙ In the lines 1 to 5, is defined the goal, the desired state to be achieved, Listing 5.7.

∙ Inference engine, assumes the achievement of the goal as a fact (lemma1, line 6) and
starts to recollect evidence to prove it (lemma2, line 7).

8 To see complete file refer to annex D Listing D.1

Chapter 5. Semantic NFV Services (SnS) 71

∙ In the lines 10 to 14, is realized by the engine that, the defined goal is a postcondition
in the Metadata service description WS (Listing 5.6), thus, the achievement of the goal
is proved and the service is defined as the new goal. Then, inference engine starts to
recollect evidence to prove the new fact (lemma4 to 12, line 15).

∙ In line 19 (lemma4), is proved that, non:vnfd rule can be achieved by taking the param-
eter from the VNFD semantic descriptor file (Listing 4.5). In addition, other parameters
included in the precondition section (such non:vdu, non:vm_image) are proven in
the same way. Thus, the process continues until reaching lemma12 (line 21).

∙ In Lemma12, engine realizes that, non:has_vnfd precondition is defined as a postcon-
dition in the VNFD service description (Listing 5.2), thus, all the proofs for the Metadata
service are recollected. In consequence, the service is added in the workflow and VNFD
WS is defined as the new goal.

∙ As done with Metadata service, inference engine starts recollecting evidence to prove the
new fact, lemma4 to 10 and 14 to 18 (line 29). In Lemma14 (line 31), is proved that,
non:scale_in_out rule can be achieved by taking the parameter from the VNFD
semantic descriptor. In addition, other parameters are proven in the same way.

∙ Finally, in lemma19, are recollected all the proofs for VNFD service. Then, the service
is added in the workflow and the process is finished. This is due, at this point there is not
more evidence to recollect, consequently .

Listing 5.8 – OpenBaton Metadata Goal-Based Workflow - Compact

1 [a r:Proof , r:Conjunction;
2 r:component <#lemma1>;
3 r:gives {
4 _:sk3 ob:has_metadata yaml:vnf_metadata.
5 }].
6 <#lemma1> a r:Inference; r:gives {_:sk3 ob:has_metadata yaml:

vnf_metadata }; r:evidence (
7 <#lemma2>);
8 r:rule <#lemma3>.
9 <#lemma2> a r:Inference; r:gives {_:sk4 http:methodName "GET

".
10 _:sk4 http:MessageHeader "Content -Type: application/json".
11 _:sk4 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/metadata?name=" "iperf -client" "&link=" "
iperf_client_image"^^xsd:anyURI "&minCPU=" _:sk5 "&minRam
=" "1024"^^xsd:int).

12 _:sk4 http:resp _:sk6.
13 _:sk6 http:body yaml:vnf_metadata.
14 _:sk3 ob:has_metadata yaml:vnf_metadata }; r:evidence (
15 <#lemma4> <#lemma5> ... <#lemma11> <#lemma12>);
16 r:rule <#lemma13>.
17 <#lemma3> a r:Extraction; r:gives {{?x0 ob:has_metadata yaml:

vnf_metadata} => {?x0 ob:has_metadata yaml:vnf_metadata }};
18 r:because [a r:Parsing; r:source <file:/// ServiceDescriptor

/OpenBaton/goals/Metadata -iPerf -Client -goal.n3>].

Chapter 5. Semantic NFV Services (SnS) 72

19 <#lemma4> a r:Extraction; r:gives {non:ob-iperf -client a non:
vnfd}; r:because [a r:Parsing; r:source <file :///
ServiceDescriptor/OpenBaton/resources/iperf_client.n3>].

20 ...
21 <#lemma12> a r:Inference; r:gives {_:sk0 http:methodName "GET

".
22 _:sk0 http:MessageHeader "Content -Type: application/json".
23 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf -client" "&vm_image=" "iperf_client_image"
^^xsd:anyURI "&virtuallink=" "private" "&lifecycle=" "
CONFIGURE" "&dev_flavour=" "m1.small" "&scaleinout=" "2"
^^xsd:int "").

24 _:sk0 http:resp _:sk1.
25 _:sk1 http:body json:openbaton_vnfd.
26 _:sk2 a json:file.
27 _:sk2 a ob:vnfd.
28 _:sk3 non:has_vnfd _:sk2}; r:evidence (
29 <#lemma4>...<# lemma10><#lemma14>...<# lemma18>);
30 r:rule <#lemma19>.
31 <#lemma14> a r:Extraction; r:gives {non:ob_iperf_client_vdu

non:scale_in_out "2"^^ xsd:int};
32 r:because [a r:Parsing; r:source <file:/// ServiceDescriptor

/OpenBaton/resources/iperf_client.n3>].
33 <#lemma19> a r:Extraction; r:gives {{?x0 a non:vnfd.
34 ?x0 non:vendor ?x1.
35 ...
36 ?x10 non:id ?x11} => {_:x12 http:methodName "GET".
37 _:x12 http:MessageHeader "Content -Type: application/json".
38 _:x12 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" ?x1 "&version=" ?x2 "&name="
?x3 "... "&dev_flavour =" ?x11 "& scaleinout =" ?x7 "").

39 ...
40 _:x15 non:has_vnfd _:x14 }};
41 r:because [a r:Parsing; r:source <file:/// ServiceDescriptor

/OpenBaton/services/parser/OpenBaton -Parser.n3>].

From the listing, Lemmas 3 (line 17), 13 (refer to annex D Listing D.1) and 19
(line 33) are used as proven facts added in the workflow. However, this project uses inferred
facts to consume the services, thus, the workflow used in the Generic Client is composted by
Lemmas 2 and 12 (lines 9 and 21 respectively). This is due, inferred facts include parameter val-
ues, necessaries to execute queries in the HTTP requests. For example, non:scale_in_out
"2"xsd:int, the value is 2.

5.2.2 Consuming Dynamic Workflows

Currently, Generic Client can adapt its code to create HTTP requests dynamically
in order consume a REST Web Service. However, this adaptability only works to consume one
service at the time (Figure 22). In consequence, inference engine is not capable of using a goal-
based workflow. Thus, main challenge in this research was to improve the client by adding the
capability of reading and interpreting these kind of workflows.

The Workflows retrieved by the inference engine (Listing 5.8) include, in addition
to the inferred facts, lemmas and proven facts. These last two, are considered unnecessary data
in order to consume the workflow. Consequently, Generic Client has a process to remove this

Chapter 5. Semantic NFV Services (SnS) 73

data, without affecting the inferred facts and its sequence (Figure 25).

Figure 26 illustrates the interaction between the Generic Client and the inference
engine, aiming to create and interpret a workflow. In first part of the process, the client pass
as inputs, the service descriptions, the semantic VNFD file and the goal, to the engine. Then,
inference engine uses the inputs to infer and retrieve a goal-based workflow (e.g. Listing 5.8).
Finally, Generic Client interpret the generated workflow to execute the plan.

RESTdesc OpenBaton VNFD WS

RESTdesc
OpenBaton Metadata

WS

RESTdesc OpenBaton WS

Semantic VNFD

VNF Deployment
WorkflowReasoner

Generic
Client

Goal:
Metadata

Figure 26 – Generic Client Consuming a Goal-Based Workflow

To interpret the workflow, Generic Client initiates a process to remove lemmas and
proven facts included in the workflow. This removal process, excludes inferred facts. Then, is
executed cleaning process over to the inferred facts, thus, unnecessary characters are removed
from the HTTP requests. Finally, a new version of the workflow is generated. This version only
includes, the HTTP requests and the ontology @prefixes. Listing 5.9 shows the new version
of the Metadata based-goal workflow (Listing 5.8).

Listing 5.9 – OpenBaton Metadata Generic Client Workflow

1 PREFIX non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>

2 ...
3 PREFIX http: <http://www.w3.org /2011/ http#>
4 #request
5 _:sk4 http:methodName "GET".
6 _:sk4 http:MessageHeader "Content -Type: application/json".
7 _:sk4 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/metadata?name=" "iperf -client" "&link=" "
iperf_client_image"^^xsd:anyURI "&minCPU=" _:sk5 "&minRam="
"1024"^^xsd:int).

8 _:sk4 http:resp _:sk6.
9 _:sk6 http:body yaml:vnf_metadata.

10 _:sk3 ob:has_metadata yaml:vnf_metadata}
11 #request
12 _:sk0 http:methodName "GET".
13 _:sk0 http:MessageHeader "Content -Type: application/json".
14 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf -client" "&vm_image=" "iperf_client_image"^^
xsd:anyURI "&virtuallink=" "private" "&lifecycle=" "
CONFIGURE" "&dev_flavour=" "m1.small" "&scaleinout=" "2"^^
xsd:int "").

Chapter 5. Semantic NFV Services (SnS) 74

15 _:sk0 http:resp _:sk1.
16 _:sk1 http:body json:openbaton_vnfd.

The new workflow is parsed in a JAVA List of REST requests objects. Then, the
order of the list is inverted, transforming a backwards plan into a forward plan. Afterwards, to
do the service consumption, Generic Client uses the process defined in Section 5.1.2 (Figure
23). Assuming that, all services parameters are correct, both services are consumed properly.
Hence, a enhanced version of the Generic Client is created, a client capable of consuming REST
WS workflows without having a predefined context.

Generic
Client

MetaData
Workflow

RESTdescOpenBaton VNFD WS

RESTdesc
OpenBaton Metadata

WS

RESTdescOpenBaton WS

JAVA
 LIST

R
1

R
2

Consume R1

Consume R2

Figure 27 – Generic Client Consuming Workflow

Figure 27 illustrates the service consumption process. In the figure is shown how,
to consume services is not necessary to use the semantic description. Instead, Generic Client

consumes service capabilities using HTTP requests. In the JAVA List, are the services and the
order (R1,R2) to be consumed. Then, Generic Client proceeds to consume each service.

To finalize the section, Figure 28 summarizes Generic Client execution cycle. In
stage one and two, the client reads and uses semantic inputs to make an inference process and
create a context. Then, using the context and the service descriptions, client decides are the
possible services to be consume and add them in a plan (workflow). Finally, client executes the
inferred workflow.

5.3 SnS Use Cases: Semantic Services on NFV projects

Previously in the chapter, it was created a Generic Client capable of adapting itself
to consume workflows without using a predefined context or background. Instead, the client
creates the context in execution time. Additionally, some Semantic nFV Services were created
for OpenMano and OpenBaton Projects.

In this section the Generic Client and the SnS are used to create an automation
process to deploy VNFs using a minimum of manual intervention. Thus, three use cases were
created. First use case, includes a "benchmarking" process for the creation of VNFD files. In
second use case, a VNF is deployed using a fully automated process. Final use case, is an
attempt to use Generic Client to automate the integration of two NFV components (NFVO and
VIM) from different implementations.

Chapter 5. Semantic NFV Services (SnS) 75

Generic Client

Observe
Create

Context

Plan

Decide

Act

Finite States
Software Model

and Inference
Engine

Figure 28 – Generic Client Process Cycle

5.3.1 Use Case I: Semantic VNFD Generator Service

The aim of implementing NOn, is to avoid: (i) the creation of multiple descriptors
and different syntax, (ii) the use of parsers to translate syntax across domains. Unfortunately,
to achieve the purposed goal, it is necessary the implementation of semantic components in
current NFV implementations. However, a more feasible scenario, is the use of NOn to create
semantic NFV descriptors and implement parsers those to translate descriptors into proprietary
data models. Figure 29 illustrates the purposed scenario.

MANO A
(OpenBaton)

P
a
r
s
e
r

PoP

VNFD

MANO X
(OpenMano)

P
a
r
s
e
r

PoP

PoP

P
a
r
s
e
r

MANO Y
(Vendor)

Figure 29 – SnS Not Implemented Use Case

In above figure, each NFV implementation has one semantic parser in order to trans-
late NOn into proprietary data models. Thus, allowing to have an universal language to describe
current descriptors (e.g. VNFD). However, this type of parsing methods is a main issue that,
this work tries to avoid. Consequently, this scenario was deprecated.

Chapter 5. Semantic NFV Services (SnS) 76

Figure 30 shows the real scenario purposed for use case I. In this scenario, is
changed the parsing approach for a Semantic nFV Services approach. Thus, instead having
a parser for each implementation, is implemented a SnS capable of retrieving proprietary data
models. Hence, the Generic Client and the inference engine are used to automatically consume
each service.

Generic
Client

OpenMano VNFD
Generator WS

OpenBaton VNFD
Generator WS

NFV VNFD
Generator WS

Consume
OpenBaton

Service
Descriptions

Semantic
VNFD

Inference Engine

Figure 30 – SnS Use Case I: Semantic VNFD Generator Service

To implement the use case, were developed two semantic services to create Open-
Baton and OpenMano VNFD file. Left side of the figure, shows the inputs used by the client,
in right side represents the Web Service9. Thus, using the inputs, Generic Client and inference
engine deduce which WS can be consumed, then, the service is consumed and the file retrieved.
For example, if the parameter non:vim_component exists in semantic VNFD file, then,
OpenBaton service is consumed. This is due, in the descriptor for OpenBaton service the pa-
rameter is used in precondition section and OpenMano does not.

For Use Case I, were created three different scenarios to observe the behavior of
Generic Client. In each scenario, Generic Client acts as a "Benchmarking" process, finding a
service to be consumed according with the inputs.

In all scenarios same inputs were given to the client:

∙ Semantic VNFD

∙ OpenBaton SnS

∙ OpenMano SnS

5.3.1.1 Scenario I: Using OpenBaton Semantic Descriptor

Following table represents the parameters used in scenario I:

9 Service description in left side of the figure, corresponds to the Web Service on the right side.

Chapter 5. Semantic NFV Services (SnS) 77

Table 12 – SnS Use Case I: Scenario I

Parameter Description
Goal Consume OpenBaton SnS.

