
Slicing and Allocation of Transformable Resources
for the Deployment of Multiple Virtualized

Infrastructure Managers (VIMs)
Leandro A. Freitas⇤, Vinı́cius G. Braga⇤, Sand L. Corrêa⇤,

Lefteris Mamatas‡, Christian E. Rothenberg†, Stuart Clayman§, Kleber V. Cardoso⇤
⇤ Universidade Federal de Goias, Goiania, Brazil – Email: leandroalexandre,viniciusbraga,sand,kleber@inf.ufg.br

† University of Campinas, Campinas, Brazil – Email: chesteve@dca.fee.unicamp.br
‡ University of Macedonia, Thessaloniki, Greece – Email: emamatas@uom.gr
§ University College London, London, U.K. – Email: s.clayman@ucl.ac.uk

Abstract—In the context of 5G networks, the concept of

network slicing allows network providers to flexibly share in-

frastructures with mobile service providers and verticals. While

this concept has been widely investigated considering mostly

the network issues, in this work we focus on a slice as a

service model that takes into account the data center (DC)

perspective. In particular, we propose an architecture where

DC slices are created over transformable (compute and storage)

resources, which can be virtualized or de-virtualized on-demand.

Then, on top of each slice, an on-demand VIM is instantiated

to control the allocated resources. As a realization of this

architecture, we introduce the DC Slice Controller, a system able

to deploy and delivery full operational VIMs based on generic

templates. We evaluate the effectiveness of the proposed system

deploying three VIMs (VLSP, Kubernetes, and OpenStack) over

commodity hardware. Experimental results show that the DC

Slice Controller can timely provide a slice even when dealing

with sophisticated VIMs such as OpenStack. As an example, we

were able to delivery a fully functional OpenStack in four nodes

in less than 10 minutes.

I. INTRODUCTION

5G networks are expected to trigger new business models,
allowing the entry into the market of vertical industries (e.g.,
automotive and manufacture) as well as over the top (OTT)
service providers that will operate on the top of the network
infrastructure based on a set of predefined service level agree-
ments (SLAs) [1]. In this scenario, 5G networks will have
to support different type of services (e.g., enhanced mobile
broadband, massive machine-type communications, and ultra-
reliable and low latency communications) with very distinct
needs but over the same infrastructure.

Clearly, a one-size-fits-all architecture will not be able to
realize this future services. In order to cope with the above
requirements, the concept of network slicing has been pro-
posed as a mean of creating logical, full-functional partitions
of network infrastructures tailored for the type of service to
be provided [2]. Each network slice represents a virtualized
independent end-to-end network allowing network providers to
deploy different architectures concurrently. Thus, the concept

of slice is a natural abstraction to separate multiple tenants
that operate on the same physical resources.

At the same time, driven by the need to support a flexible,
scalable, and elastic mobile network, network providers are de-
ploying cloud-like infrastructures to host Virtualized Network
Functions (VNFs). For example, Telefónica has announced
a plan to virtualize its network domains using a virtualized
infrastructure built from commodity cloud tools and hardware
sit on regional data centers [3]. This infrastructure will support
IT-like applications (e.g., value-added service, operational sup-
port systems, and online charging system) as well as network-
specific functions such as a virtualized core function, cloud
RAN, and virtual customer premises equipment (vCPE) [4].

In this context, network slicing is one of the components of
a bigger picture for delivering 5G services. Another important
component to fully realize these services is the cloud or
data center (DC) slicing, as it will ensure that the attributes
prescribed to the network are also propagated into the data
centers that host the services. While network slicing has been
widely investigated in the last few year [5], [6], [7], cloud
slicing and how it combines with network slicing still lacks
discussion in the context of 5G communication networks.

Within the NECOS (Novel Enablers for Cloud Slicing)
project, we envision a slice as a service (SlaaS) model to
fill this gap. In our proposal, a slice is a grouping of physi-
cal and/or virtual (network, compute, storage) resources that
can accommodate service components independently of other
slices. The enhanced management for such a slice enabled
infrastructure creates both DC and network slices on-demand,
and connects and (re)configures them as appropriate to provide
the end-to-end service.

