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Abstract—The research community has recently proposed sev-
eral solutions based on modern programmable switches to
detect entirely in the data plane the flows exceeding pre-
determined thra eshold in a time window, i.e., Heavy Hitters
(HH). This is commonly achieved by dividing the network
stream into fixed time slots and identifying each separately
without considering the traffic trends from previous intervals.
In this work, we show that using specified time windows can
lead to high inaccuracies. We make a case for rethinking how
switches analyze the incoming packets and propose to leverage
per-flow Inter Packet Gap (IPG) analytics instead of using
flow counters for HH detection. We propose an algorithm and
present a P4 pipeline design using this new metric in mind.
We implement our solution on P4 hardware and experimentally
evaluate it against real traffic traces. We show that our results
are more accurate than related work by up to 20% while
reducing the control channel overhead by up to two orders of
magnitude. Finally, we showcase a QoS-oriented application
of the proposed dataplane-only IPG-based HH detection in a
mobile network scenario.

Index Terms—Heavy-hitters detection, programmable data
plane, P4, inter packet gap, network monitoring

1. INTRODUCTION

Many network management applications benefit from
identifying the flows contributing the most to the traffic,
namely the so-called elephant flows or Heavy Hitters (HH),
i.e. flows of size larger than or equal to a certain number
of packets or bytes over a fixed time interval. This is the
case, for example, for accounting [1], network capacity
planning [2], load balancing [3], caching [4], or anomaly de-
tection [5]. The recent uptake of programmable switches [6]
has given the means to move the detection process directly in
the data plane, enabling use cases requiring decisions at time
scales comparable to traffic variations [7], such as dynamic
routing [8] or flow scheduling [3]. The research community
has lately worked hard towards the design and development
of new algorithms that can efficiently detect heavy flows
within the constraints of programmable devices [9], [10],
[11], [12], [13], [14].

Time-Window A   Time-Window B 

Hidden Heavy-Hitter

Counter=0  Counter=3, ResetCounter=4, Reset

Figure 1: Counting packets over disjoint windows.

Most state-of-the-art proposals divide the time in disjoint
windows and identify the HHs at the end of each of them
by looking at the flows that consume more than a fraction
of the link capacity. This is done with an iterative process at
fixed time scales: flow counters or specific data structures,
e.g., sketches, are first exported to a central controller and
then reset in the data plane to deal with the new traffic [9],
[10], [11], [12]. The intrinsic problem with this approach
is that the final result is tightly coupled with traffic pat-
terns and window characteristics. Figure 1 exemplifies this
concept. Here, the analyzed flow in yellow would not be
considered heavy because neither time window A nor B
has enough occurrences. To overcome this, recent proposals
have explored more complex traffic analysis mechanisms
in the data plane by employing an approximation of a
sliding window [15] or prefix trees that quickly adapt to
traffic patterns [14]. However, simultaneous memory access
is required to update a packet that enters and departs from
the sliding window. Also, prefix trees need to access on-
chip registers by the number of times. Both approaches are
difficult to implement because of the constraints of accessing
memory in programmable switch hardware [13].

Instead of counting packets belonging to each flow, we
propose to use Inter Packet Gap (IPG) as the main metric
to detect HH. The idea comes from the observation that the
lower the IPG, the higher the flow throughput, the smaller
the flow’s IPG, the more packets in-flight, and the heavier
the flow [16]. Notably, this simple philosophy cannot be
naively applied to counters, i.e., the bigger the flow counter,
the heavier the flow. This is because a flow is commonly
defined as heavy only for a given time. While we would lose
the time reference by adopting only counters, with IPG, this
is naturally considered.

In this article, we show how failing to detect some
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Figure 2: Analysis the number of HH flows due to the sliding
and fixed window approach using CAIDA traces.

HHs can heavily impact the behavior of network-control
applications such as load balancing and review the essential
properties to be guaranteed by a HH detection algorithm
(Sec. 2). We then discuss the use of IPG as the main
metric instead of counting packets (Sec. 3) and describe
how the per-flow IPG calculation can be implemented on
off-the-shelf P4 programmable hardware, highlighting the
challenges associated with its design and showing that
existing algorithms can be adapted to support this novel
metric (Sec. 4). We carry an extensive evaluation comparing
state-of-the-art algorithms using real traffic traces. We show
that our solution is more accurate and reduces the control
channel overhead by up to two orders of magnitude (Sec. 5).
In summary, the main contributions of this article are:
• We present in detail the methods for HH characterization

using IPG as the key metric (first introduced in [16]) and
demonstrate its practicality.

• We discuss the challenges in calculating per-flow IPG in
current off-the-shelf programmable switches and imple-
ment the proposed method on P4 Tofino hardware.

• We propose an algorithm inspired by a state-of-the-art HH
detection algorithm to work with IPG and experimentally
evaluate its detection capabilities using real traffic traces
in both simulation and P4 hardware.

• We showcase IPG-based HH detection for a QoS appli-
cation in a mobile network user plane pipeline.

• We release all relevant documentation and code in an
open-source repository1 for reproducibility purposes.

2. MOTIVATION

To meet the strict requirements imposed by current pro-
grammable switches, most of the state-of-the-art propos-
als divide the time in disjoint windows and export data
plane statistics to be used to detect HH, e.g., raw counters,
sketches, at the end of each of them [9], [10], [11], [12].

Such architectural approaches suffer from the problem
discussed in Figure 1. To illustrate this, we performed
a number of tests using real traffic traces from CAIDA.
Specifically, we used a 60-second long trace [17] and split
it into 1, 2, and 5 seconds intervals (our time window for
detecting heavy hitter flows). We evaluated the number of
HH flows using different thresholds (i.e., 1, 2 and 5 Mbps)
and fixed window sizes (i.e., 1, 2 and 5 Sec). We then did the
same by using the sliding window approach to detect HH

1. https://github.com/intrig-unicamp/P4-HH

Figure 3: Impact analysis of missing HHs for load-balancing
in Data Center Networks using Hedera Algorithm [3], for
different communication patterns.

flows, where we measured the HH flows on every incoming
packet. In Figure 2, we compare how much the true HHs
detected by both fixed and sliding window approaches: the
results show that the fixed window can miss the HH flows
by around 15% to 20%.