Preconditions
and
Assumptions

Semantic VNFD file.
Semantic file created using NOn and based on the OpenBaton
data model.
Goal not predefined.

Test Data
Semantic VNFD.
OpenBaton SnS.
OpenMano SnS.

Description

Generic Client receives test data inputs and through the inference engine
starts a benchmarking process. This process tries to find which
service is adequate to be consumed according with the inputs. If, the
inputs fully-fill the preconditions of any SnS the service is consumed
and the VNFD file is created.

Testing tools Generic Client instance.
Post-Conditions SnS Consumed
Expected Results OpenBaton SnS Consumed.
Expected
vs
Obtained Results

None of the services was consumed:
Due the absence of VIM component on the semantic VNFD, OpenBaton
SnS was not consumed.

Listing 5.10 – Vim Component

1 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/
non.owl#vim_openstack_25

2 non:vim_openstack_25 rdf:type owl:NamedIndividual ,
3 non:vim_component;
4 non:id "10.1.1.25 -vim -instance" ^^xsd:string.

With the aim of making the service consumed, VIM component was manually
added in the semantic VNFD (Listing 5.10). Thus, the service was consumed and the Open-
Baton VNFD file was successfully created. Listing 5.11 shows the resulting request given by
the inference engine and used by the Generic Client.

Listing 5.11 – OpenBaton SnS Generic Client Request

1 _:sk0 http:methodName "GET".
2 _:sk0 http:MessageHeader "Content -Type: application/text".
3 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf -client" "&vm_image=" "iperf_client_image"^^
xsd:anyURI "&virtuallink=" "private" "&lifecycle=" "
CONFIGURE" "&dev_flavour=" "m1.small" "&scaleinout=" "2"^^
xsd:int "&vim=" "10.1.1.25 -vim -instance""").

4 _:sk0 http:resp _:sk1.
5 _:sk1 http:body json:openbaton_vnfd.
6 _:sk3 ob:has_vnfd _:sk2.

5.3.1.2 Scenario II: Using OpenMano Semantic Descriptor

Following table represents the parameters used in scenario II:

Chapter 5. Semantic NFV Services (SnS) 78

Table 13 – SnS Use Case I: Scenario II

Parameter Description
Goal Consume OpenMano SnS.

Preconditions
and
Assumptions

Semantic VNFD file.
Semantic file created using NOn and based on the OpenMano
data model.
Goal not predefined.

Test Data
Semantic VNFD.
OpenBaton SnS.
OpenMano SnS.

Description

Generic Client receives test data inputs and through the inference engine
starts a benchmarking process. This process tries to find which
service is adequate to be consumed according with the inputs. If, the
inputs fully-fill the preconditions of any SnS the service is consumed
and the VNFD file is created.

Testing tools Generic Client instance.
Post-Conditions SnS Consumed
Expected Results OpenMano SnS Consumed.
Expected
vs
Obtained Results

None of the services were consumed:
Due the absence of many components of OpenMano semantic VNFD
, OpenMano SnS was not consumed.

With the aim of making the service consumed, OpenMano service description was
manually modified: to include parameters that can be provided by other components of NOn
and to delete parameters not contained on the ontology. Listing 5.12 shows the final version of
the service. Thus, service was consumed and OpenMano VNFD was created.

Listing 5.12 – OpenMano VNFD Semantic Service Description

1 {
2 ?vnfd a non:vnfd.
3 # non:id ?vnf_name;
4 # non:descriptor_version ?vnf_description.
5 # ?vdu a non:vdu;
6 # non:vm_image ?vm_image.
7 ?vnfc a non:vnfc;
8 non:id ?vnfc_name;
9 non:has_connection_point ?vnfc_conn.

10 ?vnfc_conn a non:connection_point;
11 non:type ?ext_conn_type;
12 non:id ?ext_conn_name.
13 }
14 =>
15 {
16 _:request http:methodName "GET";
17 http:MessageHeader "Content -Type: application/json";
18 http:requestURI ("nfv/parser/openmano/vnf/vnfd?

vnf_description="?vnf_description"&vnf_name="?
vnf_name"&vnfc_name="?vnfc_name"&vnfc_description=
""&vm_image="?vm_image"&ext_conn_name="?
ext_conn_name"&ext_conn_iface_name="?ext_conn_name
"&ext_conn_description="?ext_conn_type"&
ext_conn_type"?ext_conn_type"");

19 http:resp [http:body yaml:openbaton_vnfd].

Chapter 5. Semantic NFV Services (SnS) 79

20 ?non_vnfd a yaml:file;
21 a om:vnfd.
22 ?vnf non:has_vnfd ?non_vnfd.
23 }.

Above listing, shows the service description of OpenMano VNFD WS. Lines with
numeral sign (#), represents the objects deleted from the descriptor in order to consume the
service, lines 3 to 6.

Listing 5.13 – OpenMano SnS Generic Client Request

1 _:sk0 http:methodName "GET".
2 _:sk0 http:MessageHeader "Content -Type: application/json".
3 _:sk0 http:requestURI ("nfv/parser/openmano/vnf/vnfd?

vnf_description=" _:sk1 "&vnf_name=" _:sk2 "&vnfc_name=" "
TEMPLATE -VM" "&vnfc_description=" "&vm_image=" _:sk3 "&
ext_conn_name=" "mgmt0" "&ext_conn_iface_name=" "mgmt0" "&
ext_conn_description=" "mgmt0" "&ext_conn_type" "mgmt0" ""
).

4 _:sk0 http:resp _:sk4.
5 _:sk4 http:body json:openbaton_vnfd.
6 _:sk6 ob:has_vnfd _:sk5.

5.3.1.3 Scenario III: Using Generic Semantic Descriptor

Following table represents the parameters used in Scenario III:

Table 14 – SnS Use Case I: Scenario III

Parameter Description
Goal Consume any SnS.
Preconditions
and
Assumptions

Semantic VNFD generic file (Annex C, Listing C.3).
Semantic file created using NOn.
Predefined Goal (create VNFD).

Test Data
Semantic VNFD.
OpenBaton SnS.
OpenMano SnS.

Description

Generic Client receives test data inputs and through the inference
engine starts a benchmarking process. This process tries to find which
service is adequate to be consumed according with the inputs. If, the
inputs fully-fill the preconditions of any SnS the service is consumed
and the VNFD file is created.

Testing tools Generic Client instance.
Post-Conditions SnS Not Consumed
Expected Results SnS Not Consumed.

Expected
vs
Obtained Results

OpenMano service was consumed:
This occurs due, the minimum components needed to consume
OpenMano service (Listing 5.12), in Listing 5.14 is shown
the resulting request. In addition, OpenBaton service was not consumed
due the absence of VIM component.

Chapter 5. Semantic NFV Services (SnS) 80

In below listing, due is used the complete version of OpenMano SnS (without delet-
ing rules10), more values are filled in the request parameter (line 3) in comparison with scenario
II (Listing 5.13, line 3).

Listing 5.14 – Generic VNFD Resulting Request

1 _:sk0 http:methodName "GET".
2 _:sk0 http:MessageHeader "Content -Type: application/json".
3 _:sk0 http:requestURI ("nfv/parser/openmano/vnf/vnfd?

vnf_description=" "0.2" "&vnf_name=" "iperf -server" "&
vnfc_name=" "ob_vnfc1" "&vnfc_description=" "&vm_image=" "
ubuntu -14.04 - server -cloudimg -amd64 -disk1"^^xsd:anyURI "&
ext_conn_name=" "ob1" "&ext_conn_iface_name=" "ob1" "&
ext_conn_description=" "bridge" "&ext_conn_type" "bridge"
"").

4 _:sk0 http:resp _:sk1.
5 _:sk1 http:body json:openbaton_vnfd.
6 _:sk2 a json:file.
7 _:sk2 a ob:vnfd.
8 _:sk3 ob:has_vnfd _:sk2

In order to analyze how, Generic Client and inference engine react when two SnS
can achieve same goal, it was decided to add VIM component in semantic VNFD generic file
(Listing 5.10).

By doing the modification, OpenMano SnS was consumed (Listing 5.14) over Open-
Baton. This is due, the server version of the inference engine allows to use Quick Answer capa-
bility. This capability is used to find one answer (the fastest one) to achieve the goal. However,
desktop versions of the inference engine allows to infer more than one answer to accomplish
the goal, thus Simple Answer capability of the desktop engine was used.

Listing 5.15 – Generic VNFD Resulting Request - Simple Answer Capability

1 #request
2 _:sk0 http:methodName "GET".
3 _:sk0 http:MessageHeader "Content -Type: application/json".
4 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openmano/vnf/vnfd?vnf_description=" _:sk1 "&vnf_name=" _:
sk2 "&vnfc_name=" "generic_vnfc1" "&vnfc_description=" "&
vm_image=" _:sk3 "&ext_conn_name=" "ob1" "&
ext_conn_iface_name=" "ob1" "&ext_conn_description=" "
bridge" "&ext_conn_type" "bridge" "").

5 _:sk0 http:resp _:sk4.
6 _:sk4 http:body yaml:openmano_vnfd.
7 non:generic -vnfd -1 a yaml:file.
8 _:sk5 non:has_vnfd non:generic -vnfd -1
9 #request

10 _:sk6 http:methodName "GET".
11 _:sk6 http:MessageHeader "Content -Type: application/text".
12 _:sk6 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.2" "&
name=" "iperf -server" "&vm_image=" "ubuntu -14.04 - server -
cloudimg -amd64 -disk1"^^xsd:anyURI "&virtuallink=" "private
" "&lifecycle=" "INSTANTIATE -install.sh-install -srv.sh" "&
dev_flavour=" "m1.small" "&scaleinout=" "2"^^xsd:int "&vim
=" "10.1.1.25 -vim -instance" "").

13 _:sk6 http:resp _:sk7.
10 Numeral sign (#) are removed from service description on Listing 5.12.

Chapter 5. Semantic NFV Services (SnS) 81

14 _:sk7 http:body json:openbaton_vnfd.
15 non:generic -vnfd -1 a json:file.
16 _:sk8 non:has_vnfd non:generic -vnfd -1

Listing 5.15 shows the resulting workflow using Simple Answer capability 11. Thus,
the Generic Client was able to consume an create both (OpenMano and OpenBaton) descriptors
using just one semantic description.

This use case is finalized by concluding that, the implementation of NOn and SnS
are good solution to create multidomain NFV interoperability. The use case opens a possibility
of using an unique representation of NFV to create multiple types of descriptors VNFD, and
the implementation of semantic services to reduce manual intervention in the Web Service
consumption process.

5.3.2 Use Case II: Workflow Inference - Deploying a VNF Semantic Services

5.3.2.1 Goal

∙ Create an automated process for deploying VNFs on the OpenBaton project.

5.3.2.2 Preconditions and Assumptions:

∙ OpenStack installed.

∙ OpenBaton installed.

∙ OpenBaton SnS installed.

∙ A method to create Tape ARchiver (TAR) files.

5.3.2.3 Test Data

∙ OpenBaton VNFD.

∙ OpenBaton VNF Deployment Service Description: This description corresponds to a ser-
vice created by the OpenBaton Project12, to deploy a VNF over a NFVI using the NFVO.
Listing 5.17.

∙ OpenBaton SnS installed.

∙ A Goal for VNF deployment. Listing 5.16.

11 To see complete answer of the inference engine refer to Annex D Listing D.2
12 This works refers as a OpenBaton Project objects to all elements and services developed by OpenBaton, such

OpenBaton Project deployment WS or NFVO

Chapter 5. Semantic NFV Services (SnS) 82

Listing 5.16 – OpenBaton Deploy VNF Semantic Service Goal

1 {?vnf ob:state ob:vnf_deployed .}=>
2 {?vnf ob:state ob:vnf_deployed }.

Listing 5.17 – OpenBaton Project Deploy VNF Service Description

1 {
2 ?vnf ob:has_metadata yaml:vnf_metadata.
3 }=>{
4 _:request http:methodName "POST";
5 http:MessageHeader "Content -Type: application/json";
6 http:requestURI "http :// localhost :8080/ nfv/parser/upload";
7 http:body [http:formData ("file" ?vnf_package)];
8 http:resp [http:body http:response].
9 ?vnf ob:state ob:vnf_deployed.

10 }.

5.3.2.4 Testing Tools

∙ Public Inference Engine.

∙ Generic Client.

5.3.2.5 Test Description

Figure 31 illustrates the current process to deploy a VNF using OpenBaton Project.
In step one and two are manually created the OpenBaton VNFD (Listing 4.4) and the Metadata
files (Listing 5.4). Step three is a process (can be manually or using a programmed task) to
create an OpenBaton VNF package. This package is a TAR file, including VNFD and Metadata
files. Final step, is the process to upload the package into OpenBaton platform. If, all the steps
are done correctly all component must be shown in the OpenBaton and OpenStack dashboard.

VNFD Metadata1 2

4 3

Process

Figure 31 – OpenBaton VNF Deployment Process

Scenario:

Figure 32 illustrates the scenario implemented in this use case. NFV components
were installed and configured in different servers using the Information & Networking Tech-

Chapter 5. Semantic NFV Services (SnS) 83

nologies Research & Innovation Group (INTRIG)13 facilities. For the NFVI component, were
used the resources on the INTRIG Cloud. Additionally, the cloud is orchestrated by OpenStack,
thus, OpenStack is used as the VIM component in the scenario. On the other hand, the VNFM
and NFVO components were installed on an internal server on INTRIG’s lab. In consequence,
main components of the NFV Framework were installed and implemented.

The next step, was to connect and register VIM component in the NFVO compo-
nent. Thereby, the access to all resources provided by the NFVI14 was guaranteed.