Complementary to this view where optimized slices are
dynamically created for a given service or category of services
is the notion of on-demand Virtualized Infrastructure Man-
agers (VIMs) automatically deployed to control and manage
the resources of a given slice. Differently from traditional
cloud computing setups where a single VIM is usually in-
stantiated for the whole infrastructure, an on-demand VIM is
dynamically deployed for each slice. As a consequence, the978-1-5386-4633-5/18/$31.00 c�2018 IEEE

VIM itself becomes a slice parameter and can be chosen and
configured according to the service needs. For example, some
services can be better satisfied by lower level virtualization
tools such as Xen or KVM, while others will be better served
by container platforms such as Docker or Kubernetes. Another
advantage of creating on-demand VIMs is that they can be
instantiated on the top of the slice, and as such, they do not
need to be aware of the slice abstraction. As a consequence,
vanilla versions of traditional solutions such as OpenStack,
Kubertenes, OpenNebula, and OpenVIM can be used without
modifications.

The architectural elements that are required to support the
SlaaS and the on-demand VIM model, as well as how they
all fit together for service provisioning is introduced in [8].
In this paper, we enhance that work by i) introducing the
concept of transformable resources, that is, those which can
be virtualized and de-virtualized on-demand; ii) detailing the
design of one of its component, the DC Slice Controller,
which is able to instantiate a DC slice and deploy an on-
demand VIM on top of the slice; and iii) implementing, as a
proof of concept, a prototype of this system using generic
templates of three distinct VIMs (OpenStack, Kubernetes,
and VLSP). We evaluated our prototype through experiments
with commodity hardware in which the three VIMs were
deployed. The experimental results show that the DC Slice
Controller can timely provide a DC slice even when dealing
with sophisticated VIMs such as OpenStack. For example, we
were able to delivery a fully functional OpenStack in four
nodes in less than 10 minutes. The DC Slice Controller can
operate either in large clouds or less resourceful edge data
centers.

The rest of this paper is organized as follows. Section II
presents the related work. Section III reviews the main
concepts, components, and abstractions required to support
SlaaS in a multi-tenant environment. The DC Slice Controller
architecture is detailed in Section IV. Section V describes
the prototype and experimental results. Finally, Section VI
concludes the paper and outlines future directions on this
work.

II. RELATED WORK

There are two categories of related work to be considered
for our approach of slicing data center resources in the context
of 5G network systems. The first category is about network
slicing, while the second involves testbed based solutions
focused on dynamic provisioning supported by image man-
agement and deployment.

In the first category of related work, the Third Genera-
tion Partnership Project (3GPP) has defined a new network
architecture for network slicing support [9]. This architec-
ture is service-based, meaning that whenever possible, the
architectural elements of the system are defined as network
functions that offer their services via interfaces to other ones
that are allowed to consume their services. In this architecture,
a network slice refers to a set of features and functionalities
that form a complete network service for the user equipment.

Slices are instantiated from predefined templates that define
specific functions to be instantiated for a given service re-
quirement. Tenants request a slice based on the templates
available in the catalogue. An arbitration entity then, grants
or denies the requests based on resource availability. Once
a slice request is granted, its relevant information is propa-
gated to the appropriate network components and the slice
is installed. Several works have been proposed based on the
3GPP 5G system architecture. A centralized capacity broker
was introduced in [10] in charge of network slicing admission
control operations. This component was significantly improved
in [11] to support optimal allocation and configuration of
Radio Access Network (RAN) slices based on on-demand
network slice requests. In [12], the authors presented a system
architecture in charge of creating network slices in massive
IoT scenarios building on IoT Brokers features and a 5G
Network Slice Broker. However, the 3GPP system architecture
specifications define network slicing only within the scope of
3GPP specified resources, i.e., that what specifically composes
a public land mobile network (PLMN) [2]. Thus, data center
resources are not explicitly considered in the architecture.