To better understand how much this variability can im-
pact a network application, we tested Hedera, a state-of-
the-art intra-datacenter load balancing solution [3]. Hedera
is to opportunistically schedule HH on different paths and
let ECMP deal just with the short flows. Starting from the
open-source code2, we implemented a fat-tree topology (k
= 4) and generated traffic following many different com-
munication patterns, the same used in the Hedera paper.
Figure 3 shows the impact on bisection bandwidth when
different percentages of HH flows (i.e., 15, 20 and 25% of
total HH flows) are not detected. Most importantly, we can
see a performance degradation up to approximately 30%
when only 15% of HH are not correctly detected.

All the problems mentioned earlier could be solved
by adopting sliding-windows-based algorithms in the data
plane. However, those algorithms are too complex to be
implemented in off-the-shelf programmable switches [18],
[19] or successfully applied when considering micro-second
level timescales events, i.e., microbursts [15].

Key contribution. This work demonstrates that there is no
need to completely rethink existing data plane algorithms
to solve the mentioned issue. Instead, the most critical
aspect to consider is the primitive adopted for HH detection.
While previous works have focused on counting packets
and optimized data structures to store the gathered data
in the switch, we argue that IPG is a better metric for
the HH detection problem. We show that it is possible
to rethink state-of-the-art algorithms with this new metric
and demonstrate that this can be done while meeting two
fundamental properties discussed below.

Property 1: Low control channel overhead. State-of-the-
art solutions leveraging data plane programmability for HH
detection are based on a simple concept: the switch collects
traffic statistics, stores them in appropriate data structures,

2. https://bitbucket.org/msharif/hedera/
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Figure 4: Distribution of EWMA (α = 0.99 or 0.50) and SMA of IPGs of 10 flows in different throughput scale.

and exposes them regularly to a (logically) centralized con-
troller [9], [10], [11] in charge of the detection process. This
behavior can impose unnecessary load on the control plane,
especially when multiple switches report their information
to the same controller. Recent works have tried to mitigate
this problem by proposing a push-based approach [14]. The
switch exposes a single entry upon detecting a HH instead of
letting the controller poll the entire data structure stored in
the data plane. However, while successfully implemented on
FPGA, the proposed solution appears to fail short in meeting
the tight requirements in the number and the pattern of
access to on-chip registers to be considered a viable solution
for today’s programmable switches [14].

Property 2: Low switch memory overhead. The previ-
ous properties cannot come at the cost of high memory
requirements in the data plane. This is because operators
need the limited and precious resources available in current
programmable switches for essential control functions such
as ACL rules, customized forwarding, and other network
functions and applications [20].

3. IPG ANALYSIS FOR HH DETECTION

This section examines the IPG values of network flows using
real-time traces and shows how they can be leveraged to
detect HH flows. We consider an exponential weighting
moving average (EWMA) function of the observed IPG
values and optimize the degree of weighting decrease to
calculate the moving average for improved accuracy.

3.1. Weighting Inter Packet Gap

IPG directly relates to the flow rate (i.e., packet size / IPG).

However, as per the standard HH definition (i.e., flows size
larger than or equal to the number of packets or x kB in a
fixed time interval), we cannot rely only on the current IPG
value. For the solution, we consider an EWMA function of
the observed IPG values. In EWMA, the weighting can be
set higher to decrease older observations slower. Also, the
higher weighting smoothes out the sudden spikes in the IPG.

We consider a given set of network flows f ∈ F =
{f1, f2, ..., fM}, where M represents the total number of
flows. The IPG metric is updated every time a network
packet of f ∈ F gets into the switch pipeline. When a
packet enters the switch, the last seen ingress timestamp
(TSl

f ∈ N+) is subtracted from the current timestamp
(TSc ∈ N+) to calculate the current IPGc

f estimator of
network flow f (Equation 1).

IPGc
f = TSc − TSl

f , f ∈ F (1)

Next, an EWMA metric IPGw
f is computed:

IPGw
f = α · IPGw−1

f + (1− α) · IPGc
f , f ∈ F (2)

where α ∈ [0, 1] is the degree of weighting decrease
and IPGw−1

f is the last noted weighted IPG. IPGw−1
f

is initialized by IPGinit (i.e., PacketSize
HHth

), where HHth

indicates the HH threshold of a flow in the given time-
window (TW).

The α value directly impacts the accuracy of HH detec-
tion. To optimize the α value for HH detection, we plot a
graph, as shown in Figure 4. We illustrate the distribution of
EWMA and SMA (Simple Moving Average) of IPG of each
incoming packet of 10 flows in different throughput scales
using CAIDA trace for 1 Sec TW. In SMA, weightings are
equally distributed among all the IPGs of a flow, directly
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(a) 1 Sec, (b) 1 Sec, (c) 10 Secs, (d) 10 Secs,

Figure 5: IPGw
f vs Throughput. IPGw

f indicates EWMA of IPGs at the end of TW. We consider only long-duration top-2k
flows for 1 Sec TW.

related to a flow’s size. We notice that EWMA at α = 0.99
is more stable and similar to SMA than EWMA at α = 0.50.
Similar results are observed for other real traces such as data
center (IMC10 [21]) and MAWI backbone (MAWI20 [22])
traces.

Also, we notice that for a small-duration TW (e.g., 1
Sec), where the number of packets per flow is lower than a
long-duration time window, the α = 0.99 is suitable for HH
detection. However, for a long-duration time window (e.g.,
10 Secs), we need to choose a higher α (e.g., around 0.999),
which imposes additional challenges to calculate EWMA in
the Tofino switch ASIC due to the floating-point operations
required. We propose a solution to handle long-duration TW
discussed in detail in Section 3.2.

