
Offloading Robotic and UAV applications to the
network using programmable data planes

Fabricio E Rodriguez Cesen
(PhD Candidate)

University of Campinas (UNICAMP)

Christian Esteve Rothenberg
(Supervisor)

University of Campinas (UNICAMP)

Abstract—Next-generation 5G networks are rapidly expand-
ing to support the growing demand for efficient connectivity
in Internet of Things (IoT) and Machine-to-Machine (M2M)
applications across various sectors (e.g., agriculture, automotive,
healthcare, smart cities, and manufacturing). Industrial Internet
of Things (IIoT) promises to transform manufacturing through
Digital Twins while Industry 4.0 advances digitalization with
Cyber-Physical Systems (CPS), machine learning, big data, and
cloud computing. Hence, achieving Ultra-low latency (ULL) is
crucial for applications like robotic control. Although 5G powered
by Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) have improved the network capacity and
reduced the ULL constraints, challenges persist due to wireless
signal unpredictability. To address these issues, this research
proposes leveraging in-network applications to the network
edge to implement ULL solutions for industrial and Unmanned
aerial vehicles (UAVs) applications. Furthermore, we propose the
hardware-based P7 emulation environment to evaluate data plane
applications’ performance, feasibility, effectiveness, and impact.

I. INTRODUCTION & MOTIVATION

With next-generation 5G networks rapidly growing, new
opportunities and challenges are emerging. Applications in dif-
ferent trends (e.g. industry 4.0, IoT) are gaining new envisions.

With the IoT and M2M, networks need to support connected
a diverse range of devices. It is expected to have more than
$50 billion of devices connected during the next years [1].
Having high amounts of transmitted data and various network
services, the network’s capabilities need to grow together [2].

In parallel, industry 4.0 enhances the digitalization of man-
ufacturing through CPS (humans/robots working together),
sharing and analyzing information. This is supported by ML,
big data, and cloud computing across the life cycle.

Nowadays, industrial robots are more intelligent than their
predecessors. Advanced control and ML techniques have
enabled robots to be faster and more accurate than human
workers.Not reacting in time (e.g., emergency stop) can entail
a severe impact, including collision or, human injuries.

ULL applications with extremely low loss and delay vari-
ation are required in new-generation networks [3]. However,
horizontal (e.g., distance, nodes processing) and vertical (e.g.,
NIC, OS, Hypervisor, Application) delays affect the perfor-
mance of end-to-end communication.

This work was supported by the Innovation Center, Ericsson S.A., and
by the Sao Paulo Research Foundation (FAPESP), grant 2021/00199-8, CPE
SMARTNESS. This study was partially funded by CAPES, Brazil - Finance
Code 001.

The evolution of SDN and NFV has already revolutionized
many industries. 5G improved network capacity and ULL
constraints. However, wireless signals can be undeterministic,
disabling 5G alone to be feasible for latency-critical applica-
tions such as robotic control. With the benefits of SDN, it
is possible to enable some tasks to be resolved in the data
plane (inherently, closer to the requester). Without practically
reaching the controller, we can significantly reduce latency and
reaction time.

Traditional network environments can support a wide set
of applications (e.g., vehicles, UAVs, robots, sensors), and the
remote control is usually made from Mobile Edge Computing
(MEC) or an external cloud. Our initial insights suggest
that moving the control logic to the network edge is es-
sential to reduce processing times. Also, these reduce the
amount of traffic in the aggregation or core of the networks.
We can achieve an edge solution using programmable data
planes. Hence, it is possible to potentiate industrial networks
and achieve low latency communication.With Programming
Protocol-Independent Packet Processors (P4) [4] gaining envi-
sion in data plane solutions, we can use P4-capable switchesto
implement an edge solution as a control strategy.

Network emulation is a valuable tool for testing and eval-
uating network configurations and protocols in a safe and
controlled environment. With an ever-increasing demand for
complex network environments being developed by both the
industry and academia, software-based environments struggle
to deliver high-fidelity experiments for real scenario instances.
Advances in network programmability, such as P4, have pri-
marily fueled this surge in demand. Along the same lines, the
hardware-based emulation of networks [5], [6] represents a
potential approach to leverage high-fidelity, high-performance
testing capabilities while offering flexibility and customizabil-
ity of software-based solutions.