Some notable approaches directly focused on network ar-
chitectures supporting network slicing and VNFs are research
projects such as 5G NORMA [13] and SONATA [14]. The
5G NORMA project introduces a 5G system architecture
based on the concepts of network slicing, network function
decomposition, and software-defined mobile network control.
In this architecture, a logical network is decomposed into
individual functional blocks. A network slice then becomes
a composition of some of the functional blocks linked into
a chain. Two Software Defined Network (SDN) controllers
are then designed to control the full set of functional blocks,
one for the functional blocks that are common to multiple
slices and the other for those blocks that are dedicated per
slice. The SONATA project focuses on providing a service
programming and orchestration system to develop, deploy,
and orchestrate VNFs. The concept of network slicing is
also supported through a slice manager plugin that can either
use an external slice orchestration system or implement slice
management functionalities by itself directly controlling SDN
forwarding elements in the network. In both projects, however,
network slicing is concerned to network resources and do not
address data center resources explicitly.

Still in the context of networking slicing, it is important to
mention some works that consider data center resources as part
of the core network [15], [16]. However, in such works, the
data center function is limited to host VNFs. The mechanism
and abstractions to support the slice concept inside the data
center is not discussed. Other works [17], [18] analyze the
resource optimization problem related to networking slices and
thus are as a complement to our work.

In the second category of related work are a number of
testbed management solutions that allow the provisioning
of software stacks based on image management tools. This
includes Emulab [19], FIBRE [20], and FutureGrid [21]. In
these solutions, one or more level of abstractions allow the

automatic deployment of software stacks on a large number
of virtualized and non-virtualized resources. This is usually
achieved by creating template images that are stored in a
common repository and adapted according to the environment
in which the image will be deployed. Similar to these works,
our DC Slice Controller uses generic templates to instantiate
on-demand, fully operational VIMs. However, our work target
data center environments instead of testbeds. Additionally, the
DC Slice Controller provides the customization of the template
according to the information provided by the tenant before
delivering the VIM.

III. PROVIDING SLICES AS A SERVICE

Clayman [8] introduces an overview of the mechanisms,
components, and abstractions that can be utilized in order to
provide a SlaaS model based on dynamic VIM instantiation. In
this view, a network provider owns and operates the physical
infrastructure, which includes computation, communication
and storage resources. Verticals and OTTs, also known as
tenants, pay for providing their services over the network
provider’s infrastructure, which is shared among these entities.
Since each tenant has his own service requirements, a subset
of the resources is made available for him as a slice, and each
slice is isolated from the others.

In Clayman’s model, a slice can be seen as a collection of
physical resources spread around many data centers, including
large centralized, medium, and mobile edge data centers.
These resource are then dynamically connected at run-time to
create an end-to-end networked system. Within a data center,
the set of resources allocated to a slice is called a DC slice
and usually encompasses compute and storage resources. In
addition, a DC slice has all the properties expected from a
slice abstraction, that is, i) it can be controlled and managed
independently from any other DC slice; and ii) it can grow or
shrink dynamically. However, different from other approaches
designed for cloud federation, in Clayman’s model, each DC
slice has its own VIM that is deployed on-demand on top
of the DC slice. As a consequence, the VIM choice is not a
feature pre-determined once by the network provider, but can
be an option for the tenant. It also means that the tenant now
can manage, configure, and control their own VIMs.

Clayman’s model also define a similar slice abstraction for
network resources, referred to as Network slice. A network
slice is created on-demand to connect two DC slices. Thus,
it can be seen as a set of links that connects two DC
slices. As part of the isolation principal, a network slice is
controlled and managed independently from any other network
slice. It is also managed and configured by its own Network
Infrastructure Manager (NIM), which is deployed on-demand
once the network slice is instantiated.

In summary, in Clayman’s model a slice is a collection of
DC slices connected by Network slices, each one with its own
VIMs and NIMs. This view is illustrated in Figure 1 together
with the main layers needed to support it. In the following, we
first describe these layers, then we highlight the steps required
to create a slice using the functional elements of these layers.

• Orchestration Layer: manages the slice lifecycle (i.e. slice
instantiation, maintenance, and termination) and coordi-
nates the different DC and Network slices of a given
slice to act as a single abstraction to ensure an optimized
allocation of the necessary resources and connectivity.