The above analysis suggests that higher α values im-
prove accuracy. We can analyze the trace and align the best
possible α value to detect HH.
Weighted IPG and flow throughput. We analyze the rela-
tionship between IPGw

f and flow throughput (total number
of packets per time window (TW)). We make two cases: (1)
consider only long-duration flows (Figures 5), (2) examine
both small and long-duration flows (Figures 6). We use
CAIDA traffic traces [17] and plot the number of packets
per flow against the IPGw

f calculated at the end of 1 sec
TW, i.e., about 65K flows and 0.7M packets, and 10 Secs
TW, i.e., around 270K flows and 5M packets. The analysis
is performed for the top-2K flows. We do not observe much
difference in the results for other traces [21] [22].
Case I. Figures 5a and 5d show a strong correlation between
IPGw

f and flow throughput. If we set α = 0.999 for 1 Sec
TW, we observe a weaker response to recent IPG values
(Figure 5b). In Figure 5c, where α = 0.99, some flows
IPGw

f do not correlate well with their throughput values
because of the long TW duration.
Case II. In Figures 6a and 6b, considering small-duration
flows with long flows, the throughput does not correlate
well with IPGw

f . This is because the lower IPG does not
guarantee a higher throughput. Specifically, the flow with
only two packets back-to-back can be considered HH (i.e.,
false positive).

As per the above discussion, we conclude that while
the initial analysis points to IPGw

f as a candidate metric
for HH detection considering long-duration flows, the main

 

(a) 1 Sec,

 

(b) 10 Sec,

Figure 6: IPGw
f vs Throughput, considering both small and

long-duration top-2k flows for 1 Sec TW.

challenge is handling small-size flows of lower IPG.
In the next section, we seek to answer the following

questions: (1) Can we handle small-size flows, e.g., flow
only two packets back to back, using the IPG metric? (2)
How to deal with a long-duration time window?

3.2. Memory of Flow’s Characteristic

When relying on IPG instead of packet counters to detect
HH, we encounter two challenges: 1) handling small-size
flows of lower IPG, and 2) detecting HH flows for long-
duration TWs as discussed in subsection 3.1. To overcome
these challenges, we store the throughput state of a flow
based on IPGw

f , which is used to detect HH. Maintaining
IPGw

f within the P4 switch hardware decides to keep only
lower IPGw

f flows in the data structure, while the stored
throughput will decide whether the flow is HH or not.
Storing flow’s throughput state. To store a flow’s through-
put state, we introduce a non-dimensional metric τ (i.e.,
compactly maintained in the programmable hardware). The
τf metric of a flow is updated depending on IPGw

f in a
regular interval (Twt). This metric is used to decide whether
the flow is HH or not. We use a match-action table, where
the match is performed on IPGw

f and passes τf as an action
parameter to store metadata and add this value in previously-
stored τf to the switch register.

When τf reaches the pre-defined threshold (τth), the
switch informs flow as HH to the controller for further action
and reset τf to zero. For calculating τf , first, we compute
the minimum number of packets (n) required for HH in a
TW as follows:
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t = 0

Window based approach 
(Reset Counters in a fixed time interval)

IPG based approach 
(No memory reset is required)

t = 5 B

Report to controller CA = 4, CB = 1 and Reset CA = 0, CB = 0  

A AA A BA BBAA ABABAA
Time Window Time Window 

A AAAA ABBA BBAA
Time Window Time Window 

'B' is hidden HH 

t = 10 A

Report to controller CA = 3, CB = 2 and reset CA = 0, CB = 0  

B ABAABABAAAB
Time Window Time Window 

ABB

t = 8 A

Update CB = 2 (flow B is not detected as HH)  

B AAABAA BBABAA
Time Window 

ABA

t = 0

t = 5 B A AA A BA BBAA ABABAA

A AAAA ABBA BBAA
'B' is hidden HH 

t = 10 A B ABAABABAAABABB

t = 8 A B AAABAA BBABAAABA

Update                    for flow A 

Update                    and          for flow B  (report flow B as HH) 

Update                    and           for flow A 

A A

Figure 7: Example of updating metrics in both window and IPG based approaches. Considered three or more packets of a
flow in a window as HH (τf metric is updated in every 2 secs).

n =
TW ·HHth

PacketSize
, (3)

Then, we evaluate the number of timeslots (numwt)
required to achieve n packets based on IPGw

f ,

numwt =
n · IPGw

f

Twt
, (4)

where numwt ≥ 2. We divide τth by numwt to get τf .
The final expression for τf is as follows,

τf =
τth · Twt · PacketSize

TW ·HHth · IPGw
f

. (5)

The controller pre-calculates the τf based on IPGw
f

range 1 to IPGinit using Equation 5 and pushes the table
entries to the switch. We should choose τth to generate the
maximum distinct τf integer values for IPGw

f . For example,
if we set TW=1 Sec, HHth=10 Mbps, and Twt=20 msec,
we can generate a maximum of 48 distinct τf values for
τth=1850. If we choose τth lower than 1850 (e.g., 500), 33
distinct τf values can be generated, impacting the accuracy
and reporting time.

We follow the standard definition of HH (i.e., number
of packets in a fixed TW greater than or equal to HHth)
used in [9] [11]. If τf of any flow reaches τth, this indicates
that the flow’s throughput is HHth or above in fixed TW.
Steps to detect HH flows. Figure 7 shows an example to
update the τf and IPGw−1

f to detect HH flows. Also, the
figure illustrates the difference between window and IPG
based approaches. There are two flows, A and B. In the
window-based approach, the packet counter of a flow is
updated for each incoming packet. At t=5 (i.e., a fixed time
window), the updated values of counters are informed to the
controller to decide which flows are HHs and then reset both

the counters to zero. Due to resetting the previous memory,
we are unable to detect the flow B as HH at t=8 or t=10.