Considering the above challenges and issues, this paper
aims to investigate the use of P4 switches to implement
edge solutions as a control strategy for ULL applications in
industrial networks and with UAVs. The research questions to
be addressed are related to the feasibility and effectiveness of
using P4-capable switches for edge solutions, the impact on
network performance, and the scalability and practicality of
the proposed solution. In parallel, we aim to validate the P4-
based in-network solution in a hardware-based environment to
achieve high performance, low latency, and a realistic scenario.

II. RELATED WORK & OPEN CHALLENGES

In this section, we briefly present the closest related work
on in-network applications in programmable data plane.

A. Industrial Robot Control

Recent literature research aims to provide in-network action
developments. Some authors have driven the development of
offloading cloud actions to local networks. In [7], authors
offload from the cloud to a local network box, tasks of
control, and communication deploying in P4. The work in [8]
implements a sophisticated security logic on the data plane.

In [9], authors bring computer vision tasks to the network by
deploying a P4-based system capable of identifying patterns in
images and performing actions accordingly using convolution
filters. Similar in [10], the authors implement a complex event
processing to process streams of basic events. The authors
in [11], evaluated an environment with robot arms and human
collaboration using a VR/AR application. They implemented a
solution using cloud-native programs and CPU core allocation,
demonstrating the impact of delays during deployment.

A similar approach is found in the MEC architectures that
bring cloud-computing capabilities to the network edge [12].
In [13], an approach based on MEC is proposed, where authors
aim that if robot actions are programmed in the P4 switch, the
processing of sending information to the MEC can be reduced,
and a direct response from the edge device can be obtained.

In [14], parts of the industrial controller logic were out-
sourced to the data plane. The results obtained show a sig-
nificant reduction in the sensor’s delay. A similar approach
is explored in [15], where authors investigate performance
trade-offs between different in-network platforms and aboard
different opportunities to add critical tasks from the industrial
scenario. The insights were validated with an in-network
coordinate transformation task.

From the wide set of emerged applications, industrial, more
specifically robots (e.g., UAVs, robot arms, digital twins),
has become a trend in innovation and development of new
solutions. UAVs, especially Quadcopters, are becoming an
important application powered by the new network char-
acteristics [16]. However, a significant challenge in UAV
navigation is to ensure safe operation, avoiding obstacles or
other devices. Bringing the programmable data plane benefits
and the flexibility of P4, implementing a Collision avoidance
algorithm in the edge device can fill the gap for low latency
applications over the network.

With Industry 4.0 and new-generation networks such as 5G,
new UAV applications are attracting growing interest. Driven
by the rising demand in commercial and civil applications,
UAVs are primarily designed for navigating from a starting
position to a destination way-point. However, a significant
challenge in navigation is to ensure safe operation without
collisions with obstacles or other devices.

Different strategies have been developed and proposed for
collision avoidance. Therefore, the approaches developed for
collision avoidance are based on defining a signal to determine
a trajectory free of obstacles.

Existing works related to collision avoidance control algo-
rithms fit into six categories [17] (i.e., Path planning, Conflict
resolution, Model predictive control, Potential field, Geometric
guidance, and Motion planning of teams of multi-UAVs).

Collision cone and Prioritized planning require less com-
putational power and are simpler to implement. Considering
the principal characteristics of the algorithms, such as using
velocity parameters, supporting static & moving objects, being
designed for 3D environments, being suitable for large teams,
algorithm focus on distributed or centralized scenarios, the
threshold used to detect a collision, it is possible to define the
complexity to simplify the algorithm.

With this classification of complexity, we can identify the
algorithms that are suitable for In-network implementation.
A collision cone defines a secure area and creates a safe
path to avoid collisions based on the position and velocity
of the devices. In Prioritized planning, each UAV is given
priority based on its task, and a centralized algorithm can find
a solution for each UAV to avoid collisions.

B. Network Emulation

Alternatives to deploy and validate P4-based solutions in a
realistic network scenario are frequently limited to small-scale
environments (e.g., speeds, number of devices, complexity),
emulation/virtualization environments or simulation-based ap-
proaches. These challenges compromise different aspects, such
as realism, flexibility, scalability, and customizability of the
experiments, among others.