MANO

NFVO

VNFM

NFVI

VIM

Cloud

LAB

Generic Client

OpenBaton Service
Description

OpenBaton
VNFD WS

OpenBaton
Metadata WS

REST
desc

REST
desc

Semantic VNFD

Goal: Deploy VNF

Inference Engine

Figure 32 – SnS Use Case II: Test Scenario

Generic Client, was used in a personal sessions of different VMs over the servers
in INTRIG’s lab. Additionally, OpenBaton VNFD and MetaData Web Service were installed
on the same machine with Generic Client. All components were connected among them using
a local network. Finally, Generic Client was connected via WS to an online and public EYE
inference engine (VERBORGH; ROO., 2012) and the RESTdesc descriptions were located on
the GitHub repository of the project (PROJECT, 2016).

SnS Deployment Process:

Afterwards, the installation of previous scenario was done, some tests were done to
prove correct behavior. A VNF was deploy using a manual process (Figure 31) and following
OpenBaton use case15 (OpenBaton Use Case, 2014). The test was successful and the VNF from
the tutorial was able to be deployed. IPerf is a tool to do measurements of bandwidth to calculate
network performance (GATES; WARSHAVSKY, 2012).

Instead, an automated deployment process for same scenario was done as follows:
13 The research group that the author is part of.
14 Some issues were found during the installation and configuration of both OpenStack and OpenBaton projects

(specially in the communication part among them), however this issues were solved through the use of the
mailing list.

15 The tutorial was done until the VNF IPerf Client and Server deployment

Chapter 5. Semantic NFV Services (SnS) 84

1. A user creates the Semantic VNFD and the Goal (5.16).

2. Generic Client takes service descriptions, semantic file and the goal and pass them to the
inference engine.

3. Inference engine creates the workflow and retrieved it to the Generic Client.

4. Client interpret the workflow and creates the deployment version of the file. Listing 5.18
shows the new version of workflow:

Listing 5.18 – Generic Client Deploy VNF Workflow

1 #request
2 _:sk_6 http:methodName "POST".
3 _:sk_6 http:MessageHeader "Content -Type: application/json

".
4 _:sk_6 http:requestURI "http :// localhost :8080/ nfv/parser/

upload".
5 _:sk_6 http:body _:sk_7.
6 _:sk_7 http:formData ("file" _:sk_8).
7 _:sk_6 http:resp _:sk_9.
8 _:sk_9 http:body http:response.
9 #request

10 _:sk_4 http:methodName "GET".
11 _:sk_4 http:MessageHeader "Content -Type: application/json

".
12 _:sk_4 http:requestURI ("http :// localhost :8080/ nfv/parser

/openbaton/vnf/metadata?name=" "iperf -server" "&link="
"ubuntu -14.04 - server -cloudimg -amd64 -disk1"^^xsd:

anyURI "&minCPU=" "2" "&minRam=" "2").
13 _:sk_4 http:resp _:sk_5.
14 _:sk_5 http:body yaml:vnf_metadata.
15 #request
16 _:sk_0 http:methodName "GET".
17 _:sk_0 http:MessageHeader "Content -Type: application/json

".
18 _:sk_0 http:requestURI ("http :// localhost :8080/ nfv/parser

/openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.2"
"&name=" "iperf -server" "&vm_image=" "ubuntu -14.04 -

server -cloudimg -amd64 -disk1"^^xsd:anyURI "&virtuallink
=" "private" "&lifecycle=" "INSTANTIATE -install.sh-
install -srv.sh" "&dev_flavour=" "m1.small" "&
scaleinout=" "2"^^xsd:int "").

19 _:sk_0 http:resp _:sk_1.
20 _:sk_1 http:body json:openbaton_vnfd.

5. Client consumes OpenBaton VNFD WS and creates locally the retrieving JSON file.

6. Client consumes OpenBaton Metadata WS and creates locally the retrieving YAML file.

7. Client consumes OpenBaton Project Deploy VNF WS:

∙ Creates VNF package using VNFD and Metadata files.

∙ Upload VNF package via OpenBaton Project WS.

8. OpenBaton Project NFVO deploys the VNF over INTRIG’s cloud using OpenStack. Fi-
nally OpenBaton Project returns the id given to the deployed package.

Chapter 5. Semantic NFV Services (SnS) 85

Figure 33 illustrates previous process on a sequence diagram.

Figure 33 – SnS Use Case II: Sequence Diagram

Test:

In order to test the automated process, OpenBaton use case (OpenBaton Use Case,
2014) was used. As a difference with the OpenBaton use case, semantic VNFD files for IPerf
client and server and a Goal were defined.

5.3.2.6 Postcondition

∙ iPerf Server VNF deployed

∙ iPerf Client VNF deployed

5.3.2.7 Expected Results

Both, server and client VNFs deployed without using manual intervention other
than the creation of semantic descriptors and the goal.

5.3.2.8 Expected vs Obtained Results

Both VNFs were successfully deployed (separately).

5.3.2.9 Conclusions

This work foresees the implementation of SnS, NOn and the Generic Client as a
good option to reduce manual intervention service integration process. Instead, creating differ-

Chapter 5. Semantic NFV Services (SnS) 86

ent to consume REST WS capabilities, one client is used to consume and interpret service de-
scriptions in an autonomous manner. It was proven a reduction of manual intervention through
the implementation of the Semantic nFV Services.

Aiming to increase the automate process, all capabilities NFV implementations
must represented as resources or services using REST style. Thus, interoperability across do-
main can be improved and more complex workflows can be generated. For example, in order
to use OpenStack, OpenBaton creates a plugin to consume one by one the REST Web Service,
this is achieved creating a predefined context in the OpenBaton plugin. Instead, if each service
of OpenStack would have a semantic description, the predefined context can be replaced with a
generic client and the inference engine.

5.3.3 Use Case III: OpenBaton - Unify Integration Proposal

5.3.3.1 Goal

Create a proposal and possible integration between OpenBaton Project and UNIFY
Virtualizer element.

5.3.3.2 Preconditions and Assumptions

∙ OpenBaton installed

∙ Virtualizer component installed

∙ A Virtualizer Semantic nFV Services: To create the UNIFY data model.

5.3.3.3 Test Data

∙ Virtualizer data model

∙ Semantic VNFD

5.3.3.4 Testing Tools

∙ A public Inference Engine

∙ A Generic Client

∙ An UNIFY Virtualizer

5.3.3.5 Test Description

Scenario:
UNIFY Virtualizer acts as a VIM component, in which case for the NFV architecture Virtualizer

will be at the bottom of OpenBaton NFVO and VNFM. Figure 34 illustrates the scenario.

Chapter 5. Semantic NFV Services (SnS) 87

MANO

NFVO

VNFM

NFVI

VIM

LAB

Generic Client

OpenBaton Service
Description

Inference Engine

OpenBaton
VNFD WS

REST
desc

Semantic VNFD

Goal: Deploy VNF

REST
desc

OpenBaton
Metadata WS

LAB

Figure 34 – SnS Use Case II: Sequence Diagram

Above figure, illustrates how OpenStack (VIM) component is replaced with UNIFY
component. However, as OpenBaton is a project based on a JAVA RMI architecture, it has a
VIM Driver plugin module to handle new modules created to access VIM components (NFVO
Architecture, 2016).

Currently, in OpenBaton exists a module for the integration with OpenStack. In
addition, this module extends all methods of VIM Drivers plugin module to executes all requests
to OpenStack. Consequently, to integrate OpenBaton with UNIFY’s Virtualizer, a new plugin
must be created. Furthermore, the inhered methods must be implemented to consume Virtualizer

API (VIM Plugin, 2016).

With the aim of using Generic Client in the integration process, the UNIFY’s plugin
should be included some features from client, thus, achieving, a decoupling of the plugin and
the Virtualizer.

Limitations:

∙ As Virtualizer data model does not follow the ETSI specifications, there exist a gap in
order to map VNFD elements into UNIFY data model.

∙ In order to create the plugin, inherited methods must be implemented from VIM Drivers

component (VIM Plugin, 2016). Furthermore, some of these methods include: List
<DeploymentFlavour>listFlavors, that returns the list of the Deployment Flavour
or NFVImage addImage, that adds a new NFVImage. However, these methods or sim-
ilar ones are not available in the Virtualizer API. Instead, Virtualizer deployment process
relies in the interpretation of the data model. Thus, making integration process a difficult
task.

Chapter 5. Semantic NFV Services (SnS) 88

∙ As VIM Drivers methods are based on the WS from OpenStack API, this might limit
integration with other tools.

∙ As OpenBaton has predefined methods for new plugins, there exist a boundary in order to
consume the Virtualizer SnS. This is due, one of the inputs for the services is the semantic
VNFD and the use of the Generic Client.

∙ The registration process of a VIM component on OpenBaton Project is done by two means
(OpenStack and Test). Making difficult the process of registering other components.

Test:

Mainly, it was attempted to deploy a NF using OpenBaton NFVO and Virtualizer

(VIM component), through a UNIFY SnS.

5.3.3.6 Postcondition

∙ VNF deployed.

5.3.3.7 Expected Results

∙ Integration achieved.

∙ VM added.

∙ VNF deployed.

5.3.3.8 Expected vs Obtained Results

Due to incompatibilities with the methods and the variables used by the Virtualizer

and the variables provided by OpenBaton. It was not possible to do the integration. Furthermore,
SnS was not able to be consumed, due the variables needed to consume the service are not
provided by the plugin methods (such NFVImage)On the other hand, the VIM registration was
not able to be achieved. This is due, in OpenBaton there not exist an option to register a VIM
component different from OpenStack or Test type.

5.4 Final Remarks

While NOn is as a promising option to create service descriptions in the context of
NFV, implementations that follow in a minor degree the ETSI specifications appear less sus-
ceptible to be described with the ontology compared to implementations that closely follow the
specifications. From Use Case I, we note that the creation of a mechanism capable of self creat-
ing VNFD files can be a first step to use a unique descriptor in order to deploy VNFs in multiple

Chapter 5. Semantic NFV Services (SnS) 89

domains. From Use Case II, it can be seen how VNF deployment workflows can be generated
if a proper service exists for each stage of the deployment. In that case, the deployment pro-
cess can be completely defined by REST WS and the integration and consumption processes
can be done in a fully automatic manner (i.e. without manual intervention). Finally, reviewing
Use Case III and taking in count other VIM components APIs (such OpenStack or OpenMano
VIM), we discovered further gaps on interface definitions.

As OpenMano and OpenStack interfaces are quite similar to implement, in which
case for an inference engine equivalent components can be consumed using similar parame-
ters contained in the descriptions (e.g., same incoming and out-coming), which results in more
flexibility to create the workflow. In contrast, the UNIFY Virtualizer model has a different way
to deploy VNF with inputs, especially made for the project prototype implementation and not
necessary fully following the ETSI specifications. For this reason, a multi-vendor scenario us-
ing automatic service integration becomes more troublesome in the case of UNIFY compared
to other open source components following a common pattern (ETSI specifications) resulting
in higher integration costs.

This section helped to improve the NOn model in order to create service descrip-
tions. It was realized that two more data properties (Slots) can be added to some Object com-
ponents on the ontology, non:name and non:description Slots. This is due to most
of the NFV implementations having in their description files both properties which can be
used to differentiate between one implementation to another. In addition, the Object property
non:has_vnfd was added to the non:vnf high level element in order to create the condi-
tion on the descriptors.

90

6 Conclusions and Future Work

This work aims at advancing the state of affairs of interoperability in the context of
Network Function Virtualization technology through the application of semantic principles and
technologies. We explored the integration of NFV with Web Semantic approaches in order to
create a common representation of virtualisation technologies that can be shared across admin-
istrative domains and used to create descriptions for semantic service implementations of NFV
embodiments. This work combines theoretical and practical considerations for the implementa-
tion and merging of the two key technologies –the Semantic Web and NFV– in order to deliver
automatic Web Service integration.

In this work, some of the interoperability gaps were identified and can be explained
by different semantic implementations on NFV and how the lack of unifying semantics af-
fects the communications and VNF deployment across domains. This gap was attempted to
be removed by the implementation of a common NFV data model known as NOn. However,
the actual prototype implementation was limited by how close open source NFV projects are
currently following ETSI specifications. Projects based on the the information models defined
by the ETSI exhibit better chance inter-working in multi-domain scenarios without requiring
manual intervention.

The implementation of NFV Ontology opened the door to create Semantic nFV
Services. Through the implementation of REST interfaces, explicit service descriptions and the
use of inference engines we implemented proof of concepts of automatic integrated services
without human intervention. This was showcased through the implementations of the proposed
use cases. A Generic Client was capable of self adapting to consume dynamic REST Web
Service workflows without the need of humans in the loop. Furthermore, it was noticed that
if the deployment process is defined step by step using WS, the need for manual intervention
is reduced. Nevertheless, as current NFV implementations do not use semantic technologies in
their developments, implementation of semantic technologies were scoped just to component
interfaces, otherwise it would be necessary to re-write code to build semantic components, for
example semantic MANO or VNFM.

Altogether, the implementation of NOn and SnS are an initial step towards auto-
matic service integration. However, there are still multiple roadblocks and gaps ahead that we
regard as future work. The current state of NOn does not fulfill all the needs of a complete
data model capable of describing all possible VNFD files. Furthermore, there are other types of
descriptors and components in the NFV evolving architecture that can and should be abstracted
and added to the ontology in order to reach higher levels of interoperability and automation.

This work defends the use of semantic technologies to describe WS implementa-

Chapter 6. Conclusions and Future Work 91

tions of NFV interfaces. However, the full potential was not explored in the sense of leveraqging
of semantic technologies to build full components. These implementations can be done using
NOn to define variables and components to avoid ambiguity across implementations by using a
common terminology to refer to the same variables and components. This would allow higher
levels of interoperability and flexibility compare to SnS.

