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Abstract

OpenFlow is the most prominent technology to enable Software Defined Networking (SDN).
Designed as a control interface between switches and controllers, the protocol can be considered
an instruction set to program the network forwarding logic. The first OpenFlow version
attracted attention from both the industry and academy researchers interested in SDN
promised benefits. Quickly, a toolset for OpenFlow 1.0 was available, which included switches,
controllers, test and emulation software. When the protocol standardization process started
by the Open Network Foundation, OpenFlow evolved fast and new specifications emerged in
the last years. New features empowered the protocol and created enthusiasm; however projects
of experimentation tools did not followed the OpenFlow fast pace. This work addresses one of
these gaps, implementing an experimenter friendly OpenFlow 1.3 software switch. Driven by
simplicity and basic performance requirements, the tool purpose is to be a functional and
easy option for SDN developers that want to take advantage of the benefits brought by more
recent OpenFlow versions. Overall, this project resulted in the open source release of the
first OpenFlow 1.3 switch, allowing researchers from all around the globe to prototype and

demonstrate solutions not possible until this work.

Keywords: Computer Networks; Software Defined Networking; OpenFlow; Future Internet.
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Resumo

OpenFlow é a mais proeminente tecnologia para a implementagao de Redes Definidas por
Software (RDS). Projetada como uma interface de controle entre switches e controladores,
o protocolo pode ser visto como um conjunto de instrucoes para programar a logica de
encaminhamento em comutadores da rede. A primeira versao do OpenFlow atraiu a atencao
de pesquisadores da industria e universidades interessados nos potenciais beneficios prometidos
por RDS. Rapidamente surgiram ferramentas para experimentacao em OpenFlow 1.0, incluindo
comutadores, controladores e software para testes e emulacao. Apos o inicio da padronizacao
do protocolo pela OpenNetworkFoundation, o protocolo OpenFlow evoluiu rapidamente dando
origem a novas especificagoes. As novas funcionalidades aumentaram as possibilidades de
experimentos, gerando entusiasmo. Porém, o desenvolvimento das ferramentas de experimen-
tagao nao acompanharam o mesmo ritmo do protocolo. Para preencher essa lacuna, nosso
projeto desenvolveu um comutador em software com suporte a OpenFlow 1.3. Guiado pelo
objetivo de ser simples e basicos requisitos de desempenho, a proposta da ferramenta é ser
uma opcao, facil e funcional para desenvolvedores de aplicacoes RDS buscando utilizar as
novas funcionalidades do OpenFlow 1.3. Em suma, o software desenvolvido nesse projeto
foi o primeiro comutador OpenFlow 1.3 do mundo. Lancado como projeto de codigo aberto,
possibilitou a pesquisadores de todo o mundo a prototipagem e demonstracao de solu¢des nao

possiveis anteriormente.

Palavras-chaves: Redes de Computadores, Software Defined Networking, OpenFlow, Internet

do Futuro.
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1 Introduction

Traditional computer networks have been successful in their most basic goal: making
packets originated from a source location reach a destination (SHENKER, 1995). However,
with the exponential growth in Internet users, emerging use cases and applications have
become a challenge for network carriers and administrators. These professionals should be able
to handle and to master more and more complex scenarios and configurations (FELDMANN,
2007). Furthermore, network equipments are strictly closed or only offer a small set of options
for users who want to add their own functionalities and applications. Consequently, innovation
in computer networks is compromised, compelling companies to wait for new features on

software updates or, worse, to buy a new network box.

In order to address these issues, inspired by older technologies that have followed
similar concepts and evolved (FEAMSTER et al., 2014), a new network model was designed.
The Software Defined Networking (SDN) (KREUTZ et al., 2014), is a network architecture
in which the control plane of network switches is decoupled from the forwarding plane, as
illustrated by Figure 1. The control plane is responsible for the management of one or more
elements from the forwarding plane. The applications running on top of the control plane can
program the data plane to execute determined actions according to the packet type received
by an equipment or some network event. As a result of this flexibility to control the forwarding
plane, network equipments may receive new functions and do not need to be replaced when
the need for a new functionality arises. Moreover, the network resources can be fully exploited
by some smart resource allocation, like network virtualization (SHERWOOD et al., 2009)
(AL-SHABIBI et al., 2014), leveraging the network to its full potential.

In Software Defined Networks, communication between the control and data plane
relies in some sort of protocol or Application Programming Interface (API), also known as
southbound API. The first and the most common standard southbound interface for SDN is
the OpenFlow protocol (MCKEOWN et al., 2008) (ONF, 2012b). The OpenFlow specification
describes the interaction between an OpenFlow compliant switch and an OpenFlow controller.
Basically, through OpenFlow messages a controller can program the switches forwarding logic

based on the type of packets transiting the network.
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| Feature A Il Feature X I | App A | | App B | | App C | | App X |
Control Plane
| Feature A I . | Feature X I - . -

Dataplane Dataplane

| Feature A I . | Feature X I

Dataplane

Traditional Network SDN Network

Figure 1 — Traditional and SDN models

1.1 Motivation

Among the reasons for the fast evolution of the OpenFlow protocol is the experimental
work led by researchers from Stanford, where the protocol was created. New features and
capabilities were validated on a software switch implementation, allowing researchers to create
and to try new control plane applications. Soon, advances and emerging use cases took the
industry attention for SDN and OpenFlow. This culminated in the creation of the Open
Network Foundation (ONF), an organization composed by big network players and vendors,
as by emerging startups. This organization became responsible for new OpenFlow versions
since the version 1.2 and started working on new and enhanced features, resulting in the

version 1.3 less than one year after the version 1.2.

On the other hand, OpenFlow controllers and switches did not follow the protocol ad-
vancements, notwithstanding the fast evolution, resulting in lack of alternatives to experiment

new capabilities and anticipation of new applications that could benefit from new features.

With this scenario in mind we found the emerging need to upgrade these tools, allowing
fast experimentation and validation. By keeping up the pace with OpenFlow new versions,
we expect to contribute to the future of the protocol, driving companies and researchers to
develop applications in the state of the art and enabling future OpenFlow version to be build

and tested upon our work.
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1.2 Objectives

The objective of this work is the development of a programmable OpenFlow 1.3 software
switch to enable fast, real and flexible experimentation for SDN research and education on

OpenFlow networks. To achieve this, the software switch must meet the following requirements:

1. OpenFlow protocol feature completeness. All required and optional features shall
be implemented, allowing a full OpenFlow experience, without limitations for SDN

researchers and developers.

2. Code simple, easy to prototype and extend. The code must be simple enough to
be modified by anyone with a basic level of programming and understanding of OpenFlow.
For this reason, easy insertion of features should be favored in lieu of performance.
This requisite meets research needs that goes beyond the OpenFlow specification (e.g:
the addition of new messages, new algorithms for group processing, changes to the
pipeline, etc). Also, it should encourage and helps users to search and to fix bugs quickly,

preventing work interruption while waiting for an official patch to correct the switch.

3. Straight forward integration with experimentation environments and emu-
lation tools. The switch must integrate with both real and emulated environments,
ensuring seamless communication with other switches and controllers, without great
modifications. Minor changes are acceptable due to specific platforms requirements: for

instance, different processor architectures.

Table 1 — Minimum bandwidth requirements for common Internet applications

Application Bandwidth (Mbps)
Web Browsing 0.038

Email 0.01

Telnet < 0.001

Audio Broadcasting | 0.08 to 0.375"

Video Broadcasting | 0.5 to 60 2

4. Enough performance to support common Internet applications. High perfor-
mance is not one of the project goals. However, there are features that play with the
switch packet rate. Therefore, for a significant user experience, the switch must be able

to support rates larger than the required for video broadcast, one of the most bandwidth

L Spotify - https://support.spotify.com /us/learn-more/faq/#!/article/ What-bitrate-does-Spotify-use-for-
streaming
2 Netflix - https://help.netflix.com/en /node/306
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consuming applications as shown by Table 1. This table is a mix from values obtained
by (CHEN et al., 2004) and some popular Internet services. Considering the applications
and the bandwidth usage, we found that a bandwidth value above 60 Mbps is enough

to perform a reasonable number of different experiments.

1.3 Text Structure

In this Introduction we explained the motivational aspects that justify this work. Also,

we give a clear explanation for the objectives of this project.

In Chapter 2 we present a Literature Review. Related OpenFlow software switches’
current functionalities are discussed from the point of view of our implementation requisites.

Furthermore, we introduce other tools which are important parts of the OpenFlow ecosystem.

In Chapter 3 we take a look at the architecture of the software switch which is
compliant with OpenFlow 1.3. We explain the modules relationship and roles within the

OpenFlow pipeline.

In Chapter 4 we highlight implementation details of OpenFlow 1.3 features in our

architecture.

In Chapter 5 we evaluate the software switch in terms of common OpenFlow bench-

marks and compare with related work.
Contributions and Results of this work can be found on Chapter 6.

Finally, in Chapter 7 we give our conclusion remarks. This chapter highlights results,

presents known use cases and discusses possible improvements in future works.



2 Literature Review

OpenFlow is the central theme of this project and the OpenFlow 1.3 specification

(ONF, 2012a) is the main document of our bibliographic base. For this reason, a deep study

of the protocol and technologies that use it was carried out. We have evaluated and compared

available implementations of other OpenFlow software switches. Also, some tools required

to evaluate our work are worth mentioning. We investigated controllers, test frameworks

and packet dissectors, all candidates to compose our OpenFlow test environment. The next

sections will give an overview about OpenFlow and relevant tools related to this work.

2.1 OpenFlow

OpenFlow is an open standard communication interface between switches and con-

trollers, allowing centralized control and programmability in the network. The basic OpenFlow

switch is composed by one or more flow tables, a group table and one or more OpenFlow

channels for communication with OpenFlow controllers

minimal elements required by an OpenFlow switch.

OpenFlow
Controller

A

OpenFlow
Protocol

y

. Figure 2 is a logical view of the

OpenFlow Channel

Group Table

Flow Flow Flow

Table P Table }------- » Table
1 2 N

Figure 2 — OpenFlow switch minimal elements.
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OpenFlow controllers can install flows into the switch flow table. A flow consists of
match fields, counters and instructions applied to matching packets. A packet matches a flow
if the protocol header field’s values are the same as those specified in flow match fields. The
most recent version requires 13 match fields, shown by Table 2, but has optional support for
more than 30 protocols fields from layers 2, 3 and 4 of TCP/IP network stack.

The OpenFlow pipeline starts at the first flow table and continues to additional tables.
Flows are matched in order of priority and the associated instructions are executed. Only
two instructions are required for OpenFlow switches: Write-Actions, in which actions are
executed at the end of the pipeline, and Goto-Table, to jump to tables with an id greater
than the table where the instruction is executed. Optional instructions are Meter, to direct
the packet to some meter for Quality of Service (QoS), Apply-Actions, for immediate action
application, Clear-Actions, to clear all actions written by a Write-Actions instruction, and

Write-Metadata, to write Metadata information to be carried across the tables.

Table 2 — OpenFlow required match fields

Field Description

Inport Ingress Port

Eth Dst Ethernet destination address

Eth Src Ethernet source address

Eth Type | Type of the packet, after VLAN tags
IP Proto | IPv4 or IPv6 next protocol number
[Pv4 Src | IPv4 source address

IPv4 Dst | IPv4 destination address

[Pv6 Src | IPv6 source address

IPv6 Dst | IPv6 destination address

TCP Src | TCP source port

TCP Dst | TCP destination port

UDP Src | UDP source port

UDP Dst | UDP destination port

Actions can perform modifications on packets, discard or send them to the group table
or simply output to some specific port. The only required actions are Qutput, to send the
packet through a port, and Drop. The packet modification actions are all optional, but their
implementation is recommended, as they give more power and options to OpenFlow networks.
The optional actions are Group, to process the packet through a specific group; Push-Tag/Pop
Tag, for addition and deletion of VLAN, MPLS and PBB tags; Set-Field, to modify packets



2.1. OpenFlow 7

header fields; Change TTL, an action to modify MPLS and IP Time to live (TTL) fields;
Set-Queue, to determine which queue is attached to a port and will be used for scheduling in

packet forwarding.

OpenFlow groups are a way to perform more complex forwarding actions. When a
packet is sent to a group it is cloned and executed by sets of action buckets. This abstraction
enables flooding, multipath, link aggregation and other techniques that demand transmission

of packets through more than one port.

The last essential block is the OpenFlow channel. The main connection between
controller and switch is done by one of the following transport protocols: TCP or TLS, where
the second is recommended because it enables data encryption. Auxiliary connections are
also allowed and it is possible to have UDP connections for transmission of less sensitive

OpenFlow messages.

An optional element of the OpenFlow switch is the Meter Table. This table comprises
different types of Meter Bands, which have a speed limit and apply a determined QoS action
in the case of a packet flow exceeding the determined limit. There are two types of bands
covered by the OpenFlow 1.3 specification: Drop, to discard packets; and DSCP Remark, to
decrease the drop precedence of the Differentiated Services Code Point (DSCP) field of the
IP header.