Mininet [18] has core limitations in providing high-fidelity
network experimentation since it is limited by the character-
istics of the host.

Koponen et al. [19] proposes NSX, a network virtualization
platform developed by VMware to manage multi-tenant do-
mains in data center environments. Similarly, CrystalNet [20]
consists of three main components to emulate large-scale
production networks: (i) the Topology Generator leverages
statistical models and real-world network data; (ii) the Traffic
Modeler leverages ML techniques; (iii) the Network Emulator
leverages VM for the testing of different network configu-
rations and policies. However, the work is limited to virtual
switches and routers.

More recently, BNV [21] leverages hardware virtualiza-
tion technologies (e.g., Intel VT-d, SR-IOV) to enable the
virtualization of network devices (e.g., Open vSwitches).
SimBricks [22] is designed to enable end-to-end simulation
of host networking stacks. It simulates components of the
host networking stack, such as the NIC, driver, kernel, and
application, to provide a more comprehensive, flexible, and
cost-effective approach.

TurboNet [23] is the first to leverage the programmability
of modern switches to emulate network behavior accurately.
Specifically, it uses P4 to implement switch behavior in
hardware. Nevertheless, not all link characteristics and the
support of a custom P4 code are present.

C. Open Challenges

With the characteristics of new-generation networks, the
rapid increase of network applications and connected devices,
and the fact that resources can be limited, the demand over the
network is reaching a critical point. As if it were not enough,
ULL applications demand rigorous standards to achieve the
proposed objectives, being critical in some scenarios (e.g., de-
tecting objects and defining actions). These challenges directly
affect the evolution and the addition of new applications.

The advances in SDN, most specifically, in programmable
data planes, in turn, can enable the possibility of in-network
applications. In-network solutions have emerged with the ad-
vent of programmable and stateful networks. These solutions
allow certain control functions to be offloaded to the network
itself, enabling tasks to be executed entirely in the data plane,
which is much closer to or at the network edge. This approach
significantly reduces latency and reaction time, as it eliminates
the need to traverse the centralized controller, which may
encounter congestion and delays in the core of the network.

Network programmability has opened up many applications
and opportunities, and various approaches have been explored
to use in-network applications to enhance traditional cloud
scenarios. In this context, several related works focusing
mainly on P4 in-network solutions have been investigated.

1) In-network Applications: Considering the success of P4
in network applications and given the research scope, there
are several potential areas to explore P4 in non-networking
scenarios. Since P4 unlocks multiple capabilities, for in-
stance, (i) to enable network programmability; (ii) packets
processed in hardware, enabling the creation of custom packet
and pipeline distribution; (iii) to define own packet formats,
parser, and processing logic; (iv) customize the behavior of
network devices and implement new features; (v) offers a
high throughput and low latency, for a high-speed network
environment. However, applying P4 to a non-networking sce-
nario requires innovative development and design choices for
P4. If we perform an in-network action directly with P4, how
do we adapt a control algorithm in a programmable device
to perform an in-network action directly with P4? What if
the communication is not synchronized between end-to-end
devices? How can we process and respond to messages, apply
algorithms, and optimize resources from a network device?
Finally, how can we integrate in-network solutions to control
other devices, such as robots and UAVs? These questions
remain open, presenting research opportunities to extend the
benefits of network programmability to non-networking or
non-traditional scenarios.

2) Collision avoidance algorithms: A collision avoidance
algorithm is necessary to prevent collisions between multiple
UAVs or objects (e.g., buildings) in the airspace. A UAVs
can collide without a collision avoidance algorithm, causing
damage or even accidents. Therefore, developing effective
UAVs collision avoidance algorithms is critical for safe and
reliable operations. In a programmable network, offloading the
computational and communication burden to the network in-

frastructure is possible. Furthermore, deploying the algorithm
inside the network makes it possible to integrate it with other
network functions, such as traffic management, congestion
control, and routing. This can enable more coordinated and
optimized use of the airspace, improving the overall efficiency
and safety of UAVs operations. In addition, implementing the
algorithm inside the network can provide a more scalable
and flexible solution, as it can be updated and modified
centrally without requiring changes to individual UAVs. This
can also make deploying and managing the collision avoidance
system more accessible, as the network infrastructure can
be leveraged. In this spirit, it is essential to have an open-
source in-network Collision Avoidance algorithm towards data
plane flexibility, extending traditional network functions, and
exploring the programmability, performance, and scalability in
a new era of network applications.