The Generic Client based on an inference engine appears as a promising approach
to take care of NFV orchestration processes. To achieve this goal, it is necessary to fully de-
couple NFV framework components (Figure 5) and comprehensive REST services definitions
to implement SnSs. By decoupling components and defining SnS, is would be possible for the
Generic Client to realize dynamic orchestration of VNFs without manual intervention. Thus, it
would no be necessary to define in the the client which components do what (e.g. OpenStack
to do NFVI orchestration). In contrast, the inference engine takes care of creating the com-
plete workflow and choosing the best option according to the inputs and the inferred context, as
illustrate in Figure 35.

MANO

VNFM

NFVO

NFVI
VIM

SnS

SnS
SnS

Inference Engine

Semantic Service, VNF and
Infrastructure Descriptions

VNFs

Figure 35 – Generic Client - NFVO Proposal

The figure shows the proposed method to include the Generic Client into the NFVO
component. In addition, it shows the proposed implementation of SnSs in components and
interfaces, and the use of semantic descriptors to deploy Network Function. The aim of this
approach is to use the Generic Client and the inference engine for the reasoning process in order
to create dynamic workflow consumption in the orchestration task of NFV. By decoupling the
elements of NFV architecture and implementing SnS, it is possible to create non restriction in
terms of interoperability, this can be achieved by allowing the orchestrator to integrate itself
with other components without having a predefined context or previous knowledge of other
domains. However, to make this proposal feasible, more semantic models are needed in order
to describe other capabilities besides the orchestration process, such as Policies or Life-cycle
management.

Finally, this work also explored the implementation of semantic technologies on the

Chapter 6. Conclusions and Future Work 92

developing process of the Generic Client using the Jena Framework API (JENA Framework,
2014) and a first prototype was developed. However, runtime consumption of the framework
randomized the variable matching and changed the order of the parameters from the work-
flow given by the inference engine. For example, non:vendor parameter was mismatched
with other parameter value such non: description_version value. For this reason, im-
provements to the Generic Client using other semantic framework rather than Jena or waiting
for a newer release of the framework is required.

93

Bibliography

ALESSO, H.; SMITH, C. F. Developing Semantic Web Services. [S.l.]: A K Peters/CRC Press,
2004. 178 p. Citado 2 vezes nas páginas 24 and 26.

BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. et al. The semantic web. Scientific
american, New York, NY, USA:, v. 284, n. 5, p. 28–37, 2001. Citado 2 vezes nas páginas 19
and 22.

COSTELLO, R. L. Building web services the rest way. URL: http://www. xfront.
com/REST-Web-Services. html. Ultima Consulta, v. 11, p. 2007, 2007. Citado na página 21.

ETSI. ETSI - European Telecommunications Standards Institute. 1988. Disponível em:
<http://www.etsi.org>. Citado na página 18.

ETSI. Network Functions Virtualisation. 2012. Disponível em: <http://www.etsi.org/
technologies-clusters/technologies/nfv>. Citado na página 17.

ETSI. Network Functions Virtualisation - White Paper #1. 2012. Disponível em:
<https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper1.pdf>. Citado 2
vezes nas páginas 18 and 28.

ETSI. ETSI Network Function Virtualisation enters Phase 2. 2014.
Disponível em: <http://www.etsi.org/index.php/news-events/news/
850-2014-12-news-etsi-network-function-virtualization-enters-phase-2>. Citado na
página 18.

ETSI. Network Functions Virtualisation - White Paper #3. 2014. Disponível em:
<https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf>. Citado 4
vezes nas páginas 17, 18, 28, and 41.

ETSI GS NFV. Architectural Framework. 2014. Disponível em: <http://www.etsi.org/deliver/
etsi_gs/NFV/001_099/002/01.02.01-_60/gs_NFV002v010201p.pdf>. Citado 2 vezes nas
páginas 28 and 41.

ETSI GS NFV-INF. Methodology to describe Interfaces and Abstractions. 2014.
Disponível em: <http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/007/01.01.01_60/gs_
NFV-INF007v010101p.pdf>. Citado na página 34.

ETSI GS NFV-MAN. NFV Management and Orchestration. 2014. Disponível
em: <http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_
NFV-MAN001v010101p.pdf>. Citado 4 vezes nas páginas 28, 41, 42, and 45.

ETSI GS NFV-SWA. Virtual Network Functions Architecture. 2014. Disponível
em: <http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs\
_NFV-SWA001v010101p.pdf>. Citado 2 vezes nas páginas 28 and 41.

FENG, X.; SHEN, J.; FAN, Y. Rest: An alternative to rpc for web services architecture. In:
IEEE. Future Information Networks, 2009. ICFIN 2009. First International Conference on.
[S.l.], 2009. p. 7–10. Citado na página 21.

http://www.etsi.org
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper1.pdf
http://www.etsi.org/index.php/news-events/news/850-2014-12-news-etsi-network-function-virtualization-enters-phase-2
http://www.etsi.org/index.php/news-events/news/850-2014-12-news-etsi-network-function-virtualization-enters-phase-2
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01-_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01-_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/007/01.01.01_60/gs_NFV-INF007v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/007/01.01.01_60/gs_NFV-INF007v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf

Bibliography 94

FIELDING, R. T. Architectural styles and the design of network-based software architectures.
Tese (Doutorado) — University of California, Irvine, 2000. Citado na página 21.

GATES, M.; WARSHAVSKY, A. Iperf version 2.0. 3. 2012. Citado na página 83.

GHIJSEN, M.; HAM, J. V. D.; GROSSO, P.; LAAT, C. D. Towards an infrastructure description
language for modeling computing infrastructures. In: IEEE. 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications. [S.l.], 2012. p. 207–214.
Citado na página 31.

GHIJSEN, M.; HAM, J. V. D.; GROSSO, P.; DUMITRU, C.; ZHU, H.; ZHAO, Z.; LAAT, C.
D. A semantic-web approach for modeling computing infrastructures. Computers & Electrical
Engineering, Elsevier, v. 39, n. 8, p. 2553–2565, 2013. Citado 3 vezes nas páginas 19, 31,
and 45.

GUDIVADA, N.; KALAVALA, M. Semantic web services. In: . [S.l.]: the Consortium for
Computing Sciences in Colleges., 2005. Citado na página 25.

HAM, J. van der; DIJKSTRA, F.; ŁAPACZ, R.; BROWN, A. The network markup language
(nml) a standardized network topology abstraction for inter-domain and cross-layer network
applications. In: Proceedings of the 13th Terena Networking Conference. [S.l.: s.n.], 2013.
Citado 3 vezes nas páginas 19, 31, and 45.

JENA Framework. Apache JENA. 2014. Disponível em: <https://jena.apache.org/>. Citado na
página 92.

Jos De Roo. Euler Yet another proof Engine - EYE. 2009. Disponível em: <http:
//eulersharp.sourceforge.net/>. Citado na página 65.

ML2. Neutron/ML2. 2013. Disponível em: <https://wiki.openstack.org/wiki/Neutron/ML2>.
Citado na página 32.

NFVO Architecture. NFVO Architecture. 2016. Disponível em: <http://openbaton.github.io/
documentation/nfvo-architecture/>. Citado na página 87.

NOTATION3. Notation3 (N3): A readable RDF syntax. 2011. Disponível em: <https:
//www.w3.org/TeamSubmission/n3/>. Citado 2 vezes nas páginas 23 and 58.

NOY, N. F.; MCGUINNESS, D. L. et al. Ontology development 101: A guide to creating your
first ontology. [S.l.]: Stanford knowledge systems laboratory technical report KSL-01-05 and
Stanford medical informatics technical report SMI-2001-0880, Stanford, CA, 2001. Citado 2
vezes nas páginas 24 and 41.

OGF. Open Grid Forum. Disponível em: <https://www.ogf.org/>. Citado na página 31.

OpenBaton. OpenBaton. 2014. Disponível em: <http://openbaton.github.io/>. Citado na
página 28.

OpenBaton Use Case. Use case example: Iperf client - server. 2014. Disponível em:
<http://openbaton.github.io/documentation/use-case-example/>. Citado 2 vezes nas páginas
83 and 85.

OpenBaton VNFD. Virtual Network Function Descriptor. 2014. Disponível em:
<http://openbaton.github.io/documentation/vnf-descriptor/>. Citado na página 56.

https://jena.apache.org/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
https://wiki.openstack.org/wiki/Neutron/ML2
http://openbaton.github.io/documentation/nfvo-architecture/
http://openbaton.github.io/documentation/nfvo-architecture/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/n3/
https://www.ogf.org/
http://openbaton.github.io/
http://openbaton.github.io/documentation/use-case-example/
http://openbaton.github.io/documentation/vnf-descriptor/

Bibliography 95

OpenDayLight. OpenDaylight Platform. 2013. Disponível em: <http://www.opendaylight.org/
>. Citado na página 32.

OpenMano. OpenMano Project. 2014. Disponível em: <https://github.com/nfvlabs/
openmano>. Citado 2 vezes nas páginas 29 and 34.

OpenStack. OpenStack. 2011. Disponível em: <https://www.openstack.org/>. Citado na
página 32.

PITTARAS, C.; GHIJSEN, M.; WIBISONO, A.; GROSSO, P.; HAM, J. V. D.; LAAT, C. D.
Semantic distributed resource discovery for multiple resource providers. In: IEEE. Semantics,
Knowledge and Grids (SKG), 2012 Eighth International Conference on. [S.l.], 2012. p.
225–228. Citado na página 30.

POX. About POX. 2016. Disponível em: <ttp://www.noxrepo.org/pox/about-pox/>. Citado na
página 32.

PROJECT, S. SnS Project. 2016. Disponível em: <https://github.com/LCuellarH/SnS>. Citado
na página 83.

Protégé. Protégé Project. 2016. Disponível em: <http://protege.stanford.edu/>. Citado na
página 50.

RDF. Resource Description Framework. 2014. Disponível em: <http://www.w3.org/RDF/>.
Citado 2 vezes nas páginas 19 and 22.

RDF Schema. RDF Schema 1.1. 2014. Disponível em: <https://www.w3.org/TR/rdf-schema/>.
Citado na página 23.

RDF Syntax. RDF 1.1 XML Syntax. 2014. Disponível em: <https://www.w3.org/TR/
rdf-schema/>. Citado na página 23.

RDO. RDO Project. 2016. Disponível em: <https://www.rdoproject.org/Quickstart>. Citado
na página 32.

RESTdesc. RESTdesc – Semantic descriptions for hypermedia APIs. 2011. Disponível em:
<http://restdesc.org/>. Citado 3 vezes nas páginas 19, 25, and 60.

RICHARDS, R. Representational state transfer (rest). In: Pro PHP XML and Web Services.
[S.l.]: Springer, 2006. p. 633–672. Citado na página 21.

SEMANTIC-WEB-AFFINITY-GROUP. Rdf and owl - a simple overview of the building
blocks of the semantic web. In: . [S.l.: s.n.], 2007. Citado na página 25.

SOUZA, T. P. C.; SANTOS, M. A. S.; PAULA, L. B.; ROTHENBERG, C. E. Towards
semantic networks models via graph databases for sdn applications. In: Europe Workshop on
Software Defined Networks (EWDSN 2015). [S.l.: s.n.], 2015. p. 49–54. Citado na página 19.

Spring Framework. Spring Framework. 2002. Disponível em: <https://spring.io/guides/gs/
rest-service/>. Citado na página 61.

SZABó, R.; SONKOLY, B.; KIND, M. Deliverable 2.2: Final Architecture. 2014. Disponível
em: <http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%
20Deliverable%202.2%20Final%20Architecture.pdf>. Citado na página 30.

http://www.opendaylight.org/
http://www.opendaylight.org/
https://github.com/nfvlabs/openmano
https://github.com/nfvlabs/openmano
https://www.openstack.org/
ttp://www.noxrepo.org/pox/about-pox/
https://github.com/LCuellarH/SnS
http://protege.stanford.edu/
http://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.rdoproject.org/Quickstart
http://restdesc.org/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/
http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%20Deliverable%202.2%20Final%20Architecture.pdf
http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY%20Deliverable%202.2%20Final%20Architecture.pdf

Bibliography 96

Ubuntu. Ubuntu JUJU. 2014. Disponível em: <https://jujucharms.com/>. Citado na página
32.

UNIFY. Nnifying Cloud and Carrier Networks. 2014. Disponível em: <https://www.fp7-unify.
eu/>. Citado na página 30.

VERBORGH, R.; ROO., J. D. Eye Public Reasoner. 2012. Disponível em: <http:
//eye.restdesc.org/>. Citado na página 83.

VERBORGH, R.; STEINER, T.; DEURSEN, D.; WALLE, R. Van de; VALLÉS, J. G.
Efficient runtime service discovery and consumption with hyperlinked restdesc. In: IEEE. Next
Generation Web Services Practices (NWeSP), 2011 7th International Conference on. [S.l.],
2011. p. 373–379. Citado na página 26.

VERBORGH, R.; STEINER, T.; DEURSEN, D. V.; COPPENS, S.; MANNENS, E.; WALLE,
R. Van de; VALLÉS, J. G. Integrating data and services through functional semantic service
descriptions. In: Proceedings of the W3C Workshop on Data and Services Integration. [S.l.:
s.n.], 2011. Citado na página 26.

VERBORGH, R.; STEINER, T.; DEURSEN, D. V.; ROO, J. D.; WALLE, R. Van de; VALLÉS,
J. G. Capturing the functionality of web services with functional descriptions. Multimedia tools
and applications, Springer, v. 64, n. 2, p. 365–387, 2013. Citado na página 19.