• Slice Control Layer: acts as a point of control and
management of DC and Network slices. For each data
center, there will be a DC Slice Controller in charge of
creating DC slices within the data center, allocating the
required compute and storage resources, and deploying
an on-demand VIM based on the tenant specification.
Similarly, for each network domain, there will be a
Network Slice Controller in charge of instantiating a
network slice between two DC slices and deploying the
on-demand NIM.

• Infrastructure Layer: comprises all physical resources
required to delivery 5G services including cloud nodes,
networking nodes together with their associated links.

Using for instance a portal, the tenant can request a slice
with certain properties and service level details. This request
is sent to the Orchestrator that maps the slice specification
into compute, storage and network resources and decides
on which parts of the infrastructure to allocate them. The
Orchestrator then contacts all the relevant infrastructure Slice
Controllers (DC and Network) and ask them to create a slice
in their domains. Each Slice Controller allocates the necessary
resources, instantiates the on-demand VIM/NIM to manage
the resources of the allocated slice part, and returns to the
Orchestrator the details required to access the VIM/NIM. The
Orchestrator interacts with the VIMs and NIMs to glue the
separate slice parts together, completing the slice topology.
Finally the service is deployed over the slice. During its
lifecycle, the slice can grow or shrink to accommodate the
demand. When the slice is terminated, the resources are
deallocated.

Transformable Resources
In Clayman’s model, a DC slice comprises bare metal

resources and thus, no tenants share physical resources. Al-
though the demand for bare-metal cloud services has increased
given preferences for services with high levels of performance
and security [22], limiting the resource allocation to this single
model may be too restrictive.

To overcome this limitation, in this work, we propose the
concept of transformable resources, that is, a resource that
can be used on isolation (bare metal) or shared (virtual),
depending on the demand. Examples of bare metal resources
include servers, switch or routers, while virtual resources (VR)
are virtualized instances of a bare metal hardware. These
instances are created through hypervisors such as XEN, KVM,
FlowVisor, OpenVirtex. Figure 2 illustrates this concept.

A transformable resource can thus be virtualized or de-
virtualized on-demand. To implement this concept, the hy-
pervisor itself has to be automatically installed/unstalled on-
demand. Again, the use of generic templates and images can
help on this task.

Fig. 1. Big picture for delivering slices as a service.

Fig. 2. A resource that can acts as bare metal or virtual depending on the
demand.

Applying the concept of transformable resources to Clay-
man’s model, three types of DC slices are possible:

• Type I, formed by bare metal resources only;
• Type II, composed by virtual resources only; and
• Type III, a combination of bare metal and virtual re-

sources.
Figure 3 shows two examples of DC slices Type I on the left,

and two examples of DC slices Type III on the right. We can
see that the DC slices 1 and 2 do not share physical resources,
while DC slices 3 and 4 do. Naturally, DC slices Type II and
Type III are VIM dependent, i.e, they can only instantiate
VIMs that support creating virtual resources inside a virtual
resource (e.g. creating containers inside virtual machines).
Example of such VIMs are Kubernetes and VLSP.

Interestingly, scenarios for DC slices Type II and Type

III are becoming more frequent. The obvious use case is
development environments. For example, the development
environment of a network provider could be instantiated as
a DC slice Type II. Similarly, production-ready environments
can also benefit by using such slice types as lightweight
virtualization technologies are as a complement to traditional
ones.

IV. DC SLICE CONTROLLER

This section describes our design for a DC Slice Controller
system. Particularly, in this work, we focus on creating DC
Slices Type I. DC Slice Types II and III will be addressed in
future work.

Figure 4 illustrates the general architecture of the DC Slice
Controller. In the figure, we distinguish three layers: the Slice
Controller Interface, the slicing service layer, and the resource
(infrastructure) layer.

The Slice Controller Interface allows administrators (net-
work providers) and users (tenants) to interact with the system.
Using this interface, the administrator can maintain the data
center resource inventory while tenants can define DC slice
requests.