2.1.1 One day in the life of an OpenFlow 1.3 switch in 10 steps

To illustrate the operation of an OpenFlow switch we will present a common and
simple example for new SDN learners. A learning switch is a layer 2 network equipment that
learns the port to which a host is connected. Learning happens when a packet from a host
arrives at the switch for the first time. The switch then obtains and stores the host Media
Access Control (MAC) address associated with the port number. Next time, when another
host sends a packet to the previous learned address, the switch will forward it directly, instead

of flooding to all ports.

In legacy devices, the control software is embedded into the switch hardware and the
MAC addresses are stored in a Content Addressable Memory (CAM) table. In an OpenFlow
scenario, the learning happens inside the controller and the forwarding rules are stored in the
Flow Table. We will describe the steps of learning and forwarding processes of an OpenFlow

switch controlled by a simple learning switch application, considering the topology in Figure 3.
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OpenFlow
Controller

Port 1 Port 2
Host 1 OpenFlow switch Host 2

Figure 3 — Simple topology for the learning switch example.

In the initial state the switch Flow Table is empty, Host 1 and Host 2 do not know

anything about each other and the Controller is about to connect with the Switch.

1. The Controller establishes a connection with the Switch. As packets sent to an empty
Flow Table are dropped according to the OpenFlow 1.3 specification, the Controller
installs a low priority flow to direct every non matching packet to him. Table 3 shows
the Flow Table state after the installation of the first flow.

Table 3 — Switch Flow Table state after controller connection

Match | Priority | Instruction

all 0 apply actions -> output:controller

2. Host 1 wants to transmit a file to Host 2. As it does not know about Host 2 MAC
address, it sends an ARP (PLUMMER, 1982) request to the network.

3. The ARP request packet enters the Switch and matches the unique flow installed in the
Flow Table. The action is applied, sending the packet to the Controller in an OpenFlow

Packet In message.

4. The Controller receives the Packet In. The message contains information about the
packet input port and headers. The Controller application learns and stores the Host 1
input port and MAC address. After that, it sends a Packet Out message back to the
Switch, with an action to flood the packet in every Switch port.

5. The Packet Out message arrives at the Switch and the packet is flooded to every port,

except the port where it came from.
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The ARP request is delivered to Host 2. Then, an ARP reply is sent back with the Host
2 MAC address required by Host 1.

The ARP reply arrives at the Switch. It matches the only flow present and is sent in a

Packet In message to the Controller.

Now, the Controller checks if the packet MAC source address is known. As the address is
not present, it stores the input port and the MAC. Now it checks if the destination address
was stored previously. The destination to Host 1 is already known. The Controller
installs a new flow into the Switch Flow Table. The flow illustrated in the second row of
Table 4 matches every packet destined to Host 1 MAC address and outputs the packet
into port 1. After installing the flow, it sends the ARP reply to the Switch, encapsulated

in a Packet Out message.

Table 4 — Switch Flow Table state after learning Host 1 address

Match Priority | Instruction

all 0 apply actions -> output:controller
eth dst: HOST 1 MAC | 100 apply actions -> output:1

This time the ARP reply is not flooded to all ports. As the Controller knew about
the destination, it is sent directly to Host 1. After receiving the ARP reply, it starts
transmitting the file to Host 2.

Again, the first packet of the file transference to Host 2 is sent to the Controller. Now it
knows about Host 2 MAC and origin port. It installs another flow, shown in the third
row of Table 5, and it sends the Packet Out message to the Switch. The Switch sends
the packet directly to Host 2. From now on, the next incoming packets are not sent
for the Controller anymore because they should match the flows installed as a MAC

learning result.

Table 5 — Switch Flow Table final state

Match Priority | Instruction

all 0 apply actions -> output:controller
eth dst: HOST 1 MAC | 100 apply actions -> output:1

eth dst:HOST 2 MAC | 100 apply actions -> output:2




10 Chapter 2. Literature Review

2.2 OpenFlow Controllers

Controllers are considered the brain of an OpenFlow network. Every configuration
and forwarding rules are defined by applications running on top of a controller. They are
sent in form of OpenFlow messages, which have to conform with the format defined by the
specification. For this reason, we need to validate our work testing interoperability between
the software switch and a compliant controller. We reviewed the main open source projects,
looking for an OpenFlow 1.3 controller or an easy alternative to implement some level of

support for OpenFlow 1.3, required for our tests.

2.2.1 NOX

One of the first open source OpenFlow controllers, NOX (GUDE et al., 2008) was
very famous during the first years of OpenFlow. Its popularity was due to a combination
of factors, from the C++ implementation and a Python binding, which helped to speed up
the prototyping, to a quite simple interface and a good number of example applications.
The last official release supported OpenFlow 1.0 version. After some enhancements on the
controller speed (TOOTOONCHIAN et al., 2012), no efforts were made to upgrade it for

newer OpenFlow versions.

222 POX

Pox is a controller implemented in Python and can be considered a NOX sibling (POX,
2014), created to address the lack of speed on application prototyping for NOX. Its main
goal is to become the archetypal of a modern SDN controller, featuring some desired SDN

capabilities like debugging, new programming models and network virtualization.

Designed with research in mind, under constant development and a typical controller
used for SDN education, POX was a great candidate to be the controller for testing the

software switch, but the OpenFlow support never surpassed the version 1.0

2.2.3 Floodlight

The Floodlight controller is a popular OpenFlow controller backed by Big Switch
Networks, one of the most prominent SDN startups (FLOODLIGHT, 2011a). It is developed

in Java and was designed for high performance and is the core of Big Switch Networks’
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commercial solution. One of the greatest features of Floodlight is the module loading system
that makes it very extensible, allowing it to enable and disable applications at run time.
Another great feature is the Open Stack integration, a cloud orchestration platform. Floodlight
instances control the virtual switches linking virtual machines orchestrated by Open Stack.

Regarding OpenFlow version support, it currently supports OpenFlow 1.0 and 1.3.

2.2.4 Ryu

Ryu is considered a SDN network framework (NTT, 2013b), an abstraction that
provides code software components, with generic functionality, easing and speeding devel-
opment of SDN applications. It is implemented in Python, like POX, but has a different
architecture. Through its modular design, structured as software components, developers
can create OpenFlow applications and use them as independent modules. Furthermore, the

controller also supports management protocols like OF-Config and Netconf.

Ryu is very well documented and has a large number of examples. Moreover, support

to all OpenFlow versions makes Ryu one of the best candidates to test our software switch.

2.3 OpenFlow test and emulation

Test frameworks and emulation tools are not required for a minimal OpenFlow
environment, composed by switches and controllers, however software to test OpenFlow
switches and emulate networks are two important pieces to validate our work. For our software
switch development we are more interested in test frameworks, though a modular emulation
software compatible with our software switch may benefit users looking for an easy and

complete testbed in a box.

2.3.1 OF-Test

OF-Test was the first OpenFlow test framework. Developed by the same team working
on Floodlight, OF-Test (FLOODLIGHT, 2011b) tests basic functionality for OpenFlow 1.0
and 1.1, with 1.2 and 1.3 currently in development. The simpler architecture and Python
implementation turns it into an easy and fast platform to create and run tests. It works
connecting the OF-test server to the switch control and the data plane. The server is responsible

for monitoring OpenFlow messages and packets sent through and along the planes. If these
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messages and packets are according to expected results, the test returns OK, otherwise, a

failure is reported.

2.3.2 Ryu Test Framework

This test framework is part of the Ryu controller and implements tests to cover all,
required and optional, OpenFlow 1.3 and 1.4, actions, instructions and match fields, with
a more comprehensive test than OF-Test. The test cases are written using the JavaScript
Object Notation (JSON), so there is no need for coding to create a test, which enhances the

speed of test creation.

There is an online certification which continuously tests OpenFlow software and
hardware switches, including our work (NTT, 2013a). Results from this certification will be

presented in chapter 5.

2.3.3 OpenFlow packet dissectors

Packet dissectors are important tools to test if message packets are correct or to
check if an specific packet was sent or modified by an OpenFlow output and set-field actions,
respectively. Wireshark (WIRESHARK, 2014) is the most famous program to dissect packets.
Although a wide range of protocols are officially supported, OpenFlow support started as
an unofficial plug-in for OpenFlow 1.0 and 1.1. For a long time this plug-in was the only
option for analyzing OpenFlow traffic. Recently, due to the growth in the number of users

requesting for official support, OpenFlow is now developed in the dissector’s main repository
(WIRESHARK, 2014).

2.3.4 Mininet

Mininet (LANTZ et al., 2010) is a tool for network emulation. In a single machine
it runs switches, links and hosts just like a complete virtual network. It is possible to log
into the hosts and use programs like Iperf (NLANR/DAST, 2007) and Ping, to measure
throughput and check connectivity; specify link parameters as speed and delay; and instantiate
a network topology composed of software switches. The capacity to create and to destroy

virtual networks allows fast and easy experimentation.
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2.4 OpenFlow software switches

OpenFlow software switches play an important role in the protocol evolution. At first,
they were a low cost solution to create and experiment your own SDN applications in a
controlled and smaller environment, before the deployment in a production environment. With
the new SDN approaches for network virtualization (TSENG et al., 2011) (DRUTSKOQOY et al.,
2012), software switches have been receiving a lot of attention from the industry (VMWARE,
2012) and academy (EMMERICH et al., 2014). SDN virtual switches interconnect virtual
machines from data center tenants and help scaling a plethora of traffic engineering applications.
For instance, tenant isolation is easily achieved using an OpenFlow software switch to connect
virtual machines. Usually, it is implemented using VLAN segregation, which is not scalable for
more than 4096 tenants (the total number of possible VLAN identifiers). In turn, OpenFlow
switches offer more granular options to segregate the network hosts, due to the number of

fields available for flow matching, which eliminates the need to segregate hosts only in a layer

2 domain.
Table 6 — Comparison of OpenFlow software switches
Switch Language | Emulation tool integration | Mode OF-Config
Reference C Yes userspace No
Open vSwitch | C Yes userspace/kernel | No
LINC Erlang No userspace Yes
Trema C/Ruby No userspace No

Before the implementation, we investigated four OpenFlow software switches that
supported OpenFlow 1.0, since there was no sense in implementing basic OpenFlow features
from scratch. Table 6 is a comparison of the examined software switches and reflects their
state in the year of 2012. The columns are related to the objectives defined in chapter 1.
Language is an important element, since popular programming languages have the power
to reach bigger audiences. The integration with emulation tools eases experimentation and
speeds up testing. The mode column is related to switch performance, since a kernel space
implementation tend to be more efficient than an user space implementation. In a kernel
implementation, packets are processed directly in the kernel space, eliminating the overhead

of traversing packets between the kernel and user space.

In the mean time of this work, most of the analyzed software switch projects started
to add support for newer OpenFlow versions. Figure 4 shows the switches timeline for the

implementation of most recent OpenFlow versions. Colored intervals show that these OpenFlow
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versions are still in progress or do not include all features described on the specification, as

will be shown in section 5.1.

(@AVAS) |
OF 1.1/OF 1.2/ OF 1.3
OF 1.0
Trema
OF 1.0/1.3
LINC
OF 1.0/1.3
Reference | i
OF 1.0 OF 1.1
2009 2010 2011 2012 2013 2014

Figure 4 — OpenFlow Software Switches: version support timeline.

The next items will provide a short individual description of the software switches

investigated: OpenFlow reference switch, Open vSwitch, LINC and Trema.

e OpenFlow reference switch. The first OpenFlow switch is known as reference switch
because it was implemented by Stanford researchers directly involved with the OpenFlow
protocol creation and the first specification releases. The code is written in the C language
and its simplicity enabled the OpenFlow development to other platforms. Two of these
important OpenFlow 1.0 implementations that are based in the reference switch code are:
NetFPGA boards (STANFORD, 2010a), eliminating the disadvantage of the user space
implementation; and OpenWrt (STANFORD, 2010b) for wireless routers. These efforts
enabled low cost options to test OpenFlow on real hardware during earlier protocol

stages.

The last OpenFlow version implemented by Stanford researchers was 1.0, but after
the version 1.1 release there was an update, based on the reference switch, released by
Ericsson Traffic Lab, called ofl1softswitch (KIS, 2011b). To conform changes such as
multiple tables, the switch forwarding plane was rewritten, however the base software

switch characteristics were kept.

e Open vSwitch. Considered the de facto switch for virtual networks, Open vSwitch
(PFAFF et al., 2009) (OVS) is a mature and constantly evolving open source project.
The efficiency provided by the kernel module and the functionalities beyond OpenFlow
turns OVS into a great solution to replace the original Linux bridge. Although high
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performance is guaranteed by the kernel module, it makes the OVS code harder to insert

new functionalities.