VIM Plugin. Create Vim Plugin. 2016. Disponível em: <http://openbaton.github.io/
documentation/vim-plugin/>. Citado na página 87.

WANG, X.; HALANG, W. Discovery and Selection of Semantic Web Services. [S.l.]:
Springer-Verlag Berlin Heidelberg, 2013. 9– 22 p. Citado na página 22.

XILOURIS, G.; TROUVA, E.; LOBILLO, F.; SOARES, J. M.; CARAPINHA, J.; MCGRATH,
M.; GARDIKIS, G.; PAGLIERANI, P.; PALLIS, E.; ZUCCARO, L. et al. T-nova: a
marketplace for virtualized network functions. In: IEEE. Networks and Communications
(EuCNC), 2014 European Conference on. [S.l.], 2014. p. 1–5. Citado na página 30.

ZHOU, W.; LI, L.; LUO, M.; CHOU, W. Rest api design patterns for sdn northbound api. In:
IEEE. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th
International Conference on. [S.l.], 2014. p. 358–365. Citado na página 32.

https://jujucharms.com/
https://www.fp7-unify.eu/
https://www.fp7-unify.eu/
http://eye.restdesc.org/
http://eye.restdesc.org/
http://openbaton.github.io/documentation/vim-plugin/
http://openbaton.github.io/documentation/vim-plugin/

Annex

98

ANNEX A – NFV Ontology Notation 3 File

Listing A.1 shows the complete definition of NOn in N3 language.

Listing A.1 – NFV Ontology File

1 @prefix : <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>.

2 @prefix non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>.

3 @prefix owl: <http://www.w3.org /2002/07/ owl#>.
4 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>.
5 @prefix xml: <http://www.w3.org/XML /1998/ namespace>.
6 @prefix xsd: <http://www.w3.org /2001/ XMLSchema#>.
7 @prefix xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.

owl#>.
8 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#>.
9 @prefix swrl: <http://www.w3.org /2003/11/ swrl#>.

10 @prefix swrlb: <http://www.w3.org /2003/11/ swrlb#>.
11 @prefix protege: <http:// protege.stanford.edu/plugins/owl/

protege#>.
12 @base <https:// github.com/LCuellarH/NOn/blob/master/datamodel

/non.owl>.
13
14 <https:// github.com/LCuellarH/NOn/blob/master/datamodel/non.

owl>
15
16 rdf:type owl:Ontology.
17
18 ###
19 #
20 # Object Properties
21 #
22 ###
23
24 https:// github.com/LCuellarH/NOn/blob/master/datamodel/non.

owl#has_connection_point
25
26 non:has_connection_point rdf:type owl:ObjectProperty;
27
28 rdfs:range non:connection_point;
29 rdfs:domain [rdf:type owl:Class;
30 owl:unionOf (non:vnfc
31 non:vnfd
32)
33].
34 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#has_constituent__vdu
35
36 non:has_constituent__vdu rdf:type owl:ObjectProperty;
37 rdfs:range non:constituent_vdu;
38 rdfs:domain non:deployment_flavour.
39
40 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#has_deployment_flavour
41
42 non:has_deployment_flavour rdf:type owl:ObjectProperty;
43 rdfs:range non:deployment_flavour;
44 rdfs:domain non:vnfd.
45
46 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#has_vdu

ANNEX A. NFV Ontology Notation 3 File 99

47
48 non:has_vdu rdf:type owl:ObjectProperty;
49 rdfs:range non:vdu;
50 rdfs:domain non:vnfd.
51
52 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#has_virtual_link
53
54 non:has_virtual_link rdf:type owl:ObjectProperty;
55 rdfs:range non:vld;
56 rdfs:domain non:vnfd.
57
58 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#has_vnfc
59
60 non:has_vnfc rdf:type owl:ObjectProperty;
61 rdfs:domain non:vdu;
62 rdfs:range non:vnfc.
63
64 ###
65 #
66 # Data properties
67 #
68 ###
69
70 https:// github.com/LCuellarH/NOn/blob/master/datamodel/non.

owl#computation_requirement
71
72 non:computation_requirement rdf:type owl:DatatypeProperty;
73 rdfs:range xsd:string;
74 rdfs:domain non:vdu.
75
76 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#connection_points_references
77
78 non:connection_points_references rdf:type owl

:DatatypeProperty;
79 rdfs:range xsd:string;
80 rdfs:domain non:vld.
81
82 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#connectivity_type
83
84 non:connectivity_type rdf:type owl:DatatypeProperty;
85 rdfs:range xsd:string;
86 rdfs:domain non:vld.
87
88 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#constituent_vnfc
89
90 non:constituent_vnfc rdf:type owl:DatatypeProperty;
91 rdfs:range xsd:string;
92 rdfs:domain non:constituent_vdu.
93
94 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#constraint
95
96 non:constraint rdf:type owl:DatatypeProperty;
97 rdfs:domain non:constituent_vdu.
98
99 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#dependency
100
101 non:dependency rdf:type owl:DatatypeProperty;
102 rdfs:range xsd:string;
103 rdfs:domain non:vnfd.
104

ANNEX A. NFV Ontology Notation 3 File 100

105 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/
non.owl#descriptor_version

106
107 non:descriptor_version rdf:type owl:DatatypeProperty;
108 rdfs:range xsd:string;
109 rdfs:domain non:vnfd.
110
111 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#id
112
113 non:id rdf:type owl:DatatypeProperty;
114
115 rdfs:range xsd:string;
116 rdfs:domain [rdf:type owl:Class;
117 owl:unionOf (non:connection_point
118 non:deployment_flavour
119 non:descriptors
120 non:vnfc
121)
122].
123
124 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#lifecycle_event
125
126 non:lifecycle_event rdf:type owl:DatatypeProperty;
127
128 rdfs:range xsd:string;
129 rdfs:domain [rdf:type owl:Class;
130 owl:unionOf (non:vdu
131 non:vnfd
132)
133].
134 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#number_of_instances
135
136 non:number_of_instances rdf:type owl:DatatypeProperty;
137
138 rdfs:range xsd:int;
139 rdfs:domain non:constituent_vdu.
140
141 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#scale_in_out
142
143 non:scale_in_out rdf:type owl:DatatypeProperty;
144
145 rdfs:range xsd:int;
146 rdfs:domain non:vdu.
147
148 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#type
149
150 non:type rdf:type owl:DatatypeProperty;
151 rdfs:range xsd:string;
152 rdfs:domain non:connection_point.
153
154 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vdu_reference
155
156 non:vdu_reference rdf:type owl:DatatypeProperty;
157 rdfs:range xsd:string;
158 rdfs:domain non:constituent_vdu.
159
160 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vendor
161
162 non:vendor rdf:type owl:DatatypeProperty;
163 rdfs:range xsd:string;

ANNEX A. NFV Ontology Notation 3 File 101

164 rdfs:domain non:vnfd.
165
166 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_link_reference
167
168 non:virtual_link_reference rdf:type owl:DatatypeProperty;
169
170 rdfs:range xsd:string;
171 rdfs:domain non:connection_point.
172
173 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_memory_resource_element
174
175 non:virtual_memory_resource_element rdf:type owl

:DatatypeProperty;
176
177 rdfs:range xsd:int;
178 rdfs:domain non:vdu.
179
180 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_network_bandwidth_resource
181
182 non:virtual_network_bandwidth_resource rdf:type owl

:DatatypeProperty;
183
184 rdfs:range xsd:int;
185 rdfs:domain non:vdu.
186
187 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vm_image
188
189 non:vm_image rdf:type owl:DatatypeProperty;
190
191 rdfs:range xsd:anyURI;
192 rdfs:domain non:vdu.
193
194 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vnf_version
195
196 non:vnf_version rdf:type owl:DatatypeProperty;
197 rdfs:range xsd:string;
198 rdfs:domain non:vnfd.
199
200 ###
201 #
202 # Classes
203 #
204 ###
205
206 https:// github.com/LCuellarH/NOn/blob/master/datamodel/non.

owl#compute_component
207
208 non:compute_component rdf:type owl:Class;
209 rdfs:subClassOf non:hardware_components.
210
211 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#connection_point
212
213 non:connection_point rdf:type owl:Class;
214 rdfs:subClassOf non:misc ,
215 [rdf:type owl:Restriction;
216 owl:onProperty non:virtual_link_reference;
217 owl:maxCardinality "1"^^xsd:nonNegativeInteger
218] ,
219 [rdf:type owl:Restriction;
220 owl:onProperty non:id;
221 owl:cardinality "1"^^xsd:nonNegativeInteger

ANNEX A. NFV Ontology Notation 3 File 102

222] ,
223 [rdf:type owl:Restriction;
224 owl:onProperty non:type;
225 owl:cardinality "1"^^xsd:nonNegativeInteger
226].
227
228 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#constituent_vdu
229
230 non:constituent_vdu rdf:type owl:Class;
231 rdfs:subClassOf non:misc ,
232 [rdf:type owl:Restriction;
233 owl:onProperty non:constraint;
234 owl:minCardinality "0"^^xsd:nonNegativeInteger
235] ,
236 [rdf:type owl:Restriction;
237 owl:onProperty non:vdu_reference;
238 owl:cardinality "1"^^xsd:nonNegativeInteger
239] ,
240 [rdf:type owl:Restriction;
241 owl:onProperty non:number_of_instances;
242 owl:cardinality "1"^^xsd:nonNegativeInteger
243] ,
244 [rdf:type owl:Restriction;
245 owl:onProperty non:constituent_vnfc;
246 owl:minCardinality "1"^^xsd:nonNegativeInteger
247].
248
249 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#cpu
250
251 non:cpu rdf:type owl:Class;
252 rdfs:subClassOf non:compute_component.
253
254 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#deployment_flavour
255
256 non:deployment_flavour rdf:type owl:Class;
257
258 rdfs:subClassOf non:misc ,
259 [rdf:type owl:Restriction;
260 owl:onProperty non:id;
261 owl:cardinality "1"^^xsd:nonNegativeInteger
262].
263
264 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#descriptors
265
266 non:descriptors rdf:type owl:Class;
267 rdfs:subClassOf non:functional_blocks.
268
269 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#functional_blocks
270
271 non:functional_blocks rdf:type owl:Class;
272 rdfs:subClassOf non:nfv.
273
274 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#hardware_components
275
276 non:hardware_components rdf:type owl:Class;
277 rdfs:subClassOf non:nfvi.
278
279 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#hypervisor
280

ANNEX A. NFV Ontology Notation 3 File 103

281 non:hypervisor rdf:type owl:Class;
282 rdfs:subClassOf non:nfvi.
283
284 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#mano
285
286 non:mano rdf:type owl:Class;
287 rdfs:subClassOf non:functional_blocks.
288
289 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#memory
290
291 non:memory rdf:type owl:Class;
292 rdfs:subClassOf non:compute_component.
293
294 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#misc
295
296 non:misc rdf:type owl:Class;
297 rdfs:subClassOf non:nfv.
298
299 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#network_component
300
301 non:network_component rdf:type owl:Class;
302 rdfs:subClassOf non:hardware_components.
303
304 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#nfv
305
306 non:nfv rdf:type owl:Class.
307
308 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#nfvi
309
310 non:nfvi rdf:type owl:Class;
311 rdfs:subClassOf non:functional_blocks.
312
313 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#nfvo_component
314
315 non:nfvo_component rdf:type owl:Class;
316 rdfs:subClassOf non:mano.
317
318 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#reference_points
319
320 non:reference_points rdf:type owl:Class;
321 rdfs:subClassOf non:nfv.
322
323 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#storage_component
324
325 non:storage_component rdf:type owl:Class;
326 rdfs:subClassOf non:hardware_components.
327
328 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vdu
329
330 non:vdu rdf:type owl:Class;
331
332 rdfs:subClassOf non:descriptors ,
333 [rdf:type owl:Restriction;
334 owl:onProperty non:virtual_network_bandwidth_resource

;
335 owl:cardinality "1"^^xsd:nonNegativeInteger
336] ,

ANNEX A. NFV Ontology Notation 3 File 104

337 [rdf:type owl:Restriction;
338 owl:onProperty non:id;
339 owl:cardinality "1"^^xsd:nonNegativeInteger
340] ,
341 [rdf:type owl:Restriction;
342 owl:onProperty non:computation_requirement;
343 owl:cardinality "1"^^xsd:nonNegativeInteger
344] ,
345 [rdf:type owl:Restriction;
346 owl:onProperty non:scale_in_out;
347 owl:maxCardinality "1"^^xsd:nonNegativeInteger
348] ,
349 [rdf:type owl:Restriction;
350 owl:onProperty non:vm_image;
351 owl:maxCardinality "1"^^xsd:nonNegativeInteger
352] ,
353 [rdf:type owl:Restriction;
354 owl:onProperty non:virtual_memory_resource_element;
355 owl:cardinality "1"^^xsd:nonNegativeInteger
356] ,
357 [rdf:type owl:Restriction;
358 owl:onProperty non:lifecycle_event;
359 owl:minCardinality "0"^^xsd:nonNegativeInteger
360] ,
361 [rdf:type owl:Restriction;
362 owl:onProperty non:has_vnfc;
363 owl:minCardinality "1"^^xsd:nonNegativeInteger
364].
365
366 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vim_component
367
368 non:vim_component rdf:type owl:Class;
369 rdfs:subClassOf non:mano.
370
371 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_compute_component
372
373 non:virtual_compute_component rdf:type owl:Class;
374 rdfs:subClassOf non:virtualization_components.
375
376 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_network_component
377
378 non:virtual_network_component rdf:type owl:Class;
379 rdfs:subClassOf non:virtualization_components.
380
381 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtual_storage_component
382
383 non:virtual_storage_component rdf:type owl:Class;
384 rdfs:subClassOf non:virtualization_components.
385
386 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#virtualization_components
387
388 non:virtualization_components rdf:type owl:Class;
389 rdfs:subClassOf non:nfvi.
390
391 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vld
392
393 non:vld rdf:type owl:Class;
394
395 rdfs:subClassOf non:descriptors ,
396 [rdf:type owl:Restriction;