At the center of the architecture is the slicing service layer,
which actually creates the DC slices and instantiates on-
demand VIMs based on the tenant request. The first com-
ponent of this layer is the Slice Manager, composed by two
subcomponents: User Manager and Resource Manager. The
Resource Manager manages all of the resources in the data
center and keeps the resources and their states up to date.

Fig. 3. Examples of DC slices Type I and Type III.

The User Manager component manages all of the users that
can access the DC Slice Controller in that site, confirms a
user’s identity, verifies their permissions and prevents undue
inappropriate access to these resources.

The Slice Creator receives slice requests from the Slice
Controller Interface and interacts with the Resource Manager
and the User Manager to determine if it is possible to create
a new slice. To this end, The Resource Manager interacts
with the Slice Information Store, which keeps track of which
resources have been allocated to which slice. If the slice
creation is possible, the Slice Creator registers the new slice
(and resources) in the Slice Information Store and contacts the
VIM Factory.

The VIM Factory component is able to allocate a VIM
of a particular type, and configure it to use the resources
which have been picked by the Slice Creator. In order to
actually deploy the appropriate VIM template, the VIM Fac-
tory interacts with the Placement Management component,
which is in charge of choosing which of the selected nodes
will run specific VIM components (e.g. master and worker
components). The Placement Management decides the role of
each selected node and return the decision to the VIM Factory.
Then, the VIM Factory deploy the VIM component templates
in the appropriate nodes and configures them.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

We implemented The DC Slice Controller system using
a set of technologies. We developed The Slice Controller
Interface component using a web-based user interface built
on top of Bootstrap [23], along with AngularJS [24]. The
implementation of the internal components of the slicing ser-
vice layer has been implemented using the Control and Man-
agement Framework (OMF) version 6, specially the Resource

Management Framework (or OMF Broker) and the Resource
Controllers (or RCs) [25], [26]. The OMF framework contains
the required tools to load pre-configured images, allowing the
installation, configuration and execution of software stacks in
a timely manner. In the following, we detail the web-based
user interface (Slice Controller Interface), the testbed we have
setup to conduct the experiments and results.

The web interface performs REST calls to the OMF Broker
in order to perform the operations related to the slice creation.
Figure 5 illustrates the web interface for creating a slice.
Figure 5(a) illustrates the interface where the tenant enters the
most basic information related to the slice, such as slice name,
slice owner, data and time period in which the slice must exist,
and a description of it. After this, the tenant selects the type of
resources that will compose the slice and their configurations
in term of processing and memory capacity. Figure 5(b) and
Figure 5(c) show the selection of the amount of resources
related to bare metal and Virtual Machine, respectively.

After selecting these resources, the tenant chooses the VIM
he wants for managing the slice resources. Figure 6 presents
a situation in which Kubernetes is selected and some cus-
tomized information is provide in order to properly configure
the template. For each type of VIM, there will be a set
of information that is specific to the tool. The IETF [27]
describes a technology independent information model for
network slicing. As next steps, we will include new parameters
beyond those presented in Figura 5. This will allow the
network operator to define in greater detail the requirements
of slice users.

In order to validate our implementation of the DC Slice
Controller system, we setup a testbed composed of one server
hosting the DC Slice Controller components and four other
nodes. This testbed is illustrated in Figure 7. All nodes
have the same hardware configuration, which allows images

Fig. 4. DC Slice Controller Architecture

generated on one node to be compatible with the others. Each
node has an Arduino, called Chassi Management Controller
(CMC), that is connected to the CMC network. The CMC is
used to turn on and turn off the node, as well as to check the
status (on/off) of the node. The other interface of the node is
connected to the Control network, from which the VIM images
are installed and from which the node communicates to the
other nodes.

We created pre-configured images for three distinct VIMs:
VLSP, Kubernetes, and OpenStack. For the VLSP, we created
a single image with all the installed components in Debian 9
(1.8 GB). For the Kubernetes, we created two separate images,
one for the Master Node (2.1 GB) and the other for the Worker
Node (1.8 GB), both installed on Ubuntu Server 16.04. Lastly,
for the OpenStack, we created an image for the Controller
Node (2.6 GB), and another image for the Compute Node
(2.6 GB), both installed on CentOS 7 Minimal.