In addition to the basic connectivity provided by traditional bridges, OVS offers a
flexible option to manage and program the packet forwarding behavior. OVS uses
another protocol than OpenFlow for switch management. The Open vSwitch Database
Management Protocol (OVSDB) is one of the most praised OVS features and is designed
to manage all running switch instances, permitting the control of distributed virtual
network nodes. With OVSDB, a network engineer can create, configure and delete OVS

ports and tunnels from a centralized location.

e LINC. LINC (FORWARDING, 2012) is an userspace software switch written in the
Erlang programming language and has different support levels, considering the number
of working features, for OpenFlow versions from 1.2 to 1.4. The main advantage of this
switch is the support to OF-CONFIG (FOUNDATION, 2011), the OpenFlow switch
configuration protocol. As an userspace implementation, efficiency is not one of its
strong points. However, it promises flexibility, fast development and testing of new
OpenFlow features. The Erlang language is not a disadvantage per se, but it can be
considered a blocking point for developers who want to add their own features. Erlang

developers are growing, but their number are still very far from languages like C and
Java (LLC, 2015).

e Trema. Trema is a name known by the OpenFlow community for being a controller
implementation project. However it goes beyond, offering a full OpenFlow framework
with the tools needed to develop OpenFlow applications (NEC, 2013), including an
OpenFlow software switch. Also, the framework has its own emulation tool for OpenFlow
networks and end-hosts. The main repository of this project features switch with only
OpenFlow 1.0. However, there is a repository known as trema-edge where the work for

OpenFlow 1.3 is on progress.

Chapter Concluding Remarks

After the analysis of the software switches we found that the reference switch was
the best fit for our requirement of code simple and easy to extend, as defined in the section
1.2. Compared to OVS, the reference switch code is simpler, since it does not have to deal
with kernel code. What makes LINC more complex in comparison with the reference switch,

as previously stated, is the language. Finally, Trema does not suffer from code complexity
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issues, however the setup to run the switch is more complex than the steps required to run

the reference switch.

Although simple, the only documentation available to understand the reference switch
was the OpenFlow specification. For this reason, the definition of the architectural design
started from the extraction of the base software switch architecture. In the next chapter we
present the software switch architecture, resulted from this process and mixed with OpenFlow
1.3 elements. Also, we give a detailed description of each functional block composing the

switch.
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3 Architecture

Architectural design is strongly tied down by OpenFlow 1.3 required and optional
elements. With the architecture description, we do not intend to repeat the specification.
Thus, elements described in the next sections are a specific and conceptual point of view of

each software switch component.

The OpenFlow switch implementation is a fork from the OpenFlow 1.1 reference
switch and the process of getting the base architecture started with a simple reverse software
engineering process (SOMMERVILLE, 2001), where we analyzed the code and listed the
switch core components. Next, we identified missing components from the OpenFlow 1.3
specification. After these steps, we found that block structures suggest the application of a
bottom-up design (MAYRHAUSER, 1990). In this approach, the basic set of foundational
modules and their interrelationships are the foundation for the final architecture. Following

these concepts, we came up with the final design for the OpenFlow 1.3 software switch.

In the Figure 5 we show the software switch architecture. The most important block
is the Datapath. It consists of OpenFlow internal elements such as Flow, Meter and Group
Tables, and a Packet Parser as well. The other three blocks operate on different levels along
with the Datapath. From the top level, the blocks Datapath, Marshaling/Unmarshaling library
and Communication Channel are part of the OpenFlow message layer. Below, Ports and
Datapath form the network packets layer, where packets arrive, are processed and usually
sent back for the network.! Except for the special case of the Packet In message, in which
packets can be sent for the controller, these two layers do not interact. In Figure 5, dotted
lines illustrate some possible paths a network packet can travel between the Ports and the
Datapath. Solid lines denote the OpenFlow messages traveling in the OpenFlow message
layer. Arrows mean the direction packets and OpenFlow messages can take across the switch
components. In this chapter, we present each software switch component individually, detailing

each block roles and interactions with other elements.

1 Some instructions, actions and even an empty table may cause a packet drop in the Datapath.
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Figure 5 — Software switch architecture

3.1 Ports

OpenFlow ports are the entrance and exit doors for network packets of the OpenFlow
switch pipeline. A software switch instance running on a machine may use their physical or
virtual interfaces as port elements. Physical port elements can take control over Ethernet
or WiFi interfaces, allowing the creation of real network topologies. Although limited by
the speed of the software switch, the possibility to create a low cost testbed enriches the

experience of users developing and testing OpenFlow applications.

Ports functions on the switch are not limited to the task of sending and receiving
packets. There is a set of responsibilities associated with the OpenFlow protocol and the

pipeline. Functionalities are:

e OpenFlow enables some level of control over a port behavior. A port modification

message permits the configuration of the port state. Ports can be administratively set
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to drop all received or forwarded packets, forbid the generation of Packet In messages
from arriving packets, and brought down. Ports elements should handle these messages

and change the port behavior according to the configuration sent.

e OpenFlow Ports keep the current state of the physical link. This information is not
configurable by an OpenFlow controller, but the switch should inform the control plane
about link state changes. Ports monitor the state of the port link and update the

information according to changes.

e Packets encapsulated in Packet In usually have only the header sent within the message.
A buffer stores the packet, while waiting for the controller decision after the Packet In.

Ports elements store these packets and resend them for further processing.

e An OpenFlow controller can ask the switch about a port description. The software
switch element retrieves information such as current and max operating speeds from
the interfaces of the machine and stores it. On a port description request, the element

handles the message and sends the required information to the control plane.

e (QQueues creation are not part of the OpenFlow protocol. However, OpenFlow can
configure port queues, created by whichever mechanism, to be associated with a switch

port. Ports are responsible for handling queue association and configuration.

e Ports must update port and queue packet counters.

3.2 Packet Parser

Before entering the software switch OpenFlow pipeline, packet protocol fields are
extracted by the Packet Parser element. Parsing packets was a formally defined task until
OpenFlow 1.1. The main reason to define how packets should be parsed is to guarantee
parsing consistency, but it limits switch designers and demands algorithm updates for each
new protocol addition. For this reason, further specifications removed how packets should be

parsed and match fields are now defined only logically.

A Packet Parser element converts extracted protocol fields of a packet to an internal

flow entry format. Two scenarios may trigger this function:

e A network packet enters the switch through one of its ports.

o [f the packet was modified by an action and is resubmitted for the pipeline, or sent to a

table ahead by a Go To Table instruction, packet revalidation is required. Hence the
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packet is processed by the Packet Parser again. In Figure 5, after passing by the Flow

Tables, there is an arrow representing packet return to the Packet Parser.

Further OpenFlow extensions, supporting new protocols, directly affect the packet
parsing. Modifications are required in order to add new match fields for the Packet Parser.

Therefore, a flexible and extensible Packet Parser element is desirable.

3.3 Flow Tables

Flow Tables are the heart of an OpenFlow switch architecture. They are the elements
where flow entries are stored and the OpenFlow pipeline starts. Although the use of multiple
Flow Tables is optional - the specification mandates at least one table - its implementation is
recommended, as even simple applications can not scale in switches with only one Flow Table
(PEPELNJAK, 2013).

Flow Tables roles in the software switch are listed below.

e In case of nonexistence of a table miss flow entry, Flow Tables have to implement some

default action for not matched packets. Currently, the default action is drop the packets.

e Handle Flow Mod messages sent by the controller. These messages may add or delete

flow entries, or change the instruction set from currently installed flows.

e Flow Tables must be able to have their capabilities reconfigured by a controller. These
table features can express the table supported properties. The instructions’ type and
the match fields allowed in the table are examples of properties. Also, some fields show
relevant information for an OpenFlow application. For instance, the table identifier
value is an information required to add a new flow, and the max number of flow entries

should be considered to avoid scalability problems.

o A Packet look up must be performed upon the receiving of a packet. The operation
looks for a Flow Table entry that matches the packet. In the case of a match, the switch
executes the instruction set associated with the flow entry. This is the most common

activity in Flow Tables.

e Keep table statistics about the number of active flow entries, number of look ups and

matched packets.



3.4. Group Table 21

3.4 Group Table

Group Table empowers OpenFlow forwarding options. Packets reach the Group Table

after matching a flow entry containing a group action, in one of the Flow Tables.

Group entries are stored into the Group Table. Each group entry contains an identifier,
a type, counters and action buckets. Action buckets are an ordered list of action sets to be
executed according to the group type. Figure 6 represents a group table filled with groups
of All, Indirect and Fast Failover types. The layout of the specific group types is important,

because it defines Group Table attributions, as shown by the responsibilities listed here.

Y
N———1

Group id: 1 Type: Counters Action Action Action

All bucket bucket bucket
N~N—

<
MNe— 1

Group id: 2 Type: Counters Action
Indirect bucket

NS~—
Type: _
Groupid:3 | Fast Counters Action Action Action
Failover bucket bucket bucket

Live action bucket

- Dead action bucket

Figure 6 — Group Table internals

e The Group Table have to guarantee group type restrictions. For instance, indirect groups

support only one action bucket.

e The Group Table must handle modification messages and perform consistency checks in
the case of group chaining. Chained groups point to other groups and may cause loops
that should be avoided by the element.

e Fast failover groups require monitoring switch ports and group buckets for state changes.
For this reason the Group Table is responsible for checking bucket liveness when choosing
the first live bucket.

e A Group Table that supports the select group type has to implement a schedule discipline
algorithm to choose which bucket will be applied to the packet.
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3.5 Meter Table

The Meter Table is an element to perform simple QoS operations. Per-flow meters are
attached to flow entries through the Meter instruction. A meter entry is composed by a meter
id, counters and meter bands. The QoS operations to apply are defined by the meter bands.
A meter band must have a type and rate value, which is the boundary to apply the action

determined by the type. Figure 7 illustrates the internals of a Meter Table, with two meter

band types.
Meter Band
Meter id: 1 Counters Type: Rate: Precedence Level: Counters
DSCP Remark 100 kbps 1
Meter Band
Meter id: 2 Counters Type: Rate: C
Drop 100 kbps ounters

Figure 7 — Meter Table internals

Meter Table responsibilities include:

Creation, destruction and modification of meter entries.

Matched packets, from flows pointing to the Meter Table, rate measurement.

Keep and update counters for statistics of packets processed by an entry.

Process the packets according to band operation. A Drop meter band type discards the
packets and the DSCP remark changes the IP packet drop precedence.

3.6 Marshaling/Unmarshaling library

OpenFlow messages defined by the specification follow a proper format for transmission
in the network. Messages are 8-byte aligned, so there may be insertion of padding fields to
follow this alignment rule. Another requirement for the message format is the byte order.
The preferred format for packets sent through the network is the network byte order, which
follows the Big-Endian format (REYNOLDS; POSTEL, 1994). As OpenFlow messages are

sent over IP networks, their messages should be assembled following this format, in which
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the most significant byte of a memory word is stored in the smallest address and the least

significant byte is stored in the largest address.

The architectures of machine’s processor may operate on different byte-endianness.
For instance, Intel processors use the Little-Endian byte order (VERTS, 1996). So, in order
to handle and assemble OpenFlow messages, conversion is required for non Big-Endian

architectures.

For the mentioned reasons, a library which abstracts byte-endianness and adds any
required bytes to ensure right message format is required. A Marshaling/Unmarshaling library
is not an element defined by OpenFlow specification. Its main function is the translation
of OpenFlow messages from the network format to an internal format and vice-versa. The

library responsibilities are the following:

e Every OpenFlow message must have a function that packs and unpacks it. Pack is the
function which converts internal structures into network format. While unpack turns

received messages into an internal structure.
- When packing, the library has to add any necessary padding bytes.
- On packing, the message should be assembled in network byte-order.
- On unpacking, the library must translate the message fields to the switch host

architecture byte-order.

e Some handling of OpenFlow message errors is done in this level. The library must raise

errors for messages with wrong length or bad arguments.

3.7 Communication Channel

The OpenFlow software switch communicates with controllers through the Communica-
tion Channel. This element connects with the Datapath and the controller and acts as a proxy
between them. This element exists because the implementation of the communication channel
is not defined by the specification. Since the message format is respected, implementations
are free to choose the connection protocol. For instance, when security for the channel is a

requirement, a protocol like TLS should be used to encrypt the messages.

In the software switch, the Communication Channel roles are:

e The Communication Channel must establish a TCP connection with the switch and the

controller.
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e Connection setup is a Communication Channel responsibility. After a TCP connection,
the switch negotiates the protocol version with the controller. This process, known as

handshake, is managed by the Communication Channel.

e The channel may use multiple connections with a single controller at the same time.
These connections can be used to send OpenFlow in parallel or to create specific channels

for some message types.

e A Communication Channel is responsible for opening connections to enable switch

communication with more than one OpenFlow controller.

Chapter Concluding Remarks

Now that the software switch blocks - Ports, Packet Parser, Flow Tables, Group Table,
Meter Table, Marshaling/Unmarshaling library and Communication Channel - were presented,
with the description of each component and their roles into the software switch, we are in a
position to write details about the implementation of OpenFlow 1.3 features, that are inherent
to these architectural blocks. That said, the next chapter will bring a technical description

about the software switch development.
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4 Development

This chapter covers the software switch development. In section 4.1, we give details
about the implementation of the most important OpenFlow 1.3 features, in section 4.2, we

describe the open source model adopted for the software switch development.