3) Hardware-based emulation: Traditional network exper-
iment solutions, such as virtual and emulation-based envi-
ronments, suffer from performance fidelity, trade-offs, and
scalability constraints. Therefore, there is a need for a realistic
experimental platform that can provide high-fidelity perfor-
mance, scalability, and flexibility. In this spirit, it is critical to
leverage the power of P4-based hardware (Tofino) to provide a
realistic experimental platform with high-fidelity performance,
scalability, flexibility, and support for data plane programma-
bility using a hardware-based environment. An emulation
tool that offers high-fidelity 100G traffic network emulation,
including various link characteristics such as latency, jitter,
packet loss, bandwidth, and the option to customize network
topologies, has the potential to become an important tool for
P4-based network emulation.

III. APPROACHES & CONTRIBUTIONS

Our work and contributions consist of a set of approaches
aiming at addressing the above-mentioned gaps.

A. Low Latency Robot Control in Programmable Data Planes

Recently emerged programmable and stateful networks have
given rise to in-network solutions, enabling simple calculations
to be offloaded to the network itself. By enabling some tasks
(i.e., requests) to be resolved entirely in the data plane (in-
herently, closer to the requester) without practically reaching
the centralized controller, we can significantly reduce latency
and reaction time without the need to overcome possible
congestion and delays in the core of the network.

In this paper, we take the first steps towards this direction
and investigate whether industrial robot controllers can benefit
from the revolutionary network paradigm shift by overcoming
the possible pitfalls via an in-network solution. In particular,
we present the first in-network robotic control application
(i.e., offloaded to the programmable data planes) capable of
reacting (i.e., responding to the robot) to sudden changes
in the robotic cells. To reach this end, we leverage the key
capabilities of network programmability, and we design and
implement custom functions to parse and analyze the TCP
communication between the robot and the controller and

Fig. 1: In-network P4-based implementation.

perform basic calculations (e.g., distance, average filtering) in-
network [24]. Particularly, when we detect a position threshold
violation in the data plane (by intercepting status messages
sent by the robots to the controller), a custom reply packet is
crafted at the first hop in the network to deliver an emergency
stop command to the robot arm within no time.

The main goal of our in-network robot arm control is
to investigate the potential of a programmable data plane
(e.g., P4-based device) deployed close to the target robot
components (e.g., arm, sensor) in a centralized network with
undeterministic connections. Particularly, we explore how to
reduce the latency of critical actions (e.g., emergency stop,
alarm notification, synchronization) when needed.

Accordingly, the system being investigated encloses a robot
and a controller (see Fig. 1), where the robot arm is pro-
grammed to do well-structured repetitive tasks. In contrast, the
controller role encloses verification, failure response, synchro-
nization process activities, etc. One challenge of in-network
solutions arises from messing up the TCP session. If we
manipulate or create any message by the P4 device, we need
to sync all the ACK and SEQ numbers adequately to keep all
TCP parameters valid for both endpoints.

When the robot sends a message with its position (Fig. 1) 1 ,
and it matches a defined threshold, the P4 router generates an
automatic response with a calculated ACK and SEQ numbers
to the robot 3 , without any interaction of the controller.

Altogether, our experimental findings suggest that an in-
network approach can play a critical role in ULL applications.
The proof of concept evaluation using a P4 router to send rapid
actions to the arm demonstrates that programmable devices
could unlock new ways to offload robot controller actions to
the network. We also confirm that with P4, we can effectively
match payload information from the robot and use it to craft
valid in-network packets acting as fast controller actions.

B. In-network Centralized Collision Avoidance Algorithm

UAVs, are becoming an important application powered
by the new network characteristics. Having external sensors
(e.g., camera, GPS, proximity sensor), UAVs can observe
sudden changes in the operational area, such as unexpected
obstacles or even other UAVs. In such critical circumstances,
not reacting in time (e.g., adjusting movements) can entail a
severe impact, including collision. To resolve this, each robot
is directly connected to a powerful Remote API for continuous
monitoring and swift and precise interventions.

Distributed and centralized environments have their
strengths and weaknesses. In this context, figure 2 presents
our approach, a centralized controller enhanced with P4.