ANNEX A. NFV Ontology Notation 3 File 105

397 owl:onProperty non:connection_points_references;
398 owl:minCardinality "2"^^xsd:nonNegativeInteger
399] ,
400 [rdf:type owl:Restriction;
401 owl:onProperty non:id;
402 owl:cardinality "1"^^xsd:nonNegativeInteger
403] ,
404 [rdf:type owl:Restriction;
405 owl:onProperty non:connectivity_type;
406 owl:cardinality "1"^^xsd:nonNegativeInteger
407].
408
409 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vnf
410
411 non:vnf rdf:type owl:Class;
412 rdfs:subClassOf non:nfv.
413
414 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vnfc
415
416 non:vnfc rdf:type owl:Class;
417 rdfs:subClassOf non:vnf ,
418 [rdf:type owl:Restriction;
419 owl:onProperty non:has_connection_point;
420 owl:minCardinality "1"^^xsd:nonNegativeInteger
421] ,
422 [rdf:type owl:Restriction;
423 owl:onProperty non:id;
424 owl:cardinality "1"^^xsd:nonNegativeInteger
425].
426
427 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vnfd
428
429 non:vnfd rdf:type owl:Class;
430 rdfs:subClassOf non:descriptors ,
431 non:vnf ,
432 [rdf:type owl:Restriction;
433 owl:onProperty non:dependency;
434 owl:minCardinality "0"^^xsd:nonNegativeInteger
435] ,
436 [rdf:type owl:Restriction;
437 owl:onProperty non:lifecycle_event;
438 owl:minCardinality "0"^^xsd:nonNegativeInteger
439] ,
440 [rdf:type owl:Restriction;
441 owl:onProperty non:has_deployment_flavour;
442 owl:minCardinality "0"^^xsd:nonNegativeInteger
443] ,
444 [rdf:type owl:Restriction;
445 owl:onProperty non:vendor;
446 owl:cardinality "1"^^xsd:nonNegativeInteger
447] ,
448 [rdf:type owl:Restriction;
449 owl:onProperty non:has_connection_point;
450 owl:minCardinality "1"^^xsd:nonNegativeInteger
451] ,
452 [rdf:type owl:Restriction;
453 owl:onProperty non:vnf_version;
454 owl:cardinality "1"^^xsd:nonNegativeInteger
455] ,
456 [rdf:type owl:Restriction;
457 owl:onProperty non:has_virtual_link;
458 owl:minCardinality "0"^^xsd:nonNegativeInteger
459] ,

ANNEX A. NFV Ontology Notation 3 File 106

460 [rdf:type owl:Restriction;
461 owl:onProperty non:descriptor_version;
462 owl:cardinality "1"^^xsd:nonNegativeInteger
463] ,
464 [rdf:type owl:Restriction;
465 owl:onProperty non:has_vdu;
466 owl:minCardinality "1"^^xsd:nonNegativeInteger
467] ,
468 [rdf:type owl:Restriction;
469 owl:onProperty non:id;
470 owl:cardinality "1"^^xsd:nonNegativeInteger
471].
472
473 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vnfm_component
474
475 non:vnfm_component rdf:type owl:Class;
476 rdfs:subClassOf non:mano.

107

ANNEX B – NFV/VNFD Deployment Files

Listing B.1 shows the VNFD file for OpenMano implementations.

Listing B.1 – OpenMano VNFD File

1 ---
2 vnf:
3 name: TEMPLATE
4 description: This is a template to help in the creation

of your own VNFs
5 # class: parent # Optional. Used to organize VNFs
6 external -connections:
7 - name: mgmt0
8 type: mgmt # "mgmt" (autoconnect

to management net), "bridge", "data"
9 VNFC: TEMPLATE -VM # Virtual Machine this

interface belongs to
10 local_iface_name: mgmt0 # interface name

inside this Virtual Machine (must be defined in
the VNFC section)

11 description: Management interface
12 - name: xe0
13 type: data
14 VNFC: TEMPLATE -VM
15 local_iface_name: xe0
16 description: Data interface 1
17 - name: xe1
18 type: data
19 VNFC: TEMPLATE -VM
20 local_iface_name: xe1
21 description: Data interface 2
22 - name: ge0
23 type: bridge
24 VNFC: TEMPLATE -VM
25 local_iface_name: ge0
26 description: Bridge interface
27 VNFC: # Virtual machine

array
28 - name: TEMPLATE -VM # name of Virtual

Machine
29 description: TEMPLATE description
30 VNFC image: /path/to/imagefolder/TEMPLATE -VM.qcow2
31 # image metadata: {"bus":"ide", "os_type ":" windows",

"use_incremental ": "no" } #Optional
32 # processor: #Optional
33 # model: Intel(R) Xeon(R) CPU E5 -4620 0 @ 2.20 GHz
34 # features: ["64b", "iommu", "lps", "tlbps", "

hwsv", "dioc", "ht"]
35 # hypervisor: #Optional
36 # type: QEMU -kvm
37 # version: "10002|12001|2.6.32 -358. el6.x86_64"
38 # vcpus: 1 # Only for traditional cloud VMs.

Number of virtual CPUs (oversubscription is
allowed).

39 # ram: 1024 # Only for traditional cloud VMs.
Memory in MBytes (not from hugepages ,

oversubscription is allowed)
40 # disk: 10 # disk size in GiB , by default 1
41 numas:
42 - paired -threads: 5 # "cores", "paired -

threads", "threads"

ANNEX B. NFV/VNFD Deployment Files 108

43 paired -threads -id: [[0,1], [2,3], [4,5], [6,7],
[8,9]] # By default follows incremental order

44 memory: 14 # GBytes
45 interfaces:
46 - name: xe0
47 vpci: "0000:00:11.0"
48 dedicated: "yes" # "yes"(passthrough)

, "no"(sriov with vlan tags), "yes:sriov "(
sriovi , but exclusive and without vlan tag
)

49 bandwidth: 10 Gbps
50 # mac_address: ’20:33:45:56:77:44 ’ #avoid

this option if possible
51 - name: xe1
52 vpci: "0000:00:12.0"
53 dedicated: "yes"
54 bandwidth: 10 Gbps
55 # mac_address: ’20:33:45:56:77:45 ’ #avoid

this option if possible
56 bridge -ifaces:
57 - name: mgmt0
58 vpci: "0000:00:09.0" # Optional. Virtual

PCI address
59 bandwidth: 1 Mbps # Optional.

Informative only
60 # mac_address: ’20:33:45:56:77:46 ’ #avoid this

option if possible
61 # model: ’virtio ’ # (" virtio","e1000

","ne2k_pci","pcnet","rtl8139 ") By default , it
is automatically filled by libvirt

62 - name: ge0
63 vpci: "0000:00:10.0"
64 bandwidth: 1 Mbps
65 # mac_address: ’20:33:45:56:77:47 ’ #avoid this

option if possible
66 # model: ’virtio ’ # (" virtio","e1000

","ne2k_pci","pcnet","rtl8139 ") By default , it
is automatically filled by libvirt

67 devices: # Optional , order
determines device letter asignation (hda , hdb ,
...)

68 - type: disk # "disk","cdrom","xml"
69 image: /path/to/imagefolder/SECOND -DISK.qcow2
70 # image metadata: {"bus":"ide", "os_type ":"

windows", "use_incremental ": "no" }
71 # vpci: "0000:00:03.0" # Optional , not for

disk or cdrom
72 - type: cdrom
73 image: /path/to/imagefolder/CDROM -IMAGE.qcow2
74 # image metadata: {"bus":"ide", "os_type ":"

windows", "use_incremental ": "no" }
75 - type: xml
76 image: /path/to/imagefolder/ADDITIONAL -DISK.

qcow2 # Optional , depending on the device
type

77 image metadata: {"bus":"ide", "os_type":"windows"
, "use_incremental": "no" } # Optional ,
depending on the device type

78 vpci: "0000:00:03.0"
Optional , depending

on the device type (not needed for disk or
cdrom)

79 xml: ’ xml text for XML described devices. Do
not use single quotes inside

80 The following words , if found , will be
replaced:

81 __file__ by image path , (image must

ANNEX B. NFV/VNFD Deployment Files 109

be provided)
82 __format__ by qcow2 or raw (image

must be provided)
83 __dev__ by device letter (b, c, d

...)
84 __vpci__ by vpci (vpci must be

provided)
85 ’
86 # Additional Virtual Machines would be included here

Listing B.2 shows the Virtualizer file for Unify implementations.

Listing B.2 – Unify VNFD File

1 <?xml version ="1.0" ?>
2 <virtualizer>
3 <id>UID01 </id>
4 <name>Local Orchestrator - Docker </name>
5 <nodes>
6 <node>
7 <id>x86_64 -elxa2chld12 </id>
8 <name>elxa2chld12 -Linux </name>
9 <type>Linux -3.13.0 -79 - generic </type>

10 <ports>
11 <port>
12 <id>wlan0 </id>
13 <name>wlan0 </name>
14 <port_type>c4:d9:87:

b1:c9:fc </
port_type>

15 </port>
16 </ports>
17 <resources>
18 <cpu>4</cpu>
19 <mem>35520499712 </ mem>
20 <storage>16697704448 </ storage

>
21 </resources>
22 <NF_instances>
23 <node>
24 <id>NF1 </id>
25 <name>Firewall </name>
26 <type>Container </type>
27 <!-- example may contain <

resources> here -->
28 <ports>
29 <port>
30 <id>1</id>
31 <name>Firewall -1</name>
32 <port_type>unify </

port_type>
33 <metadata>
34 <key>network </key>
35 <value>1</value>
36 </metadata>
37 </port>
38 <port>
39 <id>2</id>
40 <name>Firewall -2</name>
41 <port_type>unify </

port_type>
42 <metadata>
43 <key>network </key>
44 <value>1</value>
45 </metadata>
46 </port>

ANNEX B. NFV/VNFD Deployment Files 110

47 </ports>
48 <metadata>
49 <key>command </key>
50 <value>tail -f /dev/null </value

>
51 </metadata>
52 <metadata>
53 <key>image </key>
54 <value>unify/transit :0.1</ value

>
55 </metadata>
56 <metadata>
57 <key>ports </key>
58 <value>8080</ value>
59 </metadata>
60 <metadata>
61 <key>privileged </key>
62 <value>true </value>
63 </metadata>
64 </node>
65 </NF_instances>
66 </node>
67 </nodes>
68 </virtualizer>

111

ANNEX C – NOn Semantic Descriptor Files

Listing C.1 shows the resulting OpenBaton VNFD file usig NOn.

Listing C.1 – NOn OpenBaton VNFD File

1 @prefix : <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#> .

2 @prefix non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#> .

3 @prefix owl: <http://www.w3.org /2002/07/ owl#> .
4 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
5 @prefix xml: <http://www.w3.org/XML /1998/ namespace> .
6 @prefix xsd: <http://www.w3.org /2001/ XMLSchema#> .
7 @prefix xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.

owl#> .
8 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .
9 @prefix swrl: <http://www.w3.org /2003/11/ swrl#> .

10 @prefix swrlb: <http://www.w3.org /2003/11/ swrlb#> .
11 @prefix protege: <http:// protege.stanford.edu/plugins/owl/

protege#> .
12 @base <https:// github.com/LCuellarH/NOn/blob/master/datamodel

/non.owl> .
13
14 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#m1.small
15 non:m1.small rdf:type owl:NamedIndividual ,
16 non:deployment_flavour ;
17 non:id "m1.small"^^xsd:string .
18
19 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#ob-iperf -client
20
21 non:ob -iperf -client rdf:type owl:NamedIndividual ,
22 non:vnfd ;
23 non:descriptor_version "0.1"^^xsd:string ;
24 non:lifecycle_event "CONFIGURE"^^xsd:string ,
25 "INSTANTIATE"^^xsd

:string ;
26 non:vendor "fokus"^^xsd:string ;
27 non:id "iperf -client"^^xsd:string ;
28 non:has_deployment_flavour non:m1.small ;
29 non:has_vdu non:ob_iperf_client_vdu ;
30 non:has_connection_point non

:ob_ipfer_client_connection_point ;
31 non:has_virtual_link non:op_iperf_client_vld .
32
33 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#ob_iperf_client_vdu
34 non:ob_iperf_client_vdu rdf:type owl:NamedIndividual ,
35 non:vdu ;
36 non:virtual_network_bandwidth_resource "1000000"^^xsd:int

;
37 non:virtual_memory_resource_element "1024"^^xsd:int ;
38 non:scale_in_out "2"^^xsd:int ;
39 non:vm_image "iperf_client_image"^^xsd:anyURI ;
40 non:has_vnfc non:ob_iperf_client_vnfc .
41
42 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#ob_iperf_client_vnfc
43 non:ob_iperf_client_vnfc rdf:type owl:NamedIndividual ,
44 non:vnfc ;

ANNEX C. NOn Semantic Descriptor Files 112

45 non:has_connection_point non
:ob_ipfer_client_connection_point .

46
47 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#ob_ipfer_client_connection_point
48 non:ob_ipfer_client_connection_point rdf:type owl

:NamedIndividual ,
49 non:connection_point ;
50 non:virtual_link_reference "private"^^xsd:string .
51
52 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#op_iperf_client_vld
53
54 non:op_iperf_client_vld rdf:type owl:NamedIndividual ,
55 non:vld ;
56 non:id "private"^^xsd:string .