In order to verify the time required to instantiate an infras-
tructure with an operational VIM, we perform tests with each
of the mentioned VIMs. We collect four times: i) Load time,
the time required to load the VIM image on the nodes; ii) Boot
time, the time required to start the operating system after the
image has been applied; iii) Configuration time, in which the
necessary settings for starting the VIM are performed; and iv)
Service startup time, which represents the time for the VIM
to be running after configuration.

For each VIM, we performed 15 tests varying the number
of nodes in which the VIM should be deployed, the minimum
being with 2 nodes and the maximum being with 4 nodes.
Figure 8 shows the mean times, with the 95% confidence
interval, collected in our tests. As illustrated, the time to load
the images is the largest, and it depends on the size of the
loaded image. However, we can observe that the increase
in time in relation to the increase in the number of nodes
is relatively small, indicating the scalability of the solution.
Boot time is also related to the loaded image, and its value is
virtually the same regardless of the number of nodes used in
the tests.

The process of configuring nodes with VLSP and Kuber-
netes considers the following steps on each of the nodes:
configure the network and restart the network service. In our
tests, the time to restart the network service was higher in
Debian 9 than in Ubuntu Server 16.04, and therefore the setup
time of the VLSP service was higher than that of Kubernetes.
The OpenStack configuration is more complex, and involves
the following steps: i) to configure static IP, and hostname of
the nodes; ii) to change the configuration files with new IPs;
iii) to update the Compute Nodes list, and; iv) to change the
admin password of OpenStack.

The time taken for OpenStack to be operational from its
initialization is greater than the time of the other VIMs. This
happens because it is composed of several different modules

(a) Slice Information

(b) Selecting Hardware

(c) Selecting VM

Fig. 5. Interface for creating a slice.

Fig. 6. Interface for selecting a VIM

(e,g., Compute Service, Keystone Service, SQLDB, RabbitMQ
and Neutron Service), which makes the full service take longer
to start. VLSP is the simplest VIM, simulating many of the
features of a real VIM, so it presents the smallest service
startup time.

Finally, we ran tests loading two different VIMs at the
same time to show the ability of the DC Slice Controller
system to split the infrastructure into slices. Each of the VIMs
was loaded onto two nodes. In this sense, we perform the
process of deployment these images using multicasting. To
do this, the nodes start, enter PXE mode (Preboot eXecution
Environment), and the Slice Controller initiates the process of

loading images. This operation is performed from a Frisbee
[28] server process that is running on the Slice Controller.
Thus, nodes execute client processes that make requests to
the Slice Controller to load the images.

In Figure 9, we show the load, boot, configuration, and
service startup times for each set of tests and discriminated by
VIM. As we can see, the times to install the VIMs together are
very similar to those required to install each VIM separately.
This shows that creating two slices simultaneously does not
affect the system performance significantly.

VI. CONCLUSION

In this paper, we introduced the concept of transformable
resources and described how this concept wides previous
ideas on cloud slicing. We implemented and evaluated a
system for slicing resources in a DC. Our system is also able
to deploy and customize traditional VIMs, e.g., OpenStack
or Kubernetes, in their vanilla versions. Our experimental
results have shown that our system is able to quickly deploy
customized VIMs in different slices.

As future work, we plain to continue our implementation
efforts to complete the entire DC Slice Architecture following
our design. We also plan to evaluate the deployment of
traditional VIMs over a combination of physical and virtual
resources. We also want to investigate resource allocation
problems that may raise in a DC composed of transformable
resources under time evolving demands.

Fig. 7. Testbed used in our experiments.

VIM

0

100

200

300

400

500

600
Service
Configuration
Boot
Load

T
im

e
 (

s)

2 3 4 2 3 4 2 3 4

VLSP Kubernetes Openstack

Fig. 8. Times discriminated by VIM, and number of nodes used.