4.1 Software switch implementation

Implementation of an OpenFlow switch depends on the platform for which it is
designed. OpenFlow hardware implementation on traditional Application Specific Integrated
Circuit (ASIC) chips usually suffer from limitations, like small capacity in the total number
of flows and not real support for multiple tables. Unlike hardware, software implementations
offer greater flexibility in the implementation of OpenFlow features. In environments where
high throughput is not the biggest concern, software switches running on commodity servers

can be a low cost replacement option for traditional network switches.

The OpenFlow specification describes OpenFlow switches pipeline and the required
and optional building blocks. It does not gives low level details about how these components
should be implemented. As long as it works as the specification dictates, switch designers
are free to use any data structures and algorithms in order to implement OpenFlow. When
defining implementation details, we explored the software implementation freedom to meet
the requirements defined on section 1.2. At the same time, we came up with innovative design

decisions towards future extensions of the OpenFlow match field support.

In this section we discuss how we implemented the OpenFlow 1.3 software switch adding
several changes to the base switch - using C !, the switch native programming language, and
C++ - in order to support all features and keep it as simple as possible. The next subsections
describe this new functionalities in the context of the architecture of the software switch

presented in chapter 3.

L' TIn this chapter there will be two common words: struct and structure. While struct is a C language

keyword and structure is a more generic word for a collection of data variables, both will be used to denote
a C struct.
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41.1 Oflib

The software switch architecture Marshaling/Unmarshaling library, presented in section
3.6, is called Oflib. Although already present in the software switch base code, the library
underwent several modifications in old messages and grew with the addition of OpenFlow 1.3

messages.

Every OpenFlow message represented by the Oflib has a common header. This header
struct contains only one member, which is the message type information. Using the same
initial struct for every message struct allows the implementation of two general functions
that abstract marshaling and unmarshaling. In the Listing 4.1, we show the definition of
these functions. Marshaling, also known as packing, is done by ofl_msg_pack. By passing a
pointer to the struct ofi_msg header for the function, we can check the message type and
apply the message respective marshaling function. Unmarshaling, also known as unpacking, is
performed by ofi_msg_unpack. In this function, the first bytes of the OpenFlow messages,
the buf parameter, reveal their types. With this information the function calls the proper

function to convert the message for the Oflib format.

int ofl _msg pack(struct ofl msg header smsg, uint32_ t xid, uint8_ t sxbuf,

size_t xbuf_len, struct ofl exp *exp);

3 ofl_err ofl_msg_unpack(uint8_t xbuf, size_t buf_len, struct ofl_msg_header xx

msg, uint32_t xxid, struct ofl _exp xexp);

Listing 4.1 — Oflib: message pack and unpack base functions

Another Oflib task, discussed in the section 3.6, is message error handling. It checks
for bad requests from the controller; for example messages with unknown types and wrong
sizes are performed by every unpacking function. In case of error, the function returns the
OpenFlow error code for the Datapath, which creates an error message and sends it for the

controller, through the Communication Channel.

Addition of new OpenFlow messages in the Oflib is a trivial task. Firstly, the developer
needs to define a C struct, with struct ofi_msg_header as the first member. Then, write
a pack and unpack function. Finally, add the new message type for ofi _msg pack and
ofl_msg_unpack. Listing 4.2 illustrates the OpenFlow 1.3 Role Request, implemented during

our work.
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struct ofl_msg_role_request {
struct ofl_msg_header header; /«x Type OFPT_ROLE_REQUEST/OFPT_ROLE _REPLY. x/
uint32 t role; /% One of OFPCR_ROLE x. x/
uint64 t generation id; /+* Master Election Generation Id */

}s

static ofl err
ofl _msg unpack_role_request(struct ofp_header *src, size_ t *len, struct

ofl _msg header **msg)

static int
ofl_msg_pack_role_request (struct ofl_msg_role_request *xmsg, uint8_t sxbuf,

size_t xbuf_len)

b

Listing 4.2 — Oflib message Role request struct and function definition

Additionally, the Oflib also has printing functions. This is helpful for logging and

debugging in the software switch.

4.1.2 OpenFlow Extended Match

When compared to OpenFlow 1.1, in the number of supported match fields, the version
1.3 of the OpenFlow protocol supports nearly twice as much fields as the former version.
This growth was only possible due to changes in the match structure specification. A match
structure from OpenFlow 1.1 was a fixed number of fields, carrying 88 bits of information
in every message carrying a new flow. Match fields not set in the message were sent, adding
unnecessary space overhead. In order to keep the protocol evolution and to support more fields,
the OpenFlow Extended Match (OXM) was introduced by the OpenFlow 1.2 specification. The
OXM format is Type-Lenght-Value (TLV) based and replaces the old fixed match structure.
A less restricted definition of the match struct adds more flexibility for the insertion of new
match fields. Figure 8 shows an example of how a field is defined by an OXM field and the
TLV respective sizes in bits. The Type of a match field is formed by the OXM Class and
OXM Field. An OXM class represents a vendor number, where 0x8000 is the basic class for
the specification of the match fields. OXM Field defines the match field. In the example, the
field number 15 represents the UDP protocol in OpenFlow. The last bit of the Type is left for
the Has Mask field, which indicates if the match is masked or not. Finally, the Length field is

the value size.
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0 16 23 24 32 34
0x8000 15 0 2 80
OXM OXM Has Lenght Value
Class Field Mask

Figure 8 — OXM field example

Some challenges arise with the OXM introduction. Whereas extension of match support
for messages is solved, there is nothing concerning the packet parsing in the Datapath. The
next subsections discuss how our implementation deals with protocol fields extensibility in

the software switch.

4.1.2.1 Packet Parser

Each new protocol added for the OpenFlow specification demands the addition of an
specific code to extract the new fields. Distinct protocols may have singular and complex
parsing methods. For instance, variable fields such as IP options can require cumbersome
deep packet inspection. For this reason, the Packet Parser implementation needs to be flexible
and easy to extend. Also, the idea of simple insertion of new match fields meets the ease of

extension requisite.

As a means to achieve a Packet Parser implementation featuring the mentioned
characteristics, we have come up with a design which uses a packet description language
to assist the parsing. Figure 9 shows the Packet Parser model implemented on the switch

Datapath. Each module is described as follows:

e NetPDL. The Network Protocol Description Language (NetPDL)(RISSO; BALDI,
2006) is the packet description language. It is a XML-based language and has a large
number of protocols and specified encapsulations. In addition, the simple language
definition allows easy and fast addition of non available protocol description. An
example of how the UDP protocol is described using NetPDL can be foung in the Annex
A. In the Figure 9 the NetPDL module feeds the parsing library with the description of
the OpenFlow 1.3 supported match fields.

e NetBee library Parser. Netbee is as library for packet processing (NBEE, 2012). It is
composed by several modules for different types of network application, such as packet
filtering and sniffing. For our Packet Parser implementation, we use the Netbee library

decoding objects. These objects come from a C++ set of classes and methods that
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Figure 9 — Packet Parser components

ease packet decoding. To accomplish this, firstly Netbee loads the NetPDL protocols
specification into the machine Random Access memory (RAM) and on a packet. Then,
received packets are decoded according to the NetPDL description and the extracted
information is stored in a protocol tree. Finally, packet field values can be retrieved

from the tree using specific methods of the library.

nbee__ link. This module is where packets are converted in the flow match structure.
Arriving packets are sent for the Netbee library for decoding. From the protocols tree
generated by Netbee, the nbee link module extracts the field values and builds the
packet match structure that will be sent to the Flow Table look up. The code to extract
a protocol is shown by Listing 4.3. Using the Netbee method GetPDMLField, we get
the three ethernet protocol supported fields in OpenFlow 1.3. The second argument
of GetPDMLField reflects the field name defined in the NetPDL specification. The
function nblink__extract_proto_ fields receives the extracted field value and type and
inserts this into the match structure. Another important piece of code is present in the
third line. For possible further processing, for instance, the application of a set field

action, a reference to the protocol position needs to be stored.
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if (protocol Name.compare("ethernet") =— 0 && pkt_proto—>eth = NULL)

{
pkt_proto—>eth = (struct eth header x) ( (uint8 t=*) pktin—>data +
proto—>Position);

4 PDMLReader—GetPDMLField (proto—>Name, (charx) "dst", proto—>
FirstField , &field);

5 nblink__extract_proto_fields(pktin, field , pktout, OXM_OF ETH DST)

6 PDMLReader—>GetPDMLField (proto—>Name, (charx) "src¢", proto—>
FirstField , &field);

7 nblink extract_proto_ fields(pktin, field , pktout, OXM OF ETH SRC)

8 PDMLReader—>GetPDMLField (proto—>Name, (charx) "type", proto—>
FirstField , &field);

9 nblink extract_proto_ fields(pktin, field , pktout, OXM OF ETH TYPE
)

10 }

Listing 4.3 — Ethernet parsing in the nbee_link module

An example of how helpful is a flexible design for the Packer Parser is on the support
for IPv6 Extension Headers (EH) (DEERING; HINDEN, 1998). EHs parsing execution is
not a trivial task, as there are different types and formats. What is more, IPv6 packets may
present complex combinations of headers. In OpenFlow 1.3 support for IPv6 EHs is not based
on values, but on a special bitmap that matches in the presence of EHs. Besides, a bit field
matches an IPv6 packet only if their EHs are in the recommended order. All of these details
would result in a large ammount of code to parse EHs correctly. However, this is done in few

lines due to our extensible implementation and the NetPDL language.

4.1.2.2 Flow Match Prerequisites

Another change brought by OXMs is the introduction of flow match fields prerequisites.
In order to obtain flow match consistency, some match fields require the presence of other
fields. For example, matching any ARP protocol field requires the ethertype field having the
correct value for an ARP packet. Thereby, inconsistent flows are denied by the Flow Table.

To map OXM fields prerequisites, a file 2, with several C Preprocessor macros, was

created. The macros map each field with their respective network layer 2, layer 3 or upper

2 This file was inpired by the old way that OVS handled the Nicira Extended Match (NXM) format. NXM
is the format that gave origin to OXM.
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level requisite. In addition there is a field that tells if a field is maskable or not. Listing 4.4

shows prerequisites and fields macros definition. Also, it gives an example of a field created

by the DEFINE _FIELD macro.

1
2 #define OXM_DIL,_NONE (0, 0)
3 #define OXM DL ARP  (ETH TYPE ARP, 0)
4 #define OXM DL PBB (ETH_TYPE PBB,0)
5 #define OXM DL IP (ETH_TYPE IP, 0)
6 #define OXM_ DL MPLS (ETH_TYPE MPLS, ETH TYPE MPLS MCAST)
7 #define OXM_DL IPV6 (ETH_TYPE IPV6, 0)
(

8 #define OXM_DL IP_ANY (ETH_TYPE IP, ETH_TYPE IPV6)

9

10 #define DEFINE_ FIELD M(HEADER, DL TYPES, NW_PROTO, MASKABLE) \

11 DEFINE FIELD (HEADER, DL _TYPES, NW_PROTO, MASKABLE) \

12 DEFINE FIELD (HEADER## W, DL_TYPES, NW_PROTO, true)

13

14 DEFINE_FIELD (OF_TCP_SRC, OXM DL IP ANY, IPPROTO_TCP, false)

Listing 4.4 — OXM fields and prerequisite macros

OXMs matches definitions are loaded by the Oflib, and used in the function oxm__pull _match,
which is called during the match unpack. Among the tests performed to detect invalid OXM

fields are: bad prerequisite, duplicate fields, wrongly masked and nonexistent field.

4.1.2.3 Flow Matching

In the pursuit for the best way to perform flow matching inside the Flow Table,
developers might want to try different algorithms and data structures. For this reason, the

switch implements a flexible and easy interface to change the way packets are matched.

Match fields are part of the software switch flow entry struct. Instead of defining a
fixed match as one of the flow entry member, a pointer to Oflib struct ofi_match__header is
left as a reference for the entry match fields. Therefore, if a developer wants to experiment

his own match structure, there is only the need to make it start with an ofi__match__header.

This work presents a default flow matching using the Oflib match structure called
oft_match. Besides the match header, the struct includes a Hash Map structure to store OXM
TLVs. Each OXM entry in the Hash Map has an exclusive key, created by the combination of
the field Type and Length information. Storing only flow specified fields saves memory space,

at a small cost of the pointers created to mantain the data structure. Another advantage in
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the Hash Map use in the match structure is the constant access time for the OXMs. Fast

element access is very important for two of the most common operations:

e Check packet matching. Packet fields are extracted and matched against the flows.
Matching is performed by look ups of the packet fields in the Hash Map.

e Check flow collision. Flows collide when a new flow is installed and the Flow Table
contains a flow with the same match fields and priority. In this case the old one is

replaced by the new one. The Hash Map allows a direct comparison of fields.