Listing C.2 shows the resulting OpenMano VNFD file usig NOn.

Listing C.2 – NOn OpenMano VNFD File

1 @prefix : <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#> .

2 @prefix non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#> .

3 @prefix owl: <http://www.w3.org /2002/07/ owl#> .
4 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
5 @prefix xml: <http://www.w3.org/XML /1998/ namespace> .
6 @prefix xsd: <http://www.w3.org /2001/ XMLSchema#> .
7 @prefix xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.

owl#> .
8 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .
9 @prefix swrl: <http://www.w3.org /2003/11/ swrl#> .

10 @prefix swrlb: <http://www.w3.org /2003/11/ swrlb#> .
11 @prefix protege: <http:// protege.stanford.edu/plugins/owl/

protege#> .
12 @base <https:// github.com/LCuellarH/NOn/blob/master/datamodel

/non.owl> .
13
14 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_ge0_connection_point
15 non:openmano_ge0_connection_point rdf:type owl

:NamedIndividual ,
16 non:connection_point ;
17 non:type "bridge"^^xsd:string ;
18 non:id "ge0"^^xsd:string .
19
20 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_mgmt0_connection_point
21 non:openmano_mgmt0_connection_point rdf:type owl

:NamedIndividual ,
22 non:connection_point ;
23 non:type "mgmt0"^^xsd:string ;
24 non:id "mgmt0"^^xsd:string .
25
26 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_vnfc
27 non:openmano_vnfc rdf:type owl:NamedIndividual ,
28 non:vnfc ;
29 non:id "TEMPLATE -VM"^^xsd:string ;
30 non:has_connection_point non

:openmano_ge0_connection_point ,
31 non:openmano_mgmt0_connection_point ,
32 non:openmano_xe0_connection_point ,
33 non:openmano_xe1_connection_point .

ANNEX C. NOn Semantic Descriptor Files 113

34
35 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_vnfd
36 non:openmano_vnfd rdf:type owl:NamedIndividual ,
37 non:vnfd .
38
39 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_xe0_connection_point
40 non:openmano_xe0_connection_point rdf:type owl

:NamedIndividual ,
41 non:connection_point ;
42 non:type "data"^^xsd:string ;
43 non:id "xe0"^^xsd:string .
44
45 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#openmano_xe1_connection_point
46 non:openmano_xe1_connection_point rdf:type owl

:NamedIndividual ,
47 non:connection_point ;
48 non:type "data"^^xsd:string ;
49 non:id "xe1"^^xsd:string .

Listing C.3 shows a resulting Generic VNFD file usig NOn.

Listing C.3 – NOn OpenMano VNFD File

1 @prefix : <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>.

2 @prefix non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>.

3 @prefix owl: <http://www.w3.org /2002/07/ owl#>.
4 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>.
5 @prefix xml: <http://www.w3.org/XML /1998/ namespace>.
6 @prefix xsd: <http://www.w3.org /2001/ XMLSchema#>.
7 @prefix xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.

owl#>.
8 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#>.
9 @prefix swrl: <http://www.w3.org /2003/11/ swrl#>.

10 @prefix swrlb: <http://www.w3.org /2003/11/ swrlb#>.
11 @prefix protege: <http:// protege.stanford.edu/plugins/owl/

protege#>.
12 @base <https:// github.com/LCuellarH/NOn/blob/master/datamodel

/non.owl>.
13
14 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#generic -conn -1
15 non:generic -conn -1 rdf:type owl:NamedIndividual ,
16 non:connection_point;
17 non:type "bridge"^^xsd:string;
18 non:id "ob1"^^xsd:string;
19 non:virtual_link_reference "private"^^xsd:string.
20
21 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#generic -vdu -1
22 non:generic -vdu -1 rdf:type owl:NamedIndividual ,
23 non:vdu;
24 non:virtual_network_bandwidth_resource "1000000"^^xsd:int

;
25 non:virtual_memory_resource_element "1024"^^xsd:int;
26 non:scale_in_out "2"^^xsd:int;
27 non:computation_requirement "2"^^xsd:string;
28 non:vm_image "ubuntu -14.04 - server -cloudimg -amd64 -disk1"^^

xsd:anyURI;
29 non:id "vim -instance"^^xsd:string;
30 non:has_vnfc non:generic -vnfc1.
31

ANNEX C. NOn Semantic Descriptor Files 114

32 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/
non.owl#generic -vld -1

33 non:generic -vld -1 rdf:type owl:NamedIndividual ,
34 non:vld;
35 non:id "generic_vld_id"^^xsd:string;
36 non:connectivity_type "private"^^xsd:string.
37
38 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#generic -vnfc1
39 non:generic -vnfc1 rdf:type owl:NamedIndividual ,
40 non:vnfc;
41 non:id "generic_vnfc1"^^xsd:string;
42 non:has_connection_point non:generic -conn -1.
43
44 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#generic -vnfd -1
45 non:generic -vnfd -1 rdf:type owl:NamedIndividual ,
46 non:vnfd;
47 non:descriptor_version "0.2"^^xsd:string;
48 non:vnf_version "0.2"^^xsd:string;
49 non:lifecycle_event "INSTANTIATE -install.sh -install -srv.

sh"^^xsd:string;
50 non:vendor "fokus"^^xsd:string;
51 non:id "iperf -server"^^xsd:string;
52 non:has_vdu non:generic -vdu -1;
53 non:has_virtual_link non:generic -vld -1;
54 non:has_deployment_flavour non:os-m1 -small.
55
56 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#os-m1-small
57
58 non:os -m1-small rdf:type owl:NamedIndividual ,
59 non:deployment_flavour;
60 non:id "m1.small"^^xsd:string.
61
62 ### https :// github.com/LCuellarH/NOn/blob/master/datamodel/

non.owl#vim_openstack_25
63 non:vim_openstack_25 rdf:type owl:NamedIndividual ,
64 non:vim_component ;
65 non:id "10.1.1.25 -vim -instance"^^xsd:string.
66 ### Generated by the OWL API (version 3.5.1) http :// owlapi.

sourceforge.net

115

ANNEX D – SnS Workflow Files

Listing D.1 – SnS Metadata Goal Workflow File

1 PREFIX non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>

2 PREFIX yaml: <http:// example.org/yaml#>
3 PREFIX http: <http://www.w3.org /2011/ http#>
4 PREFIX ob: <http:// example.org/openbaton#>
5 PREFIX json: <http:// example.org/json#>
6 PREFIX tmpl: <http://purl.org/restdesc/http -template#>
7 PREFIX owl: <http://www.w3.org /2002/07/ owl#>
8 PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
9 PREFIX xml: <http://www.w3.org/XML /1998/ namespace>

10 PREFIX xsd: <http://www.w3.org /2001/ XMLSchema#>
11 PREFIX xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.owl

#>
12 PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
13 PREFIX swrl: <http://www.w3.org /2003/11/ swrl#>
14 PREFIX swrlb: <http://www.w3.org /2003/11/ swrlb#>
15 PREFIX protege: <http:// protege.stanford.edu/plugins/owl/

protege#>
16 PREFIX r: <http://www.w3.org /2000/10/ swap/reason#>
17
18
19 [a r:Proof , r:Conjunction;
20 r:component <#lemma1>;
21 r:gives {
22 _:sk3 ob:has_metadata yaml:vnf_metadata.
23 }].
24
25 <#lemma1> a r:Inference; r:gives {_:sk3 ob:has_metadata yaml:

vnf_metadata }; r:evidence (
26 <#lemma2>);
27 r:rule <#lemma3>.
28
29 <#lemma2> a r:Inference; r:gives {_:sk4 http:methodName "GET

".
30 _:sk4 http:MessageHeader "Content -Type: application/json".
31 _:sk4 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/metadata?name=" "iperf -client" "&link=" "
iperf_client_image"^^xsd:anyURI "&minCPU=" _:sk5 "&minRam
=" "1024"^^xsd:int).

32 _:sk4 http:resp _:sk6.
33 _:sk6 http:body yaml:vnf_metadata.
34 _:sk3 ob:has_metadata yaml:vnf_metadata }; r:evidence (
35 <#lemma4>
36 <#lemma5>
37 <#lemma6>
38 <#lemma7>
39 <#lemma8>
40 <#lemma9>
41 <#lemma10>
42 <#lemma11>
43 <#lemma12>);
44 r:rule <#lemma13>.
45
46 <#lemma3> a r:Extraction; r:gives {{?x0 ob:has_metadata yaml:

vnf_metadata} => {?x0 ob:has_metadata yaml:vnf_metadata }};
47 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/goals/Metadata -

ANNEX D. SnS Workflow Files 116

iPerf -Client -goal.n3>].
48
49 <#lemma4> a r:Extraction; r:gives {non:ob-iperf -client a non:

vnfd};
50 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

51
52 <#lemma5> a r:Extraction; r:gives {non:ob-iperf -client non:

vendor "fokus "};
53 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

54
55 <#lemma6> a r:Extraction; r:gives {non:ob-iperf -client non:

descriptor_version "0.1"};
56 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

57
58 <#lemma7> a r:Extraction; r:gives {non:ob-iperf -client non:id

"iperf -client "};
59 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

60
61 <#lemma8> a r:Extraction; r:gives {non:ob-iperf -client non:

lifecycle_event "CONFIGURE "};
62 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

63
64 <#lemma9> a r:Extraction; r:gives {non:ob_iperf_client_vdu a

non:vdu};
65 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

66
67 <#lemma10> a r:Extraction; r:gives {non:ob_iperf_client_vdu

non:vm_image "iperf_client_image "^^xsd:anyURI };
68 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

69
70 <#lemma11> a r:Extraction; r:gives {non:ob_iperf_client_vdu

non:virtual_memory_resource_element "1024"^^ xsd:int};
71 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

72
73 <#lemma12> a r:Inference; r:gives {_:sk0 http:methodName "GET

".
74 _:sk0 http:MessageHeader "Content -Type: application/json".
75 _:sk0 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf -client" "&vm_image=" "iperf_client_image"
^^xsd:anyURI "&virtuallink=" "private" "&lifecycle=" "

ANNEX D. SnS Workflow Files 117

CONFIGURE" "&dev_flavour=" "m1.small" "&scaleinout=" "2"
^^xsd:int "").

76 _:sk0 http:resp _:sk1.
77 _:sk1 http:body json:openbaton_vnfd.
78 _:sk2 a json:file.
79 _:sk2 a ob:vnfd.
80 _:sk3 ob:has_vnfd _:sk2}; r:evidence (
81 <#lemma4>
82 <#lemma5>
83 <#lemma6>
84 <#lemma7>
85 <#lemma8>
86 <#lemma9>
87 <#lemma10>
88 <#lemma14>
89 <#lemma15>
90 <#lemma16>
91 <#lemma17>
92 <#lemma18>);
93 r:rule <#lemma19>.
94
95 <#lemma13> a r:Extraction; r:gives {{?x0 a non:vnfd.
96 ?x0 non:vendor ?x1.
97 ?x0 non:descriptor_version ?x2.
98 ?x0 non:id ?x3.
99 ?x0 non:lifecycle_event ?x4.

100 ?x5 a non:vdu.
101 ?x5 non:vm_image ?x6.
102 ?x5 non:virtual_memory_resource_element ?x7.
103 ?x8 ob:has_vnfd ?x9} => {_:x10 http:methodName "GET".
104 _:x10 http:MessageHeader "Content -Type: application/json".
105 _:x10 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/metadata?name=" ?x3 "&link=" ?x6 "&minCPU=
" _:x11 "&minRam=" ?x7).

106 _:x10 http:resp _:x12.
107 _:x12 http:body yaml:vnf_metadata.
108 ?x8 ob:has_metadata yaml:vnf_metadata }};
109 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/services/
metadata/OpenBaton -Parser -metadata.n3>].

110
111 <#lemma14> a r:Extraction; r:gives {non:ob_iperf_client_vdu

non:scale_in_out "2"^^ xsd:int};
112 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

113
114 <#lemma15> a r:Extraction; r:gives {non:op_iperf_client_vld a

non:vld};
115 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

116
117 <#lemma16> a r:Extraction; r:gives {non:op_iperf_client_vld

non:connectivity_type "private "};
118 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

119
120 <#lemma17> a r:Extraction; r:gives {<https :// github.com/

LCuellarH/NOn/blob/master/datamodel/non.owl#m1.small> a
non:deployment_flavour };

ANNEX D. SnS Workflow Files 118

121 r:because [a r:Parsing; r:source <file:/// home/ldapusers/
lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

122
123 <#lemma18> a r:Extraction; r:gives {<https :// github.com/

LCuellarH/NOn/blob/master/datamodel/non.owl#m1.small> non:
id "m1.small "};

124 r:because [a r:Parsing; r:source <file:/// home/ldapusers/
lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/resources/
iperf_client.n3>].

125
126 <#lemma19> a r:Extraction; r:gives {{?x0 a non:vnfd.
127 ?x0 non:vendor ?x1.
128 ?x0 non:descriptor_version ?x2.
129 ?x0 non:id ?x3.
130 ?x0 non:lifecycle_event ?x4.
131 ?x5 a non:vdu.
132 ?x5 non:vm_image ?x6.
133 ?x5 non:scale_in_out ?x7.
134 ?x8 a non:vld.
135 ?x8 non:connectivity_type ?x9.
136 ?x10 a non:deployment_flavour.
137 ?x10 non:id ?x11} => {_:x12 http:methodName "GET".
138 _:x12 http:MessageHeader "Content -Type: application/json".
139 _:x12 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" ?x1 "&version=" ?x2 "&name="
?x3 "&vm_image=" ?x6 "&virtuallink=" ?x9 "&lifecycle="

?x4 "&dev_flavour=" ?x11 "&scaleinout=" ?x7 "").
140 _:x12 http:resp _:x13.
141 _:x13 http:body json:openbaton_vnfd.
142 _:x14 a json:file.
143 _:x14 a ob:vnfd.
144 _:x15 ob:has_vnfd _:x14 }};
145 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/ownCloud/Luis/NOn/Developments/UseCases/nfv -
vnfd -parser/ServiceDescriptor/OpenBaton/services/parser/
OpenBaton -Parser.n3>].