Centralized with P4CentralizedDistributed

Robot task capability

Flexibility

Bandwidth

Environment

Scalability

Homogeneity

Population size

Fig. 2: Comparison of Distributed and Centralized scenarios.

Fig. 3: Quadcopter Scenario.

Nowadays, enterprises increasingly offload their business-
critical workloads to the cloud to benefit from low infrastruc-
ture costs, high availability, and flexible resource management.
However, they have to face the unreliable (i.e., lossy and
congested links, latency) nature of today’s network. We bring
cloud-computing capabilities to the network edge in a MEC
architecture. However, we fancy additional processing delays
(e.g., switch, NIC, OS, Hypervisor, Application). If some
control functions are offloaded to the network edge device
(e.g., P4 switch), it is possible to reduce this processing time
while directly responding from the network.

We propose an in-network Centralized Collision Avoidance
Algorithm in the Data Planes, bringing the benefits of a P4
device. Adding the remote API functions in the edge device,
we avoid the latency of the MEC (5 − 15ms) or even of
an external network (>10 ms) [25] [26] Despite the possible
limitations (e.g., complex operations, memory), we argue the
possibility of implementing an approach based on a Real-Time
Three-Dimensional Obstacle Avoidance Using an Octomap
(3DVFH+) [27] algorithm. Having a complete view of the
environment and adding the capability of avoiding collisions.

If we deploy the in-network solution in a programmable
device located at the edge of the network, we can avoid the
processing of the remote API located in the MEC and the
3DVFH+ algorithm software processing. The total time of
processing is presented in equation 1. As an example, we can
assume horizontal delay values from the literature.

Tt =

Access︷ ︸︸ ︷
0.05ms+

Edge︷ ︸︸ ︷
2.2ms+

MEC︷︸︸︷
5ms+

3DVFH+︷ ︸︸ ︷
0.3ms+P4 (1)

Considering the benefits of implementing in P4 the collision
avoidance algorithm, the proposed solution overview of the
logic applied in the P4 code to detect a collision using the
3DVFH+ is presented in Algorithm 1.

In our approach, we use a histogram to maintain the position
of the objects in the environment. This information is stored
using registers. Considering the 32 bits per register limitation
in Tofino Native Architecture (TNA), depending on the size
of the histogram, the total number of registers can vary.

Algorithm 1 P4 algorithm ow

Require: Parse Packet Headers

 type Message Type

 histogram Register Possition

 if type is Command Message or Message From API then

 Forward

 else

 Update Histogram Cost

 end if

 if histogram not Obstacle then

 Forward

 else

 Get Directions; Modify Packet; Forward

 end if

To simplify the allocation of information, it is possible to
divide into groups. Each of these groups will allocate 30 bits
of the histogram. To compare the information of the histogram,
it is possible to use different approaches. The resource of
recirculation or sequential register calls can be employed.

In a histogram, each object can have different weights.
Different values represent the presence or absence of an object
and the priority of the cost of devices. The representation in
the histogram is made by setting a number 1 where an object is
located and a 0 where it is empty. This information is also used
to detect a possible collision during the avoidance algorithm.

We validate our collision avoidance algorithm, following
the testbed presented in Fig. 3. Drones are implemented in
CoppeliaSim together with flight mechanisms and hardware
representations. The P4 code with the collision avoidance algo-
rithm runs in a Tofino switch. Finally, the remote Application
Programming Interface (API) is a Python script connected
to CoppeliaSim over TCP. This script controls the drone’s
destinations, formations, and actions.

To validate the avoidance control performed by the P4 code,
we add different link metrics (i.e., latency) to the link between
the Tofino switch and the Remote API. Then, we verify that
the drones avoid the collision.

The scenario in Fig. 4 shows UAV collision detection with a
static object, where UAV0 has a destination point at the other
side of the grid (see Fig. 4a), and during its path, it has to
cross over a static object. When UAV0 reaches nearby (defined
secure zone) the object (see Fig. 4b), the P4 switch calculates
and sends to UAV0 the information of the avoidance path to
avoid a collision (Fig. 4c). After the avoidance movement,
UAV0 returns on his way to the destination.