Another detail about flow matching in the software switch is about the linear behavior
of Flow Table look up. The Flow Table stores flows in a list ordered by priority. When a
packet is sent to the flow match it loops through the flow list until it finds a matching rule or
it reaches its end. This is the most simple approach for the flow match and was chosen for its
simplicity. Developers who might want to modify the behaviour of Flow Table look up just

need to add their own code for the function flow table_lookup.

4.1.2.4 Extensible context expression in 'packet-in’

Former packet-in message contained little information about the packet parsed in
the Datapath. The only match field present was the switch input port. In order to get the
other packet fields, a controller needs to parse the packet header, included in the end of
packet-in. This causes an unnecessary parsing repetition in the control plane. With the OXM
introduction, OpenFlow 1.3 solves this problem sending the extracted packet fields in the

form of OXMs, making it easier for the control plane to retrieve the packet fields.

While an standard switch implementation requires only context information, which
are input port, metadata and tunnel id, our implementation follows the option to add all

parsed fields in a packet-in message.

4.1.3 Set Field action

Support for rewriting packet fields exists since the first OpenFlow version. However, it
was limited to a small set of fields. In OpenFlow 1.3, with the OXM introduction, a flow mod
message can carry a set field action with any of the OXMs defined by the specification. It is

up for the switch designers to decide which fields are allowed for overwrite.

Implementation of set field is slightly intricate, as the consistence is achieved through

the match fields. For instance, a flow with a set field action to rewrite the IP source address
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needs to present in the match fields the same ethertype - 0x800 in hexadecimal - of the IP
protocol. The way the pack and unpack of match fields and actions is performed by different
functions needs to be checked in the Datapath. When handling a new flow mod message, the
Flow Table calls the function dp actions check set field req. This function uses an Oflib

function to check if the prerequisites are ok and validates the action.

Another frequent task caused by rewriting fields is protocol CheckSum recalculation.
Fields like the IP source and destination, in the case of change, require recalculation of
IP and TCP CheckSum values. Fortunately these protocols CheckSum calculation is very
simple (BRADEN et al., 1988). This is not the case for the SCTP protocol (STONE et al.,
2002). SCTP CheckSum is calculated using a Cyclic Redundancy Check (CRC). In order
to recalculate the SCTP CheckSum value we used a Python program named pycrc 2. The
program takes as input the CRC polynomial and generates all the functions necessary for the
calculations. Listings 4.5 shows the code to rewrite the SCTP destination port. In the packet
field rewriting we attribute a pointer to the protocol struct representation and to the packet
position obtained by the Packet Parser. Doing so, we can easily change the current value of

the action value.

case OXM_OF SCTP_DST:{
crc_t crc;
struct sctp__header xsctp = pkt—>handle_std—>proto—>sctp;
size_t len = ((uint8_t=*) ofpbuf_tail(pkt—>handle_std—>pkt—>

buffer)) — (uint8_t x) sctp;

uintl6_t v = htons (*(uintl6_t=*) act—>field —>value);
sctp—>sctp_csum = 0;
memcpy (&sctp—>sctp_dst, &v, OXM LENGTH(act—>field —>header));

crc = cre_init () ;

crc = crc_update(crc, (unsigned charx)sctp, len);
crc = crc__finalize (crc);

sctp—>sctp__csum = crc;

break;

}

Listing 4.5 — Code excerpt of the SCTP destination port set field action

4.1.4 Per-flow Metering

The Meter Table implementation follows the architectural details and responsibilities

of the element described on section 3.5. Firstly we defined a structure for the Meter Table.

3 pycre v0.8.2, Available at http://www.ttyl.net/pycrc/
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The main components are the table features, such as the max number of entries and supported
band types, and a Hash Map of meter entries. Other members include a reference pointer to
the Datapath, allowing a Meter Table to call the function to send OpenFlow messages; and
two counters: one for the number of meter entries and another one for the quantity of bands.
Secondly, we implemented a set of functions: initialization and destruction of the Meter Table;

meter mod and meter features messages handlers; find and apply a meter entry.

Structures of meter entries are composed of a configuration - which contains information
about the meter id and meter bands - and a struct for recording statistics. In addition, the
meter entry has pointers to the Datapath and the Meter Table, similar to what is done in the
Meter Table struct. Finally, it has a list of flow references. If the meter entry is deleted, all

flows sending packets to the meter entry are deleted.

Meter entry bands are chosen accordingly to a configured rate - in Kilo packets (Kpps)
per second or Kilobits per second (Kbps). Thus, it is necessary to measure the flow matched
packets in function of one of the specified unities. The first idea to implement rate measuring
scheme considered the use of matched flow counters, divided by the number of matched bytes
by some time interval. Although easy to implement, this approach proved itself inaccurate

after some attempts to limit the bandwidth between two hosts connected to the switch.

After a better analysis of the task and some literature research, we found and imple-
mented a simple and efficient algorithm used for rate policy: the Token Bucket (TANENBAUM,
2002). Figure 10 illustrates how the Token Bucket works within a meter band. Simply put,
each meter band has a bucket attached to it. At every second the bucket is refilled with a
number of tokens equal to the meter rate. When a packet is sent to the Meter Table, it goes
through each band’s bucket belonging to the meter entry. Inside the bucket, packets consume
a number of tokens equal to their size. If there are enough tokens, the OpenFlow pipeline

continues processing the packet, otherwise, the meter band is chosen and executed.

4.1.5 Connection Features

Network control protocols must be designed with scalability and high availability in
mind. Node failures and high traffic loads may cause frustration for early adopters of new
technologies, as these two important points are not usually considered by initial versions.
Previous OpenFlow versions fall into this category of protocols, often criticized by the lack of

mechanisms to handle control plane issues.

More recent OpenFlow versions try to address control plane scalability and high

availability with the addition of new features for OpenFlow connections. Auxiliary connections
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Figure 10 — Token Bucket Algorithm illustration inside the meter band

allow higher scalability for message exchanging, while controller roles try to enable fast failover
for OpenFlow controllers. Event filtering, in turn, may be seen as a mechanism that sum up
on these two topics. In the next subsections we will see a more detailed description of each

feature and how they have been implemented in our software switch.

4.1.5.1 Auxiliary Connections

Auxiliary connections allow a controller to create more than one Communication
Channel with a single switch. These connections add the possibility to exploit message
parallelism and create a channel for specific types of messages. For instance, a controller can

use one connection only for packet-in messages.

As a proof-of-concept we have implemented basic support for auxiliary connections.
In our implementation, there is support for only one additional channel and it only carries
packet-in messages. The following items show steps added in the switch code to handle

auxiliary connection.

e The software switch sends OpenFlow messages for the Communication Channel, encap-
sulated into a struct called ofbuf. The struct is a buffer that holds information such as
the pointer for the first allocated byte and the size of bytes in use. In order to identify

which connection is being used to receive or send the message, we have added a new
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member called conn__id. The possible values for conn__id are MAIN CONNECTION
and PTIN CONNECTION.

e A new connection listener was added to the Datapath. If an auxiliary connection is
specified when running the datapath, the auxiliary listener is opened after the main

connection listener.

e When the Datapath talks to remotes, it searches for the auxiliary connection. If the

connection exists, it processes messages received by the connection.

e On sending OpenFlow messages, the switch by default maps to the MAIN _CONNECTION.
If the message is a reply from a sent message of a sender connection, the connection

id is set to the same id used by the sender. In the last case, if the message type is a

packet-in, the switch uses PTIN_CONNECTION for the connection id.

The start of an auxiliary connection from one controller is disabled by default in our
software switch standard program execution. To enable auxiliary connections a user should

specify the multiconn option in the command line option.

4.1.5.2 Controller Role

Controller Role is a mechanism to permit connection of multiple controllers with
different duties. One of the possible use cases of roles is for fast failover, in which when the
main controller goes down, a backup controller assumes the switch command. There are three
possible roles for controllers: Master, Slave and Equal. A master controller has permissions to
send and receive any type of OpenFlow messages. Slaves have very strict default permissions,
allowed only to receive a specific set of messages. The last role, Equal, is the default role when
a controller connects to the switch and the other controllers connected do not have a defined

role.

Role election is totally driven by the control plane, though some additional code is
required for the switch. In order to implement controller role support in our software switch
we first filtered asynchronous messages received by Slave controllers. Then we restricted slaves
to send only read state messages, for example, flow stats and table stats. The last insertion is
the algorithm defined by the specification to handle the role request generation_id. Messages
with a generation id smaller than previous generation ids seen by the switch are discarded.

Listing 4.6 presents the function that implements the algorithm.
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static ofl err
dp_check__generation_id (struct datapath xdp, uint64_t new_gen_id){
if (dp—>generation_id >= 0 && ((uint64_t)(new_gen id — dp—>generation_id)
< 0))
return ofl__error (OFPET_ROLE_REQUEST FAILED, OFPRRFC_STALE) ;
else dp—>generation_id = new_gen_id;
return 0;
}

Listing 4.6 — Role generation id selection algorithm

4.1.5.3 Event Filtering

Event Filtering enables controllers to filter undesired asynchronous messages, sent
by the switch. Filtering of asynchronous messages is possible for three types: port status,
packet-in and flow removed. In addition, a controller can also choose to not receive these
message types for the generation reason. For example, a packet-in can be generated by an
action to output the packet for the controller. This feature, along with auxiliary connections,

gives power for controllers to create exclusive message channels.

Message filtering is handled by the Datapath. On a set async request, the Datapath
sets the controller remote channel with bitmap values sent in the message defined by the
OpenFlow 1.3 specification, shown on Listing 4.7. Each bit set in the bitmap represents
a message type and a reason. For instance, a bit with value 4 in flow removed_mask/[0],
determines if the controller will receive flow removed messages with reason OFPRR__DELETE

when the role is Master.

Filtering happens before the sending of an OpenFlow message. The Datapath function
to send an OpenFlow buffer through the Communication Channel checks the remote configu-
ration and the type of message to be sent. If it is one of the three asynchronous messages and
the reason and the controller roles matches the remote filtering configuration, the message is

dropped.

/+x Asynchronous message configuration. x/
struct ofp_async_ config {
struct ofp_header header;
/+* OFPT _GET ASYNC REPLY or OFPT SET ASYNC. x/
uint32_t packet_in_mask [2];
/% Bitmasks of OFPR_x wvalues. */
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8
9
10 };

uint32_t port_status_mask [2]; /x Bitmasks of OFPPR_x wvalues. */
uint32_t flow_removed_mask[2]; /x Bitmasks of OFPRR x wvalues. x/

11 OFP_ASSERT(sizeof(struct ofp_ async_config) = 32);

Listing 4.7 — Async messages filtering format

4.1.6 Other Changes

There is a complete list of other changes we have made to upgrade the base software

switch from OpenFlow 1.1 to OpenFlow 1.3. Whereas these other changes are important,

their implementation demanded less effort than the implementation of changes described in

previous subsections. For this reason, we will list and comment on them briefly:

e Table Miss. Previous behavior of OpenFlow switches on non matching packets were

defined by configuration flags. OpenFlow 1.3 removes these flags and defines table-
miss flow entry. This entry is an all field matching with the lowest possible priority.
Table miss support implementation required the removal of code to handle the old
behavior. In addition, in the case of a table-miss entry with an action to output the

packet for the controller, the switch sends the packet-in message with a reason of type
OFPR_NO_MATCH.

Rework Tag Order. The order of the supported protocols’ tags, pushed by an Open-
Flow action, was dictated by the specification. In OpenFlow 1.3, tags do not have a
right order and should be pushed in the outermost possible position. In the code, these
features were reflected by deletion of old restrictions and right adjustment of the tag

order.

Addition of MPLS BOS and PBB fields. The MPLS Bottom of the Stack (BOS)
field and support for the Provider Backbone Bridge Protocol (PBB) was quite easy to
implement thanks to the Packet Parser design, described in the subsection 4.1.2.1. PBB
support also included actions to push and to pop tags in a packet. These actions are
similiar to MPLS and VLAN push and pop, thus implementation for PBB followed a

workflow similar to the mentioned protocols.

Duration for stats. Old versions included the time of existence only for flow entries
statistics. OpenFlow 1.3 introduces a duration field for meter, port, queue and group

statistics and they are supported by the software switch.
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4.1.7 Dpctl

Dpctl is an useful tool for management and debugging of the tables of a single
OpenFlow switch. By using Dpctl, it is possible to avoid adding debugging code in a controller
application; for example, it is possible to query the current Flow Table state. Dpctl has been
available since the OpenFlow 1.0 reference implementation, and we considered its upgrade

quite necessary as an aid during our switch development.

To connect with Dpctl, the software switch keeps a passive listening port. Unlike the
switch active sockets, which looks for a controller to connect, the passive port waits for a
connection. Thereby, Dpctl must initiate an active connection in order to establish contact

with the switch. The switch port number for incoming connections is 6634.

Several changes were required in order to upgrade Dpctl for OpenFlow 1.3. New
commands had to be implemented for meter, table stats and features, along with new
arguments for existing commands, like flow mod, such as instructions and recently modified
or added match fields. As each command sends a different message for the switch, the

independence of Oflib comes in handy for these tasks.