In IPG based approach, at t=5, the switch updates
IPGw−1,A

f for flow A. Since, we do not reset any memory
and update τf in every 2 secs, the flow B is detected as
HH at t=8. The switch compares τf of a flow with τth and
reports the flow as HH to the controller for τf ≥ τth. τf for
lower IPGw−1

f flows increases rapidly, and the switch can
report the HH flows to the controller as soon as possible.
The higher IPGw−1

f can quickly be evicted from the data
structure to maintain only heavy flows. The detail about the
algorithm is discussed in Section 4.
Correlation between τf and flow size . To validate the
hypothesis discussed above, we analyze the correlation be-
tween τf or IPGw

f and flow size using ISP (CAIDA16), data
center (IMC10), and WIDE backbone (MAWI20) traces.
Since the outputs from all three traces do not show a signif-
icant difference, we present the results using CAIDA in this
paper. Also, analysis is performed for different throughput
ranges to understand the impact of flow throughput on both
IPGw

f and τf metrics. We update the flow size and τf every
20 milliseconds, i.e., Twt = 20 msec. As shown in Table 1,
the τf highly correlates with flow size for α=0.99. This α
value can easily be calculated within the Tofino HW rather
than α=0.999. The details of the calculation can be found in
our P4 code [23]. IPGw

f does not correlate well with flow
size because of small-size flows with lower IPGs. Also, we
can observe that the correlation between τf and flow size
decreases by decreasing flow throughput. We conclude with
the following outcomes:

1) IPGw
f and τf metrics allow keeping flow’s throughput

without any memory reset than maintaining counters,
making this approach more accurate.

2) τf , a dimensionless metric, is used to keep flow’s
throughput dependent on IPGw

f .
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TABLE 1: Correlation between IPGw
f or τ and flow size

Flow Size (in Packets)

Parameters 1-5
Mbps

6-10
Mbps

11-20
Mbps

20-30
Mbps

>30
Mbps

IPGw,α=0.50
f −0.13 0.063 0.22 −0.22 −0.15

IPGw,α=0.80
f −0.21 0.02 0.23 −0.23 −0.12

IPGw,α=0.99
f −0.82 −0.39 −0.03 −0.06 −0.11

IPGw,α=0.999
f −0.88 −0.75 −0.53 −0.53 −0.54

τα=0.50
f 0.79 0.74 0.52 0.85 0.85
τα=0.80
f 0.86 0.83 0.63 0.86 0.86
τα=0.99
f 0.91 0.95 0.96 0.97 0.96

τα=0.999
f 0.86 0.94 0.95 0.98 0.95

3) At α=0.99, τf highly correlates with flow size for HH
detection to get high accuracy. Also, the same α value
can be used for any duration of TW.

4) Twt, a small timeslot, is used to update τf .
5) The small-size flows with low IPG values (e.g., flows

of only two packets back-to-back) can be easily recog-
nized as true negative using IPGw

f and τf metrics.
6) The proposed method is independent of a flow duration.

4. DESIGN AND IMPLEMENTATION

4.1. P4 ASIC Implementation Challenges

P4 offers an exciting opportunity to run algorithms directly
in programmable switch ASICs. However, implementing al-
gorithms on switch ASIC brings some challenges (Figure 8).
We discuss the engineering challenges illustrated in red
boxes in Figure 8 and adopted solutions to implement a
P4 pipeline of the proposed IPG based method validated in
a programmable switch ASIC, as detailed in Section 5.

Parser Deparser

Memory ALU Memory ALU Memory ALU

Registers

Limited depth Limited bits

Match-Action
Table

Limited rules and size

Limited accesses and operations

Limited ALU operations

Fixed number of stages

Figure 8: Resource limitations in Programmable HW.

Access Limitations to Registers. Typically, in HH detection
algorithms, first, the switch checks the flow ID of incoming
packets that already exist in the register. Then, the related
parameters are updated, such as the packet counter. In the
existing HH algorithms [12] [11], we decrease the counter
and evict the flow from the data structure for unmatched
Flow ID once the counter reaches zero. Since we have
already visited the flow ID register to confirm the match,
we cannot re-access the flow ID register to replace the entry.
The register can be accessed once per packet lifetime in the
Tofino switch ASIC. We face this challenge. As a solution,
we rely on packet re-submission. Suppose the flow ID of
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Figure 9: Running IPGw
f for Tofino and Simulator (SIM).

incoming packets exists in the data structure (Algorithm 1:
Line 7); the packets exit without any re-submission. The
re-submission happens only for unmatched packets when
IPGw−1,i

f > IPGth (Algorithm 1: Line 19 to 22).
The same problem discussed in [13] comes up with

packet re-circulation as a solution for unmatched packets.
The two main observations are noticed in [13]: (1) the
expected number of recirculated packets is bounded by the
square root of the number of packets which confirms the
sub-linearity, (2) 1% of packets re-circulation impacted 1%
on throughput. The same applies in our case to perform re-
submission only for unmatched packets. The re-submission
is performed efficiently within the switch ASIC pipeline
and does not impact the performance much, as analyzed
in Section 5.5. We use metadata to differentiate the re-
submitted packet from the regular packets [23]. Also, the
re-submit packet replaces the old with a new entry without
any additional computation steps, as shown in Figure 10.
Arithmetic and Comparison Operations. Traditional
switch HW do not support multiplications and divisions for
register actions. In addition, comparison operations are lim-
ited to a fixed number of bits and can be performed between
constant and variable values, not allowing the comparison
of two variables. Recently available P4 programmable HW
(e.g., P4 Tofino) supports bit operations that we can use to
perform simple multiplications and divisions. As per Equa-
tion 2, EWMA calculation can be challenging to implement
in an HW pipeline. Our solution is based on an approximate
EWMA calculation that makes all the required arithmetic
and comparison bit operations with limited HW resources.