C. P4 Programmable Patch Panel (P7)

Virtual and software-based environments, such as Mininet,
have become popular for network experimentation. However,
these platforms often have limitations, including low transmis-
sion speeds and trade-offs between scalability and performance
fidelity. Advances in P4 programmability and new P4 hardware
that supports TNA have enabled the possibility of emulating

UAV0

UAV1UAV2

(a) Initial position (b) Collision detected

(c) Avoidance movement

Fig. 4: Collision avoidance use case UAV and object.

various network link characteristics and creating network
topologies for running line-rate traffic in a single P4 switch
(i.e., Tofino). P7 emulator [28]–[30] allows the configuration
of network scenarios with different link characteristics, includ-
ing 100G traffic capacities, using a single P4 switch.

With increasingly powerful and complex networking en-
vironments (e.g., robots and UAVs) being worked out by
industry and academia research, notably fueled lately by
network programmability advances and efforts, the demand
for experimental validation before actual deployment becomes
paramount. Accessible and affordable user-friendly testbeds
providing line-rate and high-fidelity performance for evalu-
ation purposes are tricky to achieve. Researchers’ budgets
are commonly limited and broadly impact the quantity and
quality of networking devices. In this scenario, preparing
and running experiments are frequently limited to small-scale
environments (e.g., speeds, number of devices, complexity),
emulation/virtualization environments , or simulation-based
approaches. In the end, well-known trade-offs of networking
experimentation hit the research roadmap and compromised
different aspects such as realism, flexibility, scalability, and
customizability of the experiments, among others.

P7is a high-end yet affordable network emulation plat-
form that overcomes shortcomings from traditional testbed
approaches. P7 exploits the capabilities of P4-capable hard-
ware to provide realistic emulation of network topologies
using programmable hardware pipeline features such as packet
recirculations, port configurations, match+action table abstrac-
tions, along with a simple path routing solution. Furthermore,
the user/experimenter can connect physical servers to inject
custom traffic flows (e.g., PCAP-based or Tofino-based) from a
traffic or trace generator to the emulated networking scenario.

In this context, it is crucial to have a solution capable of
accurately representing and modeling complex network sce-
narios. We can model the behavior between our applications
(e.g., UAVs) and their controller, representing different metrics
and variations that can affect end-to-end communication.

With P7, we leverage the possibility of setting a custom pipe
distribution model. We propose a solution where a dedicated
pipe runs the P7 P4 code, and a separate pipe runs the user-
defined P4 code (e.g., collision avoidance).

IV. FINAL REMARKS

In industry 4.0 applications, having more than one device
working in synchronization is common, and they must share
their information. We believe that apart from looking for use
cases with one robot, future research should look for a scenario
where two or more robots work nearby in a shared space. If
one of the robots is in a collision course with others (including
objects or humans detected by collaborative sensors), it is
necessary to act rapidly. Programmable network devices may
react to such events and send a message of a new course or
even a stop action. These activities are required within a short
time to prevent possible accidents effectively.

Overall, we presented the design of a P4 implementation of
in-network actions to control a robotic arm and a collision
avoidance algorithm in edge by offloading some controller
functions to a programmable edge network device itself. We
described scenarios where a programmable device could make
a difference in terms of ultra-low latency response. We showed
how to effectively manipulate the content of the messages to
craft new replies within an established TCP session. Moreover,
we explore the benefits of a P4 device (e.g., High Performance,
Reconfigurability, Protocol Independent) in a ULL use case.
Our preliminary experimental evaluation demonstrated how
the delay affects the connection to an accurate stop position or
avoidance message. The kinematic configuration of the robot
and drone (i.e., acceleration, step size) also affects the error
(stop position difference) to apply an action. Furthermore, we
demonstrate that the collision avoidance algorithm in P4 can
detect and react fast to avoid possible impacts effectively.

Programmable data planes in delay-critical scenarios open
up new opportunities for a different range of applications (e.g.,
sensor monitoring, data filtering, threshold matching). All in
all, our P4-based robotic arm control experience suggests
intriguing opportunities that are not limited to robots only
but apply to a wide range of applications (e.g., industry 4.0,
automation, real-time control, synchronization) where low and
deterministic latency is paramount.