ACKNOWLEDGEMENTS

This research was partially supported by the H2020 EU-
Brazil joint call grant agreement no. 777067 (NECOS - Novel
Enablers for Cloud Slicing) funded by the European Com-
mission and the Brazilian Ministry of Science, Technology,
Innovation, and Communication (MCTIC) through RNP and
CTIC. The authors would also thank João P. Esper, Murillo
Nunes and Elton Vivot for their contributions generating the

VIM

0

100

200

300

400

500

600
Service
Configuration
Boot
Load

T
im

e
 (

s)

Kuber.|VLSP Kuber.|OpenS. VLSP|OpenS.

Fig. 9. Times discriminated by set of VIMs used in the tests.

VIM images and performing the experiments.

REFERENCES

[1] 5G PPP Architecture Working Group. (2017)
View on 5G Architecture (Version 2.0). [Online].
Available: https://5g-ppp.eu/wp-content/uploads/2017/
07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017
For-Public-Consultation.pdf

[2] Third Generation Partnership Project (3GPP). (2017) System
architecture milestone of 5G Phase 1 is achieved. [Online]. Available:
http://www.3gpp.org/news-events/3gpp-news/1930-sys architecture

[3] Analysys Manson. (2017) Telefónicaś UNICA
architecture strategy for network virtualization.
[Online]. Available: http://www.analysysmason.com/
telefonica-UNICA-architecture-strategy-for-network-virtualisation-report

[4] Luis M. Contreras and Diego R. López, “A Network Service Provider
Perspective on Network Slicing,” IEEE Softwarization, 2018.

[5] Ravindran, Ravishankar and Chakraborti, Asit and Amin, Syed Obaid
and Azgin, Aytac and Wang, Guoqiang, “5G-ICN: Delivering ICN
Services over 5G Using Network Slicing,” IEEE Communications Mag-
azine, vol. 55, no. 5, pp. 101–107, 2017.

[6] Katsalis, Kostas and Nikaein, Navid and Schiller, Eryk and Ksentini,
Adlen and Braun, Torsten, “Network slices toward 5G communications:
Slicing the LTE network,” IEEE Communications Magazine, vol. 55,
no. 8, pp. 146–154, 2017.

[7] Nikaein, Navid and Schiller, Eryk and Favraud, Romain and Katsalis,
Kostas and Stavropoulos, Donatos and Alyafawi, Islam and Zhao,
Zhongliang and Braun, Torsten and Korakis, Thanasis, “Network Store:
Exploring slicing in future 5g networks,” in Proceedings of the 10th In-
ternational Workshop on Mobility in the Evolving Internet Architecture.
ACM, 2015, pp. 8–13.

[8] Stuart Clayman. (2017) Network Slicing Sup-
ported by Dynamic VIM Instantatiation. [Online].
Available: https://datatracker.ietf.org/meeting/100/materials/
slides-100-nfvrg-3-network-slicing-support-by-dynamic-vim-instantiation/

[9] Third Generation Partnership Project (3GPP). (2017) System
Architecture for the 5G System. [Online]. Available: http:
//www.3gpp.org/ftp//Specs/archive/23 series/23.501/

[10] Samdanis, Konstantinos and Costa-Perez, Xavier and Sciancalepore,
Vincenzo, “From network sharing to multi-tenancy: The 5G network
slice broker,” IEEE Communications Magazine, vol. 54, no. 7, pp. 32–
39, 2016.

[11] V. Sciancalepore and K. Samdanis and X. Costa-Perez and D. Bega and
M. Gramaglia and A. Banchs, “Mobile traffic forecasting for maximizing
5G network slicing resource utilization,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp. 1–9.

[12] V. Sciancalepore and F. Cirillo and X. Costa-Perez, “Slice as a Service
(SlaaS) Optimal IoT Slice Resources Orchestration,” in GLOBECOM
2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–7.

[13] P. Rost and C. Mannweiler and D. S. Michalopoulos and C. Sartori
and V. Sciancalepore and N. Sastry and O. Holland and S. Tayade and
B. Han and D. Bega and D. Aziz and H. Bakker, “Network Slicing
to Enable Scalability and Flexibility in 5G Mobile Networks,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 72–79, 2017.