Dpctl uses OFlib to create and receive switch messages and also to print their contents.
After command parsing, the arguments are stored in the respective OFlib structures, for
example, a meter-mod command creates the struct ofl _msqg meter _mod. The struct is packed
using the Oflib function and then sent for the switch. Commands like stats-flow always
generate an answer, which on receipt are unpacked by Oflib and the results are displayed on
screen. It checks message delivery through the use of OpenFlow barrier messages. After every
message a barrier request is sent for the switch, which should answer with a barrier reply to

confirm the receipt.

4.2 Open source development

An important aspect about the software switch development is the project’s open
source nature. The code is distributed under the BSD 3-clause license, a permissive license
with few restrictions about software redistribution. This type of license fits with our main

motivation, because it gives freedom to use and encourages collaboration.

The code is available on GitHub 4, a well known web site for projects that adopt git
(GIT, 2005) as the source control management tool. Git is ideal for distributed development,

as developers keep a local copy of the current code state and usually make changes to local

1 Project Page: https://github.com/CPqD/ofsoftswitch13
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branches. These changes are tested, reviewed and then merged into main, typically named

master branch.

In this section we will show how this model works in our development process and
show how it helps us in the process of code maintenance and support.
4.2.1 Development workflow

GitHub is a social platform and leverages code collaboration for open source projects.
For this reason, code development follows a very simple and common workflow for public git
projects hosted at GitHub:

e Developers fork the code and create local branches of new features or fixes.

Changes are made in the branch and committed.

A Pull Request is sent to the main repository.

Code is reviewed and tested.

Changes are merged into master.

This steps enabled collaboration of developers from all around the world. Also, this
work model adds transparency to the development, allowing anyone from the community to
track changes, enhancements and bugs. The last benefit is fairness, as every git commit is

signed with the author name, credits are guaranteed to be given and shown for all contributors.

4.2.2 Code maintenance

In traditional Waterfall model, software life cycle maintenance is an independent
phase and comes after implementation and testing steps (RUPARELIA, 2010). While this
development model is well suited for large and well defined projects, it lacks flexibility and
the dynamism required for an open source project that demands fast reactions to bugs and
inquires for enhancements. Therefore, maintenance and support are processes that walk side

by side with implementation and test.

The most common of the maintenance tasks are usually triggered by users’ requests
on GitHub issue tracker. Users are free to open tickets asking for enhancements or to report
bugs. The issue tracker is also a common place for questions about the software switch code

or execution. Thus, maintenance and support are very close in the switch development.
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Another important aspect of code maintenance are regression tests. After every new
feature implemented or issue fixed, we run test frameworks presented in section 2.3, ensuring
that no change caused a break in functional code. Furthermore, Ryu tests run automatically
after new commits, since their developers keep an infrastructure to detect changes, execute

the tests and publish results on a public web page °.

The idea of feature testing gives light for possible evolutions in our development model.
A Test Driven Development (TDD) (NAGAPPAN et al., 2008), a development approach
where tests are written first, before the software functionalities. A TDD based methodology
would force continuous maintenance in the code, because developers, when designing tests, are
already thinking about the system behavior, and how it is going to be used. Moreover, they

might preview further changes. Thus leading to implementation of more maintainable code.

Another possible model is the Features Driven Development (FDD) (PALMER; FELS-
ING, 2001), an iterative, incremental and agile method of software development. As the
name states, the methodology activities are all focused on the system features. After the
development of an overall model, a high level description of the system, features are extracted
from this model. Then, a development plan is made and the chosen features are designed and

coded. Finally, features are built and validated by unit tests.

FDD would make sense in our development because of the current process to add
new features to the OpenFlow specification. The ONF Extension Working Group (EWG) is
responsible for suggestion and validation of new OpenFlow features. Functionality approval
process goes through proposal - which may be seem as the listing and planning phases of
FDD -, implementation and validation in some of the available OpenFlow software switches.
After validation, i.e running the test and confirming its effectiveness, the feature is ready to

be written in the specification, just like any code ready for production.

Chapter Concluding Remarks

While the development model is well established, with potential to evolve, and the
features are implemented, we need to answer questions about the software switch performance
and how much our implementation meets the expected correctness to enable experimenters
a broader OpenFlow experience. In the next chapter we evaluate our work presenting test

frameworks and performance results, besides a discussion about code portability.

> Ryu Certification - http://osrg.github.io/ryu/certification.html
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5 Evaluation

In this chapter we evaluate our work in terms of the requisites presented on section
1.2. The first section shows in numbers how many features are covered by the software switch.
Subsequently, in the next section, we present the results of performance benchmarks tests.
The last section of the chapter is a qualitative evaluation about the code’s ease to change.
We demonstrate the code portability, highlighting the port of the software switch to another

processor architecture in a different operating system.

The software switch evaluated version dates from the last commit pushed to GitHub.

The box below shows the dates and last code changes description.

e commit cb740bd2565ac7e5d61ebe30ee75160a5452a033
e Commit: Eder Ledao Fernandes <ederleaofernandes@gmail.com>

e CommitDate: Mon Feb 23 18:42:49 2015 -0300

Add flags member to ofp flow stats.

Fix missing flags field in the response of a flow stats request.

5.1 Feature Completeness

Evaluating the proper operation of the OpenFlow switch features is not a trivial
task. This is caused by the multiple and rich configurations allowed by the specification. For
example, testing all flow match fields combinations would require creation of a large number
of flows and packets, making manual tests very time consuming. For this reason, automatic
test frameworks, discussed on section 2.3, are the best options to test the switch functionality

in order to evaluate feature completeness.

OF Test and Ryu Certification are the two test frameworks used for the switch validation.
As mentioned in chapter 4.2.2, both are important tools for the software switch development.
While Ryu certification has a strong focus on validation of the Datapath, OFTest offers a

nice set of test cases for control and data plane message exchange. In the next sections we
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present a resume of the results obtained.

5.1.1 OFTest results

Testing in OFTest is simple as it provides scripts in Python to run the switch and the
test cases. Each test case starts a controller which connects with a running switch, executes

the test instructions and checks the switch answers.

Some messages from controller to switch, like a flow stats request, and symmetric
messages demand an answer from the switch. Thus, the main purpose of the framework usage
with the software switch is for message handling validation. Although OFTest has capabilities
to evaluate the pipeline processing - for instance, checking if a packet was correctly forwarded

by a flow - we found in Ryu a more comprehensive test set for this task.

Table 7 shows test results for basic OpenFlow messages. The major type of messages
of the test set are messages to query information about the state of manifold switch elements,
such as GroupFeatureStats and MeterStats. Also, there are some configuration messages, like

the PortConfigMod. In all tests the switch returned the right answer for the control plane.

Table 7 — Basic OpenFlow messages

Message Result Message Result
AggregateStats | ok GroupFeaturesStats | ok
AsyncConfigGet | ok GroupStats ok
DescStats ok MeterConfigStats ok
Echo ok MeterFeaturesStats | ok
EchoWithData | ok MeterStats ok
FeaturesRequest | ok QueueStats ok
FlowStats ok PortConfigMod ok
FlowRemoveAll | ok PortDescStats ok
GroupDescStats | ok TableStats ok

Controller roles test results are shown in table 8. These tests check if the software
switch changes correctly controller roles, and if the respective permission police is respected.

As in the previous message tests, all role tests were successful.

5.1.2 Ryu Certification results

The Ryu Certification tests are divided into five categories: Action, Set-Field, Match,
Group and Meter. The test sets of each category are very comprehensive, with tests for

different packet types.
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Table 8 — Role request message results

Role Request Tests Results
RoleRequestEqualToSlave ok
RoleRequestSlaveToMaster | ok

RolePermissions ok
RoleRequestEqualToMaster | ok
RoleRequestNochange ok
SlaveNoPacketIn ok

Table 9 is a resume of test results - the complete list of test cases can be found on
Annex C - for this work compared to the other three switches presented on chapter 2. White
cells give the number of tests passed, while grey cells show the number of test cases that
returned an error. Tests are divided by each category, with the last two columns giving the

total sum of working and non working features. The first row presents the results for this

work. !
Table 9 — Ryu Certification results comparison
Switch Action | Set-Field | Match Group | Meter | Total
ofsoftswitch13 708 15 30 848
Open vSwitch 534 0 0 670

428
708

023
852

LINC
Trema

3 0
15 34

Results show that the software switch has a higher number of working features than
Open vSwitch and LINC. With only 25 errors, it is tied with Trema in the number of supported
features. There is a small difference between ofsoftswitch13 and Trema in the total number of
tests passing. This happens because Ryu Certification does not execute four tests due to old

switch restrictions.

The values presented in this section are from the official certification site. Some failed
test results are presented on the site work in our internal test setup. For instance, matching
on PBB ISID value works as expected when tested in our development machine. However,
we chose to show the official results as we could not identify the reasons for different results.
In addition, some test may never pass. For example, IP proto modification causes packet
malformation, because the IP proto packet field will not conform with the next layer protocol,

which leads to a test failure.

L ofsoftswitch13 is the software switch repository name
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5.2 Performance Benchmarks

One of the software switch requirements listed on chapter 1 is to reach a throughput
higher than most the most common Internet applications . For this reason we evaluated the
switch performance in terms of network metrics. In this section we show how the switch
performs in comparison with the userspace switches LINC and Trema. We do not compare
with OVS, since it is a software switch for production networks. Also, we investigated how
performance is affected by the number of flows and by the number of tables traversed to

match a packet.

The machine configuration used to perform measurement tests are listed in the box

below.

e Processor: 8x Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz
e Memory: 6003MB

e Operating: System Ubuntu 14.04.2 LTS

5.2.1 Maximum Throughput

This test evaluates the maximum forwarding rate the software switch can reach in

comparison to other userspace implementations.

The setup for maximum throughput evaluation is the following:

e A running instance of the software switch with two virtual interfaces - Port 1 and Port
2 - attached.

e Ryu controller running the learning switch application for OpenFlow 1.3.

e Creation of two Linux containers (LXC) - Host 1 and Host 2 - with a pair of virtual
interfaces veth0 and wvethl. LXC is an operating system lightweight virtualization
technology, in which it is possible to run multiple isolated Linux instances as containers.

With LXC, we run two containers to serve as the network hosts.



5.2. Performance Benchmarks 47

e Execution of ping between Host 1 and Host 2. This step is necessary because we want
to test a scenario where the learning part already happened and the flows are installed
into the switch Flow Table.

e Execution of the iperf program on Host 1 and Host 2, where the first is the client and

the second is the server.

We use iperf to open a TCP session between the Host 1 and Host 2 and transmit data
in an interval of 10 seconds. After that time the program outputs the resulting throughput
of the transmission. To calculate the average bandwidth and we got the result of 10 iperf

executions for each software switch.
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Figure 11 — User space software switches throughput comparison

The Figure 11 shows how each switch performed in Megabits per second (Mbps). The
software switch performance is slightly better than LINC and very far from Trema. The high

difference to Trema is explained by a bottleneck caused by Netbee. The cost of parsing using
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a XML specification is high, affecting the software switch throughput. For this reason, we
implemented and tested a switch version with a raw packet parser, i.e inspecting directly the
packet byte array. The performance is shown in the third column of the Figure above and the
result, more than 500 Mbps, gives an idea of how much Netbee degrades the software switch

speed rate.

Although Trema overcomes our work in performance and Netbee slows down the
throughput, the total speed of the switch overcomes the minimum bandwidth required to
the common Internet applications presented in the section 1.2. Furthermore, the Netbee cost
is worth, since it makes the switch easier to extend and high performance is not one of the

project goals.

5.2.2 Throughput in function of flows and tables

This experiment measured two factors that may affect the software switch performance.
One is the number of flows installed in one table. The second is the number of tables traversed

until the match is found.

For this test we used Mininet with the software switch connecting two hosts. Bandwidth
is measured through the Iperf session established between the two hosts. Flow Table setup for

the two cases are the following:

(A) Number of flows. A certain amount of flows, with the same priority, that will not
match packets is installed. In the end, two flows, with the same or lesser priority than

the previous, are installed to forward packets between the two hosts.

(B) Number of tables. Flows to send the packet to next table are installed until the
penultimate table. Then, in the last table two flows are added to forward the traffic

between the hosts.

The graphs in the Figure 12 shows that both cases have a strong influence over the
switch performance. The most sensitive case is for one table shown in Figure 12a, as the
number of flows increases the throughput decreases linearly. The increase in the number of
tables, shown by the graph in the Figure 12b, also causes a linear decrease in the packet rate,
though it is smaller than in the first case. These results were expected, since the software
switch implements linear matching. Thus, this experiments were important to verify one

improvement area for the software switch.
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Figure 12 — Influence of the number of installed flows on the throughput.

5.2.3 Ping Round Trip Time

Round Trip Time (RTT) is the time between a data request and answer. Several
factors might affect the total RTT and influence network’s latency. Two examples are: the
number of nodes between two communicating hosts and the transmission medium. The time a
packet takes to enter and leave a switch is also considered for the RTT. Thus, it is important
to measure how much the software switch affects the RTT.