Figure 9 presents the run-time IPGw
f values in the

Tofino HW and Simulator (SIM) implementations for four
different flow throughput rates. In SIM, we use the standard
formula to calculate the EWMA, while in Tofino, we depend
on some approximations due to the P4 HW constraints.
Figure 9 shows that Tofino HW and SIM do not exhibit
significant differences, confirming that IPGw

f can be used
to classify HH flows directly in the Tofino HW. For future
steps, we will consider a Tofino-specific extern, i.e., a low
pass filter, that allows us to calculate EWMA, giving a more
accurate calculation of EWMA of IPGs.
Fixed Number of Stages. To guarantee low and bounded
per-packet latency, P4 programmable HW (Tofino) is based
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Figure 10: The proposed P4 pipeline for HH detection using novel IPG metric implemented on Tofino switch ASIC.
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Figure 11: The data structure using IPG metric.

on a fixed number of pipeline stages. To fit our program
within the available stages, we must avoid unnecessary table
dependencies to perform our proposed algorithm. Currently,
we need 12 stages to complete all the required steps. We run
our algorithm on top of a baseline switch.p4 [24] compiled
on Tofino (P4 Studio SDE 9.3.1) confirms that our algorithm
can run with other switching functions without significant
additional resources and stages constraints (Table 2).

4.2. Design on Programmable Switch ASIC

This section shows how to use existing data structures and
algorithms with the IPG metric instead of packet count to
detect HH flows accurately.

The HH decision is based on the τf metric following the
standard HH definition discussed in Section 3.2. Let P =
{P1, P2, P3, ..., PN} be a network stream with N packets.
Each packet Pj(1 ⩽ j ⩽ N) belongs to a given network
flow f ∈ F = {f1, f2, ..., fM}, where M is the total number
of network flows in the network stream P . Each flow f ∈ F
has τf , where τf ∈ τ = {τf1 , τf2 , ..., τfM } and τ is the set
of throughput state of each flow in F . Given a network
stream P , and the pre-defined threshold τth, a HH is a flow
f where τf ≥ τth.

Our proposed method can fit most of the exist-
ing counter-based algorithms; we leverage the Heavy-
Keeper (HK) [12] algorithm for our prototype implementa-
tion on a Tofino hardware (HW) switch, which is amenable

to programmable HW. We also analyzed our proposed ap-
proach with Space Saving [25] and Elastic Sketch [11] using
a simulator. We achieved high accuracy, but due to space
limitations, we focus on HeavyKeeper in this paper. We use
HK-IPG to indicate the HK algorithm using IPG and HK-
Count to show the HK algorithm using counters.

Data Structure. The HK-Count algorithm tries to keep only
the heavy flows in the hash table, and smaller flow sizes
are removed using an exponential-weakening decay scheme.
When a packet enters, the main idea is if the flow ID is not
the same as in the hashed table entry, HK decays the flow
size by 1. When the flow size deteriorates to zero, the entry
is replaced by a new flow with counter value 1.

We replace the counter with a weighted IPG (i.e.,
IPGw−1

f ) and apply the same scheme in reverse order.
Instead of decaying the flow size, we increase the weighted
IPG when the hash collisions occur. When the weighted IPG
is higher than the pre-defined threshold, it is removed, and
the new entry is inserted. We choose IPGth as a threshold
for evicting entries from the data structure. IPGth is set the
same as IPGinit, discussed in Section 3.1.
Insertion. As shown in Figure 11, the data structure consists
of a table (i.e., T = 1,2,...,m) associated with hash function
h(.) that contains m slots. Each slot includes four fields:
flow id, IPGw−1,i

f (last noted weighted IPG), TSl,i
f (last

noted timestamp), and τ if , where i ∈ T . For this example,
we consider IPGth = 10000 µsec. HK-IPG checks the
condition TSc < TSl,i

f for each incoming packet to confirm
the end of Twt (timestamp wraps around in every Twt [23]).
If it is true, τ if is updated based on IPGw−1,i

f and IPGc,i
f .

If τf ≥ τth is true, switch reports the flow as HH to the
controller. Specifically, there are three cases:
Case I: The slot is empty. When the packet of f3 enters the
switch, we insert f3, IPGinit, TSc, 0, where we initialize
the IPGw−1,i

f with IPGinit (i.e., equal to IPGth), TSc is
the current time-stamp, and τ if is initialized with 0.
Case II: f = fi. This condition occurs for f1 and f8. In
this case, HK-IPG calculates the IPG and updates each field
of the slot accordingly. In the case of f1, τ if is updated
with one based on the IPGw−1,i

f ; however, for f8, since
the condition TSc < TSl,i

f is not true, τ if remains the same.
Case III: f ̸= fi. HK-IPG checks the condition
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IPGw−1,i
f ⩽ IPGth. If true, IPGw−1,i

f is increased lin-
early by adding k, which is pre-defined based on α and
table size. In this example, we consider k=10. When the
condition IPGw−1,i

f > IPGth becomes true, the existing
entry is replaced by the new entry. For f4, ten is added in
the field IPGw−1,i

f . In the case of f9, after updating the
field IPGw−1,i

f , the condition IPGw−1,i
f > IPGth is true.

HK-IPG replaces the entry with the new entry.
Figure 10 depicts the high-level view of the proposed

P4 pipeline to detect HH flows. Algorithm 1 represents the
detailed description of the HK-IPG algorithm and explains
the three main steps for keeping the per-flow state.

4.3. Limitations and Corner Cases

Limitations. Currently, our solution requires at least two
timeslots (numwt ≥ 2) discussed in Section 3.2 to detect
HH flows, which makes undetectable short-lived HH flows
that appear in a single timeslot. We can reduce the proba-
bility of missing these flows by reducing the length of the
timeslot. However, in that case, we may lose the overall
accuracy in detecting HH flows.

Moreover, our approach may not detect HH flows with a
specific pattern, where the inter-burst gap is more significant
than the timeslot (Twt) due to failure to check the condition:
TSc < TSl

f . Thus, although we optimize the size of Twt

to lower the possibility of missing this type of HH flow, it
is still possible to miss a few HHs. However, we can com-
pletely diminish this limitation with some memory expenses
by keeping a flow’s starting time-stamp and updating that
at the end of each Twt.
Corner Cases. Using the IPG metric for HH detection, there
could be a case where a flow only contains two packets
back to back (i.e., low IPG). Do we treat such flows as
HH using our proposed approach ?. The answer is no. As
we discussed in Section 3.2, to resolve this issue, we use
multiple timeslots to decide whether the flow is HH or not.
Also, we initialize IPGw−1

f with the same value as IPGth.
If the flow has a lower IPG with only a few packets, there
is a small probability of reducing IPGw−1

f significantly. It
is also unlikely that these types of flows survive in multiple
timeslots with low IPG.