[14] S. Draxler and H. Karl and M. Peuster and H. R. Kouchaksaraei and
M. Bredel and J. Lessmann and T. Soenen and W. Tavernier and S.
Mendel-Brin and G. Xilouris, “SONATA: Service programming and
orchestration for virtualized software networks,” in 2017 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2017, pp. 973–978.

[15] P. Rost and A. Banchs and I. Berberana and M. Breitbach and M. Doll
and H. Droste and C. Mannweiler and M. A. Puente and K. Samdanis
and B. Sayadi, “Mobile network architecture evolution toward 5G,”
IEEE Communications Magazine, vol. 54, no. 5, pp. 84–91, 2016.

[16] Nikaein, Navid and Schiller, Eryk and Favraud, Romain and Katsalis,
Kostas and Stavropoulos, Donatos and Alyafawi, Islam and Zhao,
Zhongliang and Braun, Torsten and Korakis, Thanasis, “Network Store:
Exploring Slicing in Future 5G Networks,” in Proceedings of the 10th
International Workshop on Mobility in the Evolving Internet Architec-
ture, ser. MobiArch ’15, 2015, pp. 8–13.

[17] S. Vassilaras and L. Gkatzikis and N. Liakopoulos and I. N. Stiako-
giannakis and M. Qi and L. Shi and L. Liu and M. Debbah and G.
S. Paschos, “The algorithmic aspects of network slicing,” pp. 112–119,
2017.

[18] Z. Xu and W. Liang and A. Galis and Y. Ma, “Throughput maximization
and resource optimization in NFV-enabled networks,” in 2017 IEEE
International Conference on Communications (ICC), 2017, pp. 1–7.

[19] Emulab. (2018) Emulab - Network Emulation Testbed Home. [Online].
Available: https://www.emulab.net/

[20] Rede Nacional de Ensino e Pesquisa - RNP. (2018) Future Internet
Brazilian Environment for Experimentation. [Online]. Available:
https://fibre.org.br/

[21] von Laszewski, Gregor and Lee, Hyungro and Diaz, Javier and Wang,
Fugang and Tanaka, Koji and Karavinkoppa, Shubhada and Fox, Geof-
frey C and Furlani, Tom, “Design of a Dynamic Provisioning System for
a Federated Cloud and Bare-metal Environment,” in Proc. Workshop on
Cloud Services, Federation, and the 8th Open Cirrus Summit. Citeseer,
2012.

[22] Im, Jaeseong and Kim, Jongyul and Kim, Jonguk and Jin, Seongwook
and Maeng, Seungryoul, “On-demand Virtualization for Live Migration
in Bare Metal Cloud,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17. New York, NY, USA: ACM, 2017, pp.
378–389.

[23] Bootstrap. (2018) Bootstrap Documentation. [Online]. Available:
https://getbootstrap.com/docs/4.0/getting-started/introduction/

[24] AngularJS. (2018) AngularJS API Docs. [Online]. Available: https:
//docs.angularjs.org/api

[25] Rakotoarivelo, Thierry and Ott, Maximilian and Jourjon, Guillaume
and Seskar, Ivan, “OMF: a control and management framework for
networking testbeds,” ACM SIGOPS Operating Systems Review, vol. 43,
no. 4, pp. 54–59, 2010.

[26] Stavropoulos, Donatos and Dadoukis, Aris and Rakotoarivelo, Thierry
and Ott, Max and Korakis, Thanasis and Tassiulas, Leandros, “Design,
architecture and implementation of a resource discovery, reservation and
provisioning framework for testbeds,” in Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015 13th Interna-
tional Symposium on. IEEE, 2015, pp. 48–53.

[27] IETF, “Technology Independent Information Model for Network
Slicing,” Tech. Rep., 2017. [Online]. Available: https://tools.ietf.org/
html/draft-qiang-coms-netslicing-information-model-01

[28] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, “Fast, scalable
disk imaging with frisbee.” in USENIX Annual Technical Conference,
General Track, 2003, pp. 283–296.