In order to measure the RTT between two hosts connected by our software switch -
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we also compare LINC and Trema -, the following steps are executed:

1. Creation of two Linux containers (LXC) - Host 1 and Host 2 - with a pair of virtual

interfaces veth0 and vethl.

2. Execution of a software switch instance with the container virtual ports attached to

switch interfaces.

3. Installation of two flows in the switch Flow Table to forward the traffic between the

two hosts.

4. Configuration of Host 1 and Host 2 with IP addresses in the same network. In our test
Host 1 is configured with the IP address 192.168.0.1 and host 2 as 192.168.0.2.

5. Execution of the ping program in Host 1 to ping the address 192.168.0.2. Ping is a
program to send and measure the time between an Internet Control Message Protocol
(ICMP) "Echo request" and the ICMP "Echo Reply". The number of Echo requests sent
is 100 and the packet sizes are 64Kb.

Switch results comparison is shown in Table 10. These tests give a good approximation
for the software switch impact over the network delay, because it is connected directly to the
hosts. As expected, because of the previous results, Trema is the most efficient among the
userspace software switches. The ofsoftswitch13 obtains a low minimum RTT, with 0.304 ms,
compared to the average of approximately 1 ms. LINC has a very high RTT, with more than

a half second to complete 2.

An acceptable RT'T value depends on the application running over the network. Latency
sensitive programs, like multiplayer online games, benefit from a low RTT. Considering a

small network, with not many hops, the RTT in our software switch is acceptable.

Table 10 — Ping Round Trip Time comparison between software switches

Software Switch | Minimum (ms) | Average (ms) | Maximum (ms) | Standard Deviation (ms)
ofsoftswitch13 0.30 1.07 1.82 0.31

LINC 303.90 554.77 821.48 253.03

Trema 0.12 0.40 0.48 0.04

2

LINC’s latency result is strange, since we were expecting a smaller value because of the throughput

obtained. One hypothesis is that this switch does not handle small packets very well, however the search
for a reason is out of the scope of this work.
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5.3 Portability

Software portability is the ability to compile and to run a program in different hardware
architectures. For a network environment, more specifically OpenFlow, portability allows richer
testbeds. Proposed as a friendly experimentation tool for multiple environments, the software
switch implementation enables portability with few platform dependent modifications. Based
on build scripts to install the OpenFlow 1.0 software switch on an OpenWRT (OpenWRT,
2004) operating system image, (YIAKOUMIS et al., 2011), we demonstrated portability
building our OpenFlow 1.3 software switch for OpenWRT and running in a home wireless

router.

The wireless router model for the software switch port is the TP-LINK TL-WR1043ND.
This router already comes with a default OpenWRT image, however it is necessary to build a

new image containing the software switch installed as an operational system package.

e Enhanced portability for different architectures. Previously, the implementation
considered only Intel based - 1686 and x86_ 64, architectures. Byte order conversions
were necessary because Intel processors byte-order are Little-endian, while the network
follows the Big-endian order. The MIPS processor of the wireless router model follows
the same byte-order from the network. Standard Linux byte-order functions, from the
library netinet/in.h, do not check the system architecture but they do change the
byte-order whatever the type of conversion called. For instance, if we call the function
htons, to change the byte-order to network from host, and the value is already in the
correct order, data is changed anyway. Thus, to avoid wrong values, we implemented
byte-order conversions functions that check the system architecture before calling the

standard procedures from netinet/in.h.

e Netbee Remotion. After the first execution, we realized the switch was consuming
too much memory of the router limited amount of RAM. From 32Mb of memory, the
software switch was consuming 30Mb. After a memory profiling, we found that Netbee
was the most memory consuming component of the switch. While it is not a problem for
a server or a machine with higher capacity, it is not true for a small embedded system
like the wireless router. Therefore, we removed the Netbee library, reducing the average
memory usage to less than 1Mb. Since the code is well structured, the new parsing
implementation was trivial. Only a simple redefinition of the parsing function in the
packet handler interface was necessary. This situation also demonstrated the code’s

friendliness.
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The implementation of an OpenFlow 1.3 switch for a wireless router opens a myriad
of opportunities in the area of Software Defined Wireless Networking. Experimenters might
take advantage of the new features implemented by our software switch. Flow metering,
for example, is a simple yet powerful mechanism to provide bandwidth control in home
environments. Also, creation of firewall blocking rules is made easy by OpenFlow, since field

matching is a natural operation for an OpenFlow switch.

Chapter Concluding Remarks

The evaluation showed some important results and also points for improvement in the
software switch. Also, investigating portability we could check how friendly the code is for
changes and extensions and this one of the main contributions to be presented in the next
chapter. We will show our results and how the software switch is contributing for research in

diverse areas, such as the academia and industry.
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6 Contributions and Results

Among the software switches related to this project, our implementation with support
to OpenFlow 1.3 was the first one to become available for users around the world. This
fact can be considered the main contribution of our work, because the new features of the
protocol opened a new horizon for SDN researchers and developers. Furthermore, choices
of our design and development choices have made the software switch easy to extend or to
modify, allowing initiatives out of the OpenFlow specification scope. In this chapter we present
our contributions to the area, highlighting use cases that were only possible because of our

implementation. We also give some important results achieved during the project.

6.1 Use Cases

Known use cases show that the software is an important tool in the advance of the
state of art on SDN research and development. As there is a large number of projects that

are using or have made use of our work, in this section will show some notorious examples.

6.1.1 ONF Standardization: OpenFlow 1.3+ feature validation and implementa-

tion

Previously, the ONF Extension Working Group did not have not a validation policy
for new features added to the OpenFlow protocol. Until the version 1.3 there has not been
the requirement to have the new functionality running in an OpenFlow software or hardware
switch. As the first implementation to support OpenFlow 1.3, the software switch was an

important tool to verify the practical behavior of the specification features.

Noticing the flaw in the OpenFlow extension process, the working group decided to
publish new features only if properly implemented and tested in any OpenFlow switch. New
OpenFlow versions, after the version 1.3, can be seem as a superset of the previous version, so
the most recent versions 1.4 (ONF, 2014a) and 1.5 (ONF, 2014b) have more extensions than
modifications. Some of this extensions depend on features defined for the first time on the
OpenFlow 1.3 specification. Thus, a compliant OpenFlow 1.3 switch is necessary to implement

and validate this dependent functionalities.

Looking at the software switches available, our work took the EWG attention because
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it was one of the most complete OpenFlow 1.3 implementations and also easy to extend,
speeding up the prototyping process. For this reasons a great number of new features published
on OpenFlow 1.4 and 1.5 was implemented in our software switch. Most of the ONF Extension
Working Group prototyping over our software switch can be found on (TOURRILHES, 2013).
Moreover, we also contributed to the EWG group, giving reports about the development

status and even a talk about the software switch, in one of the ONF meetings.

6.1.2 Academia

The software switch has found good adoption by the academic community. For instance,
works published in renowned conferences (REITBLATT et al., 2013) (BIANCHI et al., 2014)
and master dissertations (ARORA, 2013) (SHOURMASTTI, 2013) cite our software as the

OpenFlow 1.3 switch chosen for their experiments.

Besides the use of features present on the OpenFlow 1.3 specification, researchers are
taking advantage of the simple design of the software switch, when compared to other options,
and are adding their own extensions to the OpenFlow protocol. One example is a work named
AppFlow (MIOTTO, 2014), which extends the OpenFlow protocol, adding fields from the
HTTP protocol for matching in the switch Flow Table. They have found our implementation
easier to extend, after experimenting with Open vSwitch in the beginning. Our packet parsing
engine turns the addition of any new protocol to the OpenFlow software switch simpler than

the other existent options.

6.1.3 Industry

Industrial development is harder to track because it is usually closed and confidential.
However, one of the successful cases known is the development of an application for the
Open Network Operating System (ONOS). Built by two companies teams, Dell and ON.Lab,
the Segment Routing implementation used the software switch for its simplicity and feature
completeness (ONOS, 2014).

Another example is the hardware switch called ONetSwitch (HU et al., 2014). The
switch’s datapath is a mix of hardware and software, where more recent matched flow entries
are stored in the hardware part and the rest is left on software. When a packet matches a
flow in software, it is translated to hardware. ONetSwitch developers are using our software
switch with modifications to translate the flows to hardware. Again we can see how modular
the code is, because after specific changes to some parts, the other components still work

without changes.
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6.2 Results

In this section we present positive results achieved on the dissemination of our work.

6.2.1 Development of an open source community

The choice of using GitHub to host the code proved to be a great way to reach a high
number of users. Figure 13, shows information confirming the tool’s popularity. In a 14 days
interval, the software switch repository had 3125 accesses, with 796 unique visitors and was

cloned 97 times.

The number of forks of the code gives an idea of how many people are adding their
own code to the switch. When it comes to code contributions, there are 15 users listed in
GitHub that submitted pull requests. Also, there is a number of contributors that send patches

through other means, such as email or the GitHub issue tracker.

This result is very important because the creation of a community around open source

code gives visibility, helps to spread the software and speed up reports of detected bugs.
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Figure 13 — GitHub statistics.
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6.2.2 Inclusion as one of Mininet installation options

In our development we extensively used Mininet to emulate OpenFlow networks and to
test our software switch. The choice of the reference switch as the base for our implementation

made it easy, since Mininet has native integration with this OpenFlow switch.

Before our work, Mininet options to emulate OpenFlow networks were limited to the
version 1.0, because the reference switch had not evolved and OVS was still giving its first
steps to support superior versions of the protocol. For this reason, after the first release of this
work, we sent a request to Mininet developers to include our software switch as the userspace

switch option for OpenFlow 1.3.

Today, the software switch is included among the installation options of Mininet.
It makes it easier for users to start experimenting with OpenFlow 1.3, because it hides
installation details !. Another great effect is the possibility to reach more users, since this

work is the default OpenFlow 1.3 userspace switch in Mininet.

6.2.3 Contributions to OF-Test and NOX with support to OpenFlow 1.3

At the beginning, when we started to develop the software switch, test frameworks
and controllers still did not have support for OpenFlow versions above 1.1. In order to solve
the lack of options to test our work, we extended OF-Test, which at that time supported only
OpenFlow 1.0, and a NOX version with support to OpenFlow 1.1.

While extending OF-Test, their developers started to implement support for OpenFlow
versions later than 1.0. Because of our work with the software switch and the tests we wrote
for OpenFlow 1.3, we become involved with the first official steps to evolve OF-Test. Our
tests and code was submitted to the OF-Test repository and we helped to define tests for
multiple connections. Although the code contributed in the beginning is not part of OF-Test

anymore, due to additions of their own libraries, we were part in the evolution of the tool.

Before the adoption of Ryu as the controller for tests, the most advanced version that
OpenFlow controllers supported was 1.1. This controller was a non official NOX version (KIS,
2011a), created by the same developer of the reference software with support to OpenFlow 1.1.
Since it was the only option in the moment, we upgraded this controller to support OpenFlow
1.3.

The development of these two collateral tools are another contribution of our work.

L In order to install our software switch along with Mininet, the user just need to use the following command

after downloading the network emulator: $ . /install.sh -n3f
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These important pieces of software, for anyone who wants to try OpenFlow, were packed
together with the software switch - the first toolkit for OpenFlow 1.3 - in a Virtual Machine,

enabling experimenters a richer experience with the protocol.

6.2.4 Publications

This work gave origin to three publications. The first paper is about IPv6 support on
OpenFlow. The second is an invited paper bringing perspectives on SDN for home network.
These ideas were inspired by the software switch port to OpenWRT. Finally, the last paper is
an overall presentation of this project, highlighting architectural and implementation details.

These publications are listed on Annex B.

Chapter Concluding Remarks

This chapter showed how the software switch is contributing with the advance of
Software Defined Networking and OpenFlow. Among the reasons for the adoption of the
software switch are the simple design of the code, feature completeness and the easy integration
with Mininet. Also, the open source model of the project brought good results for the

development and dissemination of the code.

The current state of the project allows researchers to run a large variety of experiments
and also to create their own extensions. However, there is plenty of room for optimization
and research within the software switch development. In the next chapter we conclude this

work and give some perspectives and research ideas to improve this work.
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7 Conclusion

Six years ago SDN and OpenFlow caused a stir in the world of computer networks.
Although data and control plane separation is not a new idea, the flexibility and programma-
bility enabled by OpenFlow started a wave of industry efforts to support the protocol in
its products. Several OpenFlow 1.0 switches, controllers and test frameworks emerged from
this movement, confirming the growing interest in this technology. Large networks operators,
such as Google and Facebook, embraced OpenFlow interested because of its potential. An
organization, named Open Network Foundation, was created to speed up the OpenFlow
development and adoption. Quickly, new versions of the protocol have been released. This

time, however, implementations did not arouse at the same time.