Since we choose a small timeslot (Twt) to update the τf
as discussed in Section 3.2, there could be another corner
case: is the proposed approach limited detecting the HH
flows for small length TW only? Note that we use Twt to
update the τf metric for keeping the throughput state of a
flow. There is no direct relationship between the timeslot
and the length of the time window. The detailed discussion
can be found in Section 3.2.

5. EXPERIMENTAL RESULTS

We analyze the performance of HK-IPG using the Tofino
HW switch implementation with real traffic traces and
compare it with the state-of-the-art. We detect HHs using
different flow ID definitions such as 5-Tuple, source IP, and

Figure 12: Comparison of the proposed algorithm with the
state-of-the-arts. Figures (a), (b) and (c) show the missed
HH flows due to memory resets.

destination IP. Furthermore, four different measuring time
intervals are investigated: 1, 5, 10, and 60 Secs.

5.1. Experiment Setup

Testbed. We evaluate the performance of our proposed IPG
based HH detection method on a Barefoot Tofino switch
ASIC (Edgecore Wedge 100BF-32X). We use the FPGA-
based OSNT [26] and the DPDK-based TRex [27] as the
traffic generators on an x86 server (Intel Xeon D-1518) with
10G SFP+ interfaces connected to the Tofino switch under
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Figure 13: Figures (a), (b) and (c) illustrate the overall accuracy and compare with HK-Count.

Algorithm 1: Proposed Algorithm: HK-IPG
1 Input: A packet Pj(1 ⩽ j ⩽ N) belonging to flow ID f .
2 Get table index i from h(f), where i ∈ T = (1, 2, ..,m).
3 if flag = false then

/* Case 1 */
4 flag ← true;
5 fi, IPGw−1,i

f , TSl,i
f , τ if = f, IPGinit, TSc, 0;

6 else
7 if f = fi then

/* Case 2 */

8 if TSc > TSl,i
f then

9 IPGc
f = TSc − TSl,i

f ;
10 IPGw−1,i

f = α · IPGw−1,i
f + (1− α) · IPGc

f ;

11 TSl,i
f = TSc;

12 else
13 IPGc

f = TSc + Twt − TSl,i
f ;

14 IPGw−1,i
f = α · IPGw−1,i

f + (1− α) · IPGc
f ;

15 TSl,i
f = TSc;

16 match on IPGw−1,i
f , set metadata.tau as an action;

17 τ if= τ if + metadata.tau;
18 else

/* Case 3 */

19 if IPGw−1,i
f ⩽ IPGth then

20 IPGw−1,i
f = IPGw−1,i

f + k;
21 else
22 (f, IPGw−1,i

f , TSl,i
f , τ if =

f, IPGinit, TSc, 0);

test (DUT). Our proposed design, implemented in P4, is
executed on the Tofino switch. The traffic generators replay
the real time traffic traces to the Tofino switch. The running
algorithm detects the HH flows on run-time and informs the
controller for further processing.
Dataset. We use the CAIDA-2016 [17] ISP backbone link,
IMC-10 [21] data center, and MAWI-20 [22] WIDE back-
bone traces for evaluation.
CAIDA16. The traffic trace is around 60 Secs and contains
20 Million packets and 800K flows. We split this trace into
1, 5, and 10 Secs small chunks. The 5 Secs chunk contains
around 2 Million packets, and 150K flows, while the 10 Secs
chunk carries about 4.5 Million packets and 280K flows.
MAWI20. The WIDE backbone traces are 15 minutes long

with 600K packets (4000 flows) per second.
IMC10. The data center traces are 20 minutes long with
approximately 15K packets (200 flows) per second. We
replay the packets at a higher rate (i.e., about 3500 flows
per second), following the exact state-of-the-art [10].
Implementation. For the programmable switch ASIC, the
P4 pipelines of HK-IPG (i.e., around 500 lines of code
[23]) algorithm is implemented using the Tofino Native
Architecture (TNA). A single Table is maintained with m
number of memory slots. Each slot contains four values:
32-bit flow ID, 16-bit IPGw−1

f , 16-bit TSl
f , and 8-bit τf .

Total memory use is calculated by m×72(bits). For setting
the weighted IPG threshold, we assume a default packet size
of 1000 Bytes. Also, the value of α is set to 0.99 for the
EWMA calculation. Flows above 1 Mbps are considered as
HHs. We get around the same results for other higher HH
threshold values.

5.2. Evaluation Metrics

F1 Score, Recall and Precision. We define as TP (True
Positive) those HH flows which are correctly detected, FP
(False Positive) those flows which are non-HH but detected
as HH, and FN (False Negative) the flows which are HH
but detected as non-HH. We evaluate the Precision (Pr =

TP
TP+FP ) and Recall (R = TP

TP+FN ) metrics, from which we
derive the F1 score as 2·(R·Pr)

(R+Pr) .
Bandwidth. We measure the control channel overhead in
bandwidth (kB) per sec for different reporting time intervals.
Throughput and Latency. We measure the computational
complexity of our proposed algorithm in terms of throughput
and latency on the Tofino switch with and without the
proposed algorithm. The throughput defined in packets per
second is measured with TRex, while latency is measured
one-way end-to-end using OSNT.