Listing D.2 – SnS Use Case I: Scenario III Workflow

1 PREFIX non: <https:// github.com/LCuellarH/NOn/blob/master/
datamodel/non.owl#>

2 PREFIX yaml: <http:// example.org/yaml#>
3 PREFIX http: <http://www.w3.org /2011/ http#>
4 PREFIX tmpl: <http://purl.org/restdesc/http -template#>
5 PREFIX ob: <http:// example.org/openbaton#>
6 PREFIX json: <http:// example.org/json#>
7 PREFIX owl: <http://www.w3.org /2002/07/ owl#>
8 PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
9 PREFIX xml: <http://www.w3.org/XML /1998/ namespace>

10 PREFIX xsd: <http://www.w3.org /2001/ XMLSchema#>
11 PREFIX xsp: <http://www.owl -ontologies.com /2005/08/07/ xsp.owl

#>
12 PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
13 PREFIX swrl: <http://www.w3.org /2003/11/ swrl#>
14 PREFIX swrlb: <http://www.w3.org /2003/11/ swrlb#>
15 PREFIX protege: <http:// protege.stanford.edu/plugins/owl/

protege#>
16 PREFIX r: <http://www.w3.org /2000/10/ swap/reason#>
17
18 [a r:Proof , r:Conjunction;
19 r:component <#lemma1>;
20 r:component <#lemma2>;

ANNEX D. SnS Workflow Files 119

21 r:gives {
22 _:sk5 non:has_vnfd non:generic -vnfd -1.
23 _:sk8 non:has_vnfd non:generic -vnfd -1.
24 }].
25
26 <#lemma1> a r:Inference; r:gives {_:sk5 non:has_vnfd non:

generic -vnfd -1}; r:evidence (
27 <#lemma3>);
28 r:rule <#lemma4>.
29
30 <#lemma2> a r:Inference; r:gives {_:sk8 non:has_vnfd non:

generic -vnfd -1}; r:evidence (
31 <#lemma5>);
32 r:rule <#lemma4>.
33
34 <#lemma3> a r:Inference; r:gives {_:sk0 http:methodName "GET

".
35 _:sk0 http:MessageHeader "Content -Type: application/json".
36 _:sk0 http:requestURI ("nfv/parser/openmano/vnf/vnfd?

vnf_description=" _:sk1 "&vnf_name=" _:sk2 "&vnfc_name="
"generic_vnfc1" "&vnfc_description=" "&vm_image=" _:sk3
"&ext_conn_name=" "ob1" "&ext_conn_iface_name=" "ob1" "&
ext_conn_description=" "bridge" "&ext_conn_type" "bridge
" "").

37 _:sk0 http:resp _:sk4.
38 _:sk4 http:body yaml:openmano_vnfd.
39 non:generic -vnfd -1 a yaml:file.
40 _:sk5 non:has_vnfd non:generic -vnfd -1}; r:evidence (
41 <#lemma6>
42 <#lemma7>
43 <#lemma8>
44 <#lemma9>
45 <#lemma10>
46 <#lemma11>
47 <#lemma12>);
48 r:rule <#lemma13>.
49
50 <#lemma4> a r:Extraction; r:gives {{?x0 non:has_vnfd ?x1} =>

{?x0 non:has_vnfd ?x1}};
51 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/goals/vnfd -iPerf -Client -goal
.n3>].

52
53 <#lemma5> a r:Inference; r:gives {_:sk6 http:methodName "GET

".
54 _:sk6 http:MessageHeader "Content -Type: application/text".
55 _:sk6 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" "fokus" "&version=" "0.2" "&
name=" "iperf -server" "&vm_image=" "ubuntu -14.04 - server -
cloudimg -amd64 -disk1"^^xsd:anyURI "&virtuallink=" "
private" "&lifecycle=" "INSTANTIATE -install.sh -install -
srv.sh" "&dev_flavour=" "m1.small" "&scaleinout=" "2"^^
xsd:int "&vim=" "10.1.1.25 -vim -instance" "").

56 _:sk6 http:resp _:sk7.
57 _:sk7 http:body json:openbaton_vnfd.
58 non:generic -vnfd -1 a json:file.
59 _:sk8 non:has_vnfd non:generic -vnfd -1}; r:evidence (
60 <#lemma6>
61 <#lemma14>
62 <#lemma15>
63 <#lemma16>
64 <#lemma17>
65 <#lemma18>
66 <#lemma19>
67 <#lemma20>
68 <#lemma21>

ANNEX D. SnS Workflow Files 120

69 <#lemma22>
70 <#lemma23>
71 <#lemma24>
72 <#lemma25>
73 <#lemma26>);
74 r:rule <#lemma27>.
75
76 <#lemma6> a r:Extraction; r:gives {non:generic -vnfd -1 a non:

vnfd};
77 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

78
79 <#lemma7> a r:Extraction; r:gives {non:generic -vnfc1 a non:

vnfc};
80 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

81
82 <#lemma8> a r:Extraction; r:gives {non:generic -vnfc1 non:id "

generic_vnfc1 "};
83 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

84
85 <#lemma9> a r:Extraction; r:gives {non:generic -vnfc1 non:

has_connection_point non:generic -conn -1};
86 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

87
88 <#lemma10> a r:Extraction; r:gives {non:generic -conn -1 a non:

connection_point };
89 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

90
91 <#lemma11> a r:Extraction; r:gives {non:generic -conn -1 non:

type "bridge "};
92 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

93
94 <#lemma12> a r:Extraction; r:gives {non:generic -conn -1 non:id

"ob1"};
95 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

96
97 <#lemma13> a r:Extraction; r:gives {{?x0 a non:vnfd.
98 ?x1 a non:vnfc.
99 ?x1 non:id ?x2.

100 ?x1 non:has_connection_point ?x3.
101 ?x3 a non:connection_point.
102 ?x3 non:type ?x4.
103 ?x3 non:id ?x5} => {_:x6 http:methodName "GET".
104 _:x6 http:MessageHeader "Content -Type: application/json".
105 _:x6 http:requestURI ("nfv/parser/openmano/vnf/vnfd?

ANNEX D. SnS Workflow Files 121

vnf_description=" _:x7 "&vnf_name=" _:x8 "&vnfc_name=" ?
x2 "&vnfc_description=" "&vm_image=" _:x9 "&
ext_conn_name=" ?x5 "&ext_conn_iface_name=" ?x5 "&
ext_conn_description=" ?x4 "&ext_conn_type" ?x4 "").

106 _:x6 http:resp _:x10.
107 _:x10 http:body yaml:openmano_vnfd.
108 ?x0 a yaml:file.
109 ?x0 a non:vnfd.
110 _:x11 non:has_vnfd ?x0}};
111 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenMano/services/parser/OpenMano -
Parser.n3>].

112
113 <#lemma14> a r:Extraction; r:gives {non:generic -vnfd -1 non:

vendor "fokus "};
114 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

115
116 <#lemma15> a r:Extraction; r:gives {non:generic -vnfd -1 non:

descriptor_version "0.2"};
117 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

118
119 <#lemma16> a r:Extraction; r:gives {non:generic -vnfd -1 non:id

"iperf -server "};
120 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

121
122 <#lemma17> a r:Extraction; r:gives {non:generic -vnfd -1 non:

lifecycle_event "INSTANTIATE -install.sh -install -srv.sh"};
123 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

124
125 <#lemma18> a r:Extraction; r:gives {non:generic -vdu -1 a non:

vdu};
126 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

127
128 <#lemma19> a r:Extraction; r:gives {non:generic -vdu -1 non:

vm_image "ubuntu -14.04 - server -cloudimg -amd64 -disk1 "^^xsd:
anyURI };

129 r:because [a r:Parsing; r:source <file:/// home/ldapusers/
lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

130
131 <#lemma20> a r:Extraction; r:gives {non:generic -vdu -1 non:

scale_in_out "2"^^ xsd:int};
132 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

133
134 <#lemma21> a r:Extraction; r:gives {non:generic -vld -1 a non:

ANNEX D. SnS Workflow Files 122

vld};
135 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

136
137 <#lemma22> a r:Extraction; r:gives {non:generic -vld -1 non:

connectivity_type "private "};
138 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

139
140 <#lemma23> a r:Extraction; r:gives {non:os -m1-small a non:

deployment_flavour };
141 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

142
143 <#lemma24> a r:Extraction; r:gives {non:os -m1-small non:id "

m1.small "};
144 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

145
146 <#lemma25> a r:Extraction; r:gives {non:vim_openstack_25 a

non:vim_component };
147 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

148
149 <#lemma26> a r:Extraction; r:gives {non:vim_openstack_25 non:

id "10.1.1.25 -vim -instance "};
150 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/resources/ob-vnfdv1 .0.1. n3>
].

151
152 <#lemma27> a r:Extraction; r:gives {{?x0 a non:vnfd.
153 ?x0 non:vendor ?x1.
154 ?x0 non:descriptor_version ?x2.
155 ?x0 non:id ?x3.
156 ?x0 non:lifecycle_event ?x4.
157 ?x5 a non:vdu.
158 ?x5 non:vm_image ?x6.
159 ?x5 non:scale_in_out ?x7.
160 ?x8 a non:vld.
161 ?x8 non:connectivity_type ?x9.
162 ?x10 a non:deployment_flavour.
163 ?x10 non:id ?x11.
164 ?x12 a non:vim_component.
165 ?x12 non:id ?x13} => {_:x14 http:methodName "GET".
166 _:x14 http:MessageHeader "Content -Type: application/text".
167 _:x14 http:requestURI ("http :// localhost :8080/ nfv/parser/

openbaton/vnf/vnfd?vendor=" ?x1 "&version=" ?x2 "&name="
?x3 "&vm_image=" ?x6 "&virtuallink=" ?x9 "&lifecycle="

?x4 "&dev_flavour=" ?x11 "&scaleinout=" ?x7 "&vim=" ?x13
"").

168 _:x14 http:resp _:x15.
169 _:x15 http:body json:openbaton_vnfd.
170 ?x0 a json:file.
171 ?x0 a non:vnfd.

ANNEX D. SnS Workflow Files 123

172 _:x16 non:has_vnfd ?x0}};
173 r:because [a r:Parsing; r:source <file:/// home/ldapusers/

lcuellar/SnS/sns_server/nfv -vnfd -parser/
ServiceDescriptor/OpenBaton/services/parser/OpenBaton -
Parser.n3>].

174
175 TC=4 TP=8 BC=0 BP=0 PM=0 CM=0 FM=0 AM=0
176 reasoning 7 [msec cputime] 6 [msec walltime]
177 #ENDS 0.055 [sec] IO=41/2 TC=4 TP=8 BC=0 BP=0 PM=0 CM=0 FM=0

AM=0
178
179 [2016 -04 -27 T18:15:48.155Z] in=41 out=2 step=8 brake =2 inf

=129060 sec =0.055 inf/sec =2933182

	Title page
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Contents
	Introduction
	Problem Description
	Approach and Research Objectives

	Background and Related Work
	Background
	Representational State Transfer
	REST Web Services

	Semantic Web
	RDF
	Notation 3

	Ontologies

	Semantic Web Service
	RESTdesc
	Inference Engine (Reasoner)

	Network Function Virtualisation - NFV
	NFV Projects
	OpenBaton
	OpenMano
	T-NOVA
	Unify

	Related Work
	Ontology Data Models
	Interoperability Models
	Gap Analysis

	Research Problem
	Semantics on NFV Descriptors
	Comparison of vnfd Files
	Comparison Within Same vnfd Files

	Semantics on NFV Deployments
	nfv Local Domain Scenario
	nfv Inter-Domain Scenario

	Concluding Remarks

	NFV Ontology (NOn)
	Design
	Elements
	NOn Low Level Elements
	NOn High Level Elements

	Relationships
	Model Realization

	Implementation
	Classes and Sub-classes
	Data and Object Properties

	NOn Use Cases: Semantic vnfd
	Use Case I: OpenBaton vnfd
	Use Case II: OpenMano vnfd

	Conclusions

	Semantic NFV Services (SnS)
	Creating Semantic Services
	Adding Descriptions to Services
	Consuming Semantic Services

	SnS Workflow Inference
	Creating Dynamic Workflow
	Consuming Dynamic Workflows

	SnS Use Cases: Semantic Services on nfv projects
	Use Case I: Semantic vnfd Generator Service
	Scenario I: Using OpenBaton Semantic Descriptor
	Scenario II: Using OpenMano Semantic Descriptor
	Scenario III: Using Generic Semantic Descriptor

	Use Case II: Workflow Inference - Deploying a VNF Semantic Services
	Goal
	Preconditions and Assumptions:
	Test Data
	Testing Tools
	Test Description
	Postcondition
	Expected Results
	Expected vs Obtained Results
	Conclusions

	Use Case III: OpenBaton - Unify Integration Proposal
	Goal
	Preconditions and Assumptions
	Test Data
	Testing Tools
	Test Description
	Postcondition
	Expected Results
	Expected vs Obtained Results

	Final Remarks

	Conclusions and Future Work
	Bibliography
	Annex
	NOn Notation 3 File
	nfv/vnfd Deployment Files
	NOn Semantic Descriptor Files
	SnS Workflow Files