To keep up with the pace of the technology and to enable research capable of leveraging
the new functionalities, we found the need to implement an OpenFlow 1.3 software switch.
More than a full compliant implementation, requirements included ease of experimentation
and a minimal performance. This effort lead to the open source implementation of the first

OpenFlow 1.3 software switch.

Today, the software switch is a well known open source project and a cheap and
friendly option to experiment OpenFlow 1.3. Although new software switches supporting
OpenFlow 1.3 are now available, this work is still a solid and relevant option to prototype
and develop new OpenFlow applications. In the next section we conclude this work discussing

future areas for research and improvement in the software switch.

7.1 Future Work

Each architectural component of the software switch has space for improvements.
New algorithms and data structures are objects of study for the Flow Table matching. More
complex and precise algorithms for rate limiting might be considered for better Meter Table

performance. As for groups, new bucket select types may be a subject for academic research.

While there are open ideas for further research and development, some optimiza-
tions and features are planned for the software switch in the medium-term. These major

improvements are listed below:

e Support for OpenFlow 1.4 and 1.5. OpenFlow 1.4 and 1.5 are extensions of Open-
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Flow 1.3 and it would be good to keep the pace with the OpenFlow evolution. Some
OpenFlow 1.4 and 1.5 features are already implemented, as stated in section 6.1. How-
ever, we would like to have both versions supported in one single switch running instance,

without need to split the code in two different programs.

Hash based match. Results found in experiments presented on section 5.2.2 show a
huge loss in performance due to linear matching. To solve this problem, flows entries
might be represented as hash value into the Flow Table. Then, packet fields could
also be turned into a hash and looked up in the Flow Table. This would give constant

performance for the Flow Table look up. However, some relevant questions arise:

— How to handle flow priority? Since flows should be matched in order of priority,

how to ensure the first hash value for a flow is the one with higher priority?

— How to deal with field masking? Some flow match fields may have a mask, so they
should be considered in the hash calculation. The question is how to efficiently

search and apply these masks to the packet hash calculation.

The search for an answer of these questions opens space for new research in OpenFlow

and SDN, since these questions are not only related to the software switch.

New packet parsing engine. The software switch relies on Netbee library to parse
packets. While Netbee adds flexibility and extensibility for the parsing and the ease
of addition of new protocols to OpenFlow, its code is neither frequently updated, nor
following dependencies upgrades. This breaks the software switch compilation in more
recent Linux versions, because of more recent versions of libraries required by Netbee.
Due to the number of compilation issues related to Netbee, a new packet parsing module

must replace the current third party library.
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ANNEX A - NetPDL packet description

example

[

<protocol name="udp" longname="UDP (User Datagram protocol)
showsumtemplate="udp ">
<format>
<fields>
<field type="fixed" name="sport" longname="{0x8000 15}" size="2"
showtemplate="FieldDec" />
<field type="fixed" name="dport" longname="{0x8000 16}" size="2"
showtemplate="FieldDec" />
<field type="fixed" name="len" longname="Payload length" size="2"
showtemplate="FieldDec" />
<field type="fixed" name="crc" longname="Checksum" size="2" showtemplate
="FieldHex" />
</fields>
</format>
<visualization>
<showsumtemplate name="udp">
<section name='"next"/>
<text value="UDP: port "/>
<protofield name="sport" showdata="showvalue"/>
<text value=" = "/>
<protofield name="dport" showdata="showvalue'/>
</showsumtemplate>
</visualization>
</protocol>
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ANNEX B - Publications

Three papers were published during this work and are listed below.

e Eder Leao Fernandes, Christian Esteve Rothenberg. "OpenFlow 1.3 Software Switch".
In Salao de Ferramentas XXXII Simpoésio Brasileiro de Redes de Computadores -
SBRC’2014, Florianépolis, 5 a 9 de Maio de 2014.

e E. L. Fernandes, C. Esteve Rothenberg and M. R. Salvador. "Software Defined Home
Networking: Research Challenges and Innovation Opportunities.'(invited paper), In
International Workshop on Telecommunications (IWT’13), Santa Rita do Sapucai,
Brazil, 6-9 May 2013

e Rodrigo R. Denicol, Eder L. Fernandes, Christian E. Rothenberg, Zoltan Lajos Kis, "On
[Pv6 support in OpenFlow via Flexible Match Structures". OFELIA/CHANGE Summer

School SummerSchool, Poster session, Berlin, Germany, November 7-11 November 2011.
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ANNEX C - Full Ryu Certification test results

Ryu Certification Resume
ofsoftswitch13 OK | ERROR
Action 50 6
(Required) (3) (0)
(Optional) (47) | (6)
set_ field 159 7
(Optional) (159) | (7)
Match 708 6
(Required) (108) | (0)
(Optional) (600) | (6)
Group 15 0
(Required) (3) (0)
(Optional) (12) | (0)
Meter 30 6
(Optional) (30) | (6)
Total 962 25
(Required) (114) | (0)
(Optional) (848) | (25)
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C.1 Action Tests

Action Required | IPv4 1Pv6 ARP
OouTPUT X OK OK OK

PUSH VLAN - OK OK OK
PUSH_MPLS - OK OK OK

PUSH PBB ] OK OK OK

PUSH_ VLAN (multiple) | - ERROR | ERROR | ERROR
POP_VLAN ] OK OK OK
COPY_TTL_OUT - OK OK [[(#069a36adbdd0739563365540be6e9b28)
COPY TTL IN ] OK OK [ (#4£5d 77f1£c49b1b854e116048¢24058d)
SET_MPLS_TTL - OK OK OK
DEC_MPLS_TTL - OK OK OK
PUSH_MPLS (multiple) | - OK OK OK
POP__MPLS - OK OK OK
PUSH_PBB (multiple) - OK OK OK
POP_PBB - ERROR | ERROR | ERROR
Decrease TLL Required | ether | vlan | mpls | pbb
SET_NW_TTL (IPv4) |- OK | OK | OK | OK
DEC_NW_TTL (IPv4) | - OK | OK | OK | OK
SET NW_TTL (IPv6) | - OK | OK | OK | OK
DEC_NW_TTL (IPv6) | - OK | OK | OK | OK
set_ field Required | IPv4 IPv6 ARP

ETH_ DST - OK OK OK

ETH SRC - OK OK OK

ETH TYPE - OK OK OK
TUNNEL_ID - OK OK OK

VLAN_ VID - OK OK OK
VLAN_PCP - OK OK OK

MPLS LABEL | - OK OK OK

MPLS _TC - OK OK OK
MPLS_BOS - OK OK OK
PBB_ISID - ERROR | ERROR | ERROR
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7

set_ field Required | ether vlan mpls pbb
IP_DSCP (IPv4) - OK OK OK OK
IP__ECN (IPv4) - OK OK OK OK
IP_PROTO (IPv4) - ERROR | ERROR | ERROR | ERROR
[PV4 SRC - OK OK OK OK
IPV4_DST - OK OK OK OK
TCP_SRC (IPv4) - OK OK OK OK
TCP_DST (IPv4) - OK OK OK OK
UDP__SRC (IPv4) - OK OK OK OK
UDP__DST (IPv4) - OK OK OK OK
SCTP_SRC (IPv4) - OK OK OK OK
SCTP_DST (IPv4) - OK OK OK OK
ICMPV4_TYPE - OK OK OK OK
ICMPV4_CODE - OK OK OK OK
IP_DSCP (IPv6) - OK OK OK OK
IP_ECN (IPv6) - OK OK OK OK
TCP_SRC (IPv6) - OK OK OK OK
TCP_DST (IPv6) - OK OK OK OK
UDP__SRC (IPv6) - OK OK OK OK
UDP_DST (IPv6) - OK OK OK OK
SCTP_SRC (IPv6) - OK OK OK OK
SCTP_DST (IPv6) - OK OK OK OK
[PV6_SRC - OK OK OK OK
IPV6_DST - OK OK OK OK
IPV6_FLABEL - OK OK OK OK
ICMPV6_TYPE - OK OK OK OK
ICMPV6__CODE - OK OK OK OK
IPV6_ND_ TARGET | - OK OK OK OK
IPV6_ND SLL - OK OK OK OK
IPV6_ND_ TLL - OK OK OK OK
ARP_OP - OK OK OK OK
ARP_SPA - OK OK OK OK
ARP_TPA - OK OK OK OK
ARP_SHA - OK OK OK OK
ARP_ THA - OK OK OK OK
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C.2 Match Tests

Match Req | ether vlan mpls pbb

IP_DSCP (IPv4) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IP_ECN (IPv4) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IP_ PROTO (IPv4) X OK/OK /OK OK/OK /OK | OK / OK / OK | OK/OK /OK
IPV4_SRC X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV4_SRC (Mask) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV4_DST X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV4 DST (Mask) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
TCP_SRC (IPv4) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
TCP_DST (IPv4) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
UDP_SRC (IPv4) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
UDP_DST (IPv4) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
SCTP_SRC (IPv4) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
SCTP_DST (IPv4) - OK / OK / OK | OK/OK /OK | OK/OK /OK OK/OK /OK
ICMPV4 TYPE - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
ICMPV4_ CODE - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IP_DSCP (IPv6) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IP_ECN (IPv6) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IP_PROTO (IPv6) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
TCP_SRC (IPv6) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
TCP_DST (IPv6) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
UDP_SRC (IPv6) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
UDP_DST (IPv6) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
SCTP_SRC (IPv6) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
SCTP_DST (IPv6) - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_SRC X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_SRC (Mask) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_DST X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_DST (Mask) X OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_FLABEL - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_ FLABEL(Mask) | - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
ICMPV6_TYPE - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
ICMPV6__CODE - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_ND_ TARGET - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_ND_SLL - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_ND TLL - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_EXTHDR - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
IPV6_EXTHDR(Mask) | - OK/OK /OK OK/OK /OK | OK/OK /OK OK/OK /OK
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Match Req | ether vlan mpls pbb

ARP_OP - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP__SPA - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_SPA (Mask) | - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_TPA - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_TPA (Mask) | - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_SHA - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK / OK / OK
ARP_SHA (Mask) | - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_THA - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
ARP_THA (Mask) | - OK/OK /OK | OK/OK /OK | OK/OK /OK | OK/OK /OK
Match Required | IPv4 IPv6 ARP

IN PORT x OK / OK / OK OK / OK / OK OK / OK / OK
METADATA - OK / OK / OK OK / OK / OK OK / OK / OK
METADATA (Mask) | - OK / OK / OK OK / OK / OK OK / OK / OK
ETH DST X OK / OK / OK OK / OK / OK OK / OK / OK
ETH_DST (Mask) | x OK / OK / OK OK / OK / OK OK / OK / OK
ETH_SRC x OK / OK / OK OK / OK / OK OK / OK / OK
ETH_SRC (Mask) | x OK / OK / OK OK / OK / OK OK / OK / OK
ETH_TYPE x OK / OK / OK OK / OK / OK OK / OK / OK
TUNNEL_ID - OK / OK / OK OK / OK / OK OK / OK / OK
TUNNEL_ID (Mask) | - OK / OK / OK OK / OK / OK OK / OK / OK
VLAN_VID - OK / OK / OK OK / OK / OK OK / OK / OK
VLAN_VID (Mask) |- OK / OK / OK OK / OK / OK OK / OK / OK
VLAN_PCP _ OK / OK / OK OK / OK / OK OK / OK / OK
MPLS_LABEL - OK / OK / OK OK / OK / OK OK / OK / OK
MPLS_TC - OK / OK / OK OK / OK / OK OK / OK / OK
MPLS_ BOS - OK / OK / OK OK / OK / OK OK / OK / OK
PBB_ ISID - ERROR / OK / OK | ERROR / OK / OK | ERROR / OK / OK
PBB_ISID (Mask) - ERROR / OK / OK | ERROR / OK / OK | ERROR / OK / OK
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C.3 Group Tests

Group Required | IPv4 | IPv6 | ARP

ALL X OK | OK | OK

SELECT_Ether - OK | OK | OK

SELECT__IP - OK | OK | OK

SELECT_ Weight_ Ether | - OK | OK | OK

SELECT _Weight_ IP - OK | OK | OK

C.4 Meter Tests

Meter Required | IPv4 [Pv6 ARP
DROP_00_KBPS_00_ 1M - OK OK OK
DROP_00_KBPS_01_10M - OK OK OK
DROP_00_ KBPS 02 100M - OK OK OK
DROP_01_PKTPS_00_100 - OK OK OK
DROP 01 PKTPS 01 1000 - OK OK OK
DROP_01_PKTPS_02_ 10000 - OK OK OK
DSCP_REMARK_00_KBPS 00 1M - OK OK OK
DSCP__REMARK 00 KBPS 01 10M - OK OK OK
DSCP_REMARK 00 KBPS 02 100M | - ERROR | ERROR | ERROR
DSCP_REMARK_ 01_PKTPS_00_100 - OK OK OK
DSCP_REMARK 01 PKTPS 01 1000 | - OK OK OK
DSCP_REMARK_01_PKTPS_ 02 10000 | - ERROR | ERROR | ERROR
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