5.3. Accuracy

As discussed in Sections 1 & 2, in most of the existing
disjoint time window-based algorithms, we can miss the true
HH flows because of resetting the previous interval memory,
as shown in Figure 1. We compare our proposed algorithm
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Figure 14: Accuracy with IMC10 and MAWI20 traces.

with the state-of-arts. We perform the Tofino HW analysis
to compare our solution with HK-Counter. To compare with
other existing algorithms, we perform the simulator analysis
since it is challenging to implement all the other state-of-arts
on Tofino switch ASIC and some of the P4 source code’s
unavailability. We use the 60 Secs long CAIDA 2016 trace
[17] to detect the true HH flows for 1 Sec TW by applying
the sliding window approach. The complete simulation and
P4 code are available on GitHub [23]. To find the true
missed HH flows due to resetting the counters in every 1 Sec
TW, we split CAIDA traces into 1 Sec TWs and evaluate
the true HH flows. Second, we apply state-of-art algorithms
to detect the number of missed HH flows out of true HH
flows due to reset counters. In the same way, we use our
algorithm to detect the number of missed HH flows. The
same steps are performed for IMC10 and MAWI20 traces.

Figures 12 (a), (b) and (c) show that our proposed
algorithm can detect most of the missed HH flows. Only
0.2-5.0 % of true HH flows are not detected by HK-IPG,
while up to 20% of true HH flows are not exposed in the
case of state-of-art algorithms.
Impact of missing HH flows. As discussed in Section 2,
if we miss 15-25% of HH flows, around 30% of bisection
bandwidth can be impacted for load balancing in data center
networks. Also, we analyze the impact of HH detection
on other real-time applications such as QoS for the mobile
network, discussed in detail in Section 6.

We assess the impact of memory and the duration of
measuring time-interval on precision and recall. Figures 13
(a), (b), and (c) present the results of the HK-IPG and HK-
Count algorithms on the Tofino switch ASIC. We observe
that our proposed solution can detect HHs with high accu-
racy compared with the HK-Count approach. We analyze

Figure 15: Bandwidth Utilization

the performance for different measuring time intervals (i.e.,
5 and 10 Secs) and find that precision and recall values
are consistent for larger memory sizes. For smaller memory
sizes (i.e., 18 KB), the probability of evicting the HH flows
from the data structure increases.

For larger memory sizes, the F1 Score value is above
0.90, confirming that precision and recall are balanced
enough to provide high accuracy. Also, we evaluate our
proposed algorithm with different flow definitions and other
real traces, IMC10 [21] and MAWI20 [22], as shown in
Figure 14. We achieve high accuracy for both data center and
WIDE backbone network traces compared with the existing
counter based approach.

5.4. Bandwidth Utilization

Figure 15 compares the amount of data exchanged be-
tween a switch and a controller. We analyze the performance
using CAIDA traces by setting 1 Mbps as the threshold
for different reporting times. The switch reports the HH
flows to the controller when they turn into the HH. It is
confirmed from Figure 15, our proposed algorithm can save
a significant amount of control plane traffic, around two
orders of magnitude compared to the state-of-the-art.

5.5. Computational Complexity

To examine the computational complexity of the pro-
posed approach, we perform throughput (TP) and latency
(LAT) tests using CAIDA traces and compare them with
state-of-art algorithms. Since only a few existing algorithms
are implemented on P4 switch ASIC, and there is a lack of
availability of TNA (Tofino Native Architecture) P4 codes,
we choose HK-Count for comparison. First, we measure TP
and LAT without using any algorithm (i.e., just output packet
forwarding without applying any actions). In the second
case, we measure the performance with the HK-IPG and
HK-Count algorithms. As we can observe in Figure 16, the
throughput is not affected in both cases, as expected from a
line-speed hardware pipeline. The difference in the latency
with and without the HK-IPG algorithm is 176 nanoseconds.

5.6. Resource Utilization

We observe no significant difference in maintaining per
user state in the P4 switch ASIC compared with existing
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Figure 16: Performance on Tofino Switch ASIC.

TABLE 2: Additional HW Tofino resources used by HK-
IPG, running on top of a baseline switch.p4.

Resource Baseline
(%)

HK-IPG with
Baseline(%)

Additional
usage(%)

Exact Match Input Crossbar 16.9 21.6 4.7
Hash Bit 20.1 28.5 8.4

Hash Distribution Unit 16.7 45.8 29.1
Meter ALU 12.5 22.9 10.4

SRAM 23.6 25.1 1.5
TCAM 21.9 22.2 0.3

VLIW Instruction 12.8 16.7 3.9
Exact Match Result Bus 18.8 27.6 8.8

algorithms. As discussed in Section 5.1, for maintaining
per user state in P4 switch ASIC, 72 bits are required
for our proposed approach, while other existing algorithms
generally need 32 bits for flow Id and 32 bits for counters.
We run our algorithm on top of a baseline switch.p4 [24]
(P4 Studio SDE 9.3.1) compiled on Tofino switch ASIC.
In Table 2 (additional usage), we can see that all resources
use around less than 10%, except for the hash distribution
unit. The hash distribution unit is used to map hash output
to Packet Header Vector containers without using any table
lookup. Stateful ALU is used in each stage to read and write
operations in the register array. SRAM is used for storing
the metrics of the HK-IPG algorithm.

6. Use Cases

QoS-HH. After HH detection, different traffic management
and control actions are typically carried at different time
scales, e.g., DCTCP [28], DDoS attack [29], IntSight [30],
H-UPF [31]. To analyze the proposed approach, we evaluate
the Flow Completion Time of the pipeline configured to send
all IPG detected HHs to lower priority queues. At the same
time, delay-critical flows go to a higher priority queue.

As shown in Figure 17(a), we consider a use case
scenario of a mobile network implemented by adding our
HK-IPG.p4 functional blocks to a mobile gateway P4
pipeline implementation (vEPG.p4) [32]. The P4 code is
compiled in a Tofino hardware connected to three different
hosts acting as eNodeB, Application Server, and Upstream
Router facing the Internet.

We use Stratum [33] to configure the port shaping rate
from 10G to 1G interface to create a congestion environ-
ment. The required entries, such as match-action parameters
(i.e., IPGw

f and τf ) discussed in Section 3.2 and other
forwarding entries, are pushed using P4 Runtime [34]. 20

different TCP flows sharing the available link bandwidth,
considered delay critical, are taken to download the 15
Mbytes data from the Internet. We evaluate FCT for each
delay critical TCP flow.

We consider three different test-case scenarios. First, as
a traditional setup, we observe the FCT of delay-critical
flows with concurrent HH flows (occupying 40% of link
bandwidth with around 80 Mbps flow rate). In the second
and third cases, we demonstrate the FCT gains when HH
are detected and sent to lower priority queues using HK-
IPG and HK-Count approaches. Since the higher priority
queues are served as a strict priority over lower priority
queues in Tofino, we can see the difference in FCT for the
different scenarios (Figure 17(b)). The FCT can be improved
by around 16-24% using our proposed IPG based approach.
Other Applications. The proposed approach can also be
used for other application tasks. We briefly sketch two
applications leveraging the IPG metrics.
Microbursts detection. Short-lived traffic surges are known
as microbursts. In the data-center network, microbursts can
be the cause of packet loss due to fully utilized queues. In
the recent work [7], microburst culprits are detected in pro-
grammable switch ASIC using a sliding window approach.
However, the existing approach supports a single queue to
detect microburst flows. In reality, there are multiple queues
in a switch, which turns out to be very challenging to detect
microburst flows within multiple queues at a time. In our
case, there is no need to rethink the proposed HK-IPG
algorithm, which can be directly used to detect HH flows
on a microsecond scale (around 92% accuracy in our initial
evaluation) with multiple queue support.
Network-wide telemetry. Carrying per switch IPG metric in
packet headers through In-band Telemetry (INT) [35] could
open new avenues to identify network performance issues
and provide novel visibility means for root cause analysis
through machine learning methods applied to network-wide
per-hop IPG metrics over time. The intuition being ex-
plored [36] is that IPG variations over time across different
flows and network paths can be valuable insights to track
performance issues throughout the network, eventually back
to the source.

7. RELATED WORK

In this section, we discuss in detail the related works.
IPG analysis has been employed in some networking ap-
plications [37] [38] [39], but never to the HH detection
problem to the best of our knowledge. In the past, the
detection of heavy flows was performed outside the data
plane in software collectors. Network devices employ packet
sampling and exported statistics using well-known protocols
such as NetFlow [40] or sFlow [41] to lower overheads and
data collection bandwidth at the cost of estimation accuracy.

Recently, the uptake of programmable data planes has
enabled the possibility of involving switches in the traf-
fic analysis process. Specifically, several efforts have been
proposed to count every packet belonging to every flow
and store this information in probabilistic data structures,
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i.e., sketches [9], [11], [42], [43], to be implemented in
the switch ASIC and exported at regular intervals to a
central controller for further processing analysis. Some other
proposals have suggested counting only on the heavy flows
[10], [12], [25] to increase the detection accuracy as much as
possible. The idea is to dynamically evict from a probabilis-
tic data structure, stored in the switch ASIC, the contribution
of short flows, thus minimizing as much as possible the
effect of small flows estimating of the large ones. In all
cases, these counting algorithms rely on a periodic reset of
the switch’s memory at the end of each TW. This makes
those solutions prone to the problem shown in Figure 1.

Implementing a sliding-window based algorithm would
circumvent the aforementioned issue. In this context, Me-
mento [19], WCSS [18], SWAMP [44], and [45] maintain
the last n packets of a network stream to detect HHs.
However, implementing those data structures considering
the restriction of today’s programmable data planes is not
possible. Finally, other approaches decoupled from using
windows by proposing a prefix tree can expand or collapse
over time [14], [46]. However, in this case, due to limitations
in the number of register accesses, these algorithms are not
feasible for today’s programmable switches.

Other efforts, such as [47] storing the ingress time of the
first and last packets of a specific flow and accumulating the
size of each incoming packet, have been considered to detect
heavy flows in the P4 switch. To decide whether the packet
belongs to an already existing flow or not, the time interval
between the last and current packet is calculated and com-
pared with the pre-defined timeout. However, optimizing
the timeout value is difficult, leading to a false positive. In
[48], an algorithm is proposed for incremental deployment

of SDN programmable switches in legacy infrastructures to
monitor network-wide heavy-hitter flows. This approach is
based on the time window, wherein each time window, the
programmable switches dynamically store only the heavy
flows, and all the statistics are reset at the end of the time
window. This strategy can miss the hidden heavy hitters
discussed in Figure 1. In [49], heavy flows are detected
within the switch and re-routed, colliding on the same
path in multi-rooted network topology. There is multistage
processing in detecting and re-routing heavy flows. Based
on the flow id, the flow size is compared with the pre-
defined threshold in a given time window at the time of
each incoming packet. Then, reset the previous memory at
the end of the fixed time window.

8. CONCLUSIONS AND FUTURE WORK

We presented a completely different approach using Inter
Packet Gap (IPG) analytics to detect heavy hitters entirely
in the data plane. Our proposed method supports a push-
based approach, where the data plane reports the controller
simultaneously when the flows turn into heavy hitters. Our
design has been implemented within the constraints of a
programmable switch ASIC. Also, it is easy to be adapted
to most of the existing counter-based algorithms with high
accuracy. We performed our evaluation on the Tofino switch
ASIC using real traces and achieved high accuracy and low
control channel overhead compared to the state-of-art algo-
rithms. We showcase the QoS benefits of blending dataplane
IPG-based HH detection with dynamic queue allocation.

Our future work includes a set of flourishing paths. We
are looking into probabilistic data structures like sketches in-
stead of simple hash tables on bit space optimization. Along
that path, we are investigating how IPG-based methods
could be generalized beyond HH detection applications for
network-wide anomaly detection using INT for IPG metric
observability [36]. The use of adequate query languages of
IPG metrics (per device and network-wide after INT collec-
tions) is another investigation piece for novel applications
such as root cause analysis.

Finally, regarding use cases of IPG metrics for HH
rankings, we are working on improved building blocks for
hybrid SW/HW P4 pipelines [31] applied to 5G user plane
functions, where HH flows are kept in the P4 HW pipeline.
At the same time, x86 SW handles lightweight flows, pro-
viding a scalable and cost-efficient sweet spot design for
VNF HW acceleration.
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