In parallel, we show how P7 contributes to the ecosystem of
affordable 100G experimental platforms with a user-friendly,
cost-effective 100G network emulator in support of traditional
networking, advanced programmable networking research, and
teaching purposes. Also, supporting scenarios where the vari-
ation of metrics is required for the tests. Being a high-fidelity
testbed, P7 facilitates repeatable and reproducible research
by sharing P7 topology files to be compiled and deployed,
resulting in the same output anywhere (along with the specific
Tofino target capabilities permit). Furthermore, P7, with its
multiple pipelines and line-rate support, will leverage the
possibility of validating our in-network solutions by defining
different scenarios with custom metrics and behaviors.

ACKNOWLEDGMENT

This work was supported by the Innovation Center, Ericsson
S.A., and by the Sao Paulo Research Foundation (FAPESP),
grant 2021/00199-8, CPE SMARTNESS. This study was par-
tially funded by CAPES, Brazil - Finance Code 001.

REFERENCES

[1] J. Bradley et al., “Embracing the Internet of everything to capture your
share of $14.4 trillion,” White Paper, Cisco, vol. 318, 2013.

[2] S. Talwar and R. Vannithamby, Introduction. John Wiley & Sons, Ltd,
2016, ch. 1, pp. 1–8.

[3] A. Nasrallah et al., “Ultra-low latency (ULL) networks: A comprehen-
sive survey covering the IEEE TSN standard and related ULL research,”
arXiv preprint arXiv:1803.07673, 2018.

[4] P. Bosshart et al., “P4: Programming Protocol-independent Packet
Processors,” SIGCOMM, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[5] A. A. Alli and M. M. Alam, “The fog cloud of things: A survey on
concepts, architecture, standards, tools, and applications,” Internet of
Things, vol. 9, p. 100177, 2020.

[6] K. Nisar et al., “A survey on the architecture, application, and security
of software defined networking: Challenges and open issues,” Internet
of Things, vol. 12, p. 100289, 2020.

[7] J. Rüth et al., “Towards in-network industrial feedback control,” in
NetCompute. New York, NY, USA: ACM, 2018, pp. 14–19.

[8] A. C. Lapolli et al., “Offloading Real-time DDoS Attack Detection to
Programmable Data Planes,” in IFIP. USA: IEEE, 2019, pp. 19–27.

[9] R. Glebke et al., “Towards executing computer vision functionality on
programmable network devices,” in ACM CoNEXT ENCP, 2019.

[10] T. Kohler et al., “P4CEP: Towards In-Network Complex Event Process-
ing,” in NetCompute. NY, USA: ACM, 2018, p. 33–38.

[11] B. G. Nagy et al., “Towards Human-Robot Collaboration: An Industry
4.0 VR Platform with Clouds Under the Hood,” in IEEE ICNP, 2019.

[12] Y. Hu et al., “Mobile edge computing A key technology towards 5G,”
ETSI, vol. 11, pp. 1–16, 2015.

[13] W. Wang, “5G Mobile Platform with P4-enabled Network Slicing and
MEC,” September 2019.

[14] J. Vestin et al., “FastReact: In-network control and caching for industrial
control networks using programmable data planes,” in IEEE ETFA,
vol. 1, 2018, pp. 219–226.

[15] I. Kunze et al., “Investigating the Applicability of In-Network Comput-
ing to Industrial Scenarios,” in IEEE ICPS, 2021, pp. 334–340.

[16] S. K. Khan et al., “The role of unmanned aerial vehicles and mmWave
in 5G: Recent advances and challenges,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 7, p. e4241, 2021.

[17] S. Huang et al., “Collision avoidance of multi unmanned aerial vehicles:
A review,” Annual Reviews in Control, vol. 48, pp. 147–164, 2019.

[18] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in SIGCOMM, ser.
Hotnets-IX. New York, NY, USA: ACM, 2010.

[19] T. Koponen et al., “Network Virtualization in Multi-tenant Datacenters,”
in USENIX NSDI 14. Seattle, WA: USENIX, Apr. 2014, pp. 203–216.

[20] H. H. Liu et al., “CrystalNet: Faithfully Emulating Large Production
Networks,” in 26th SOSP. NY, USA: ACM, 2017.

[21] P. G. Kannan et al., “BNV: Enabling Scalable Network Experimentation
through Bare-Metal Network Virtualization,” in USENIX CSET, ser.
CSET’18. USA: USENIX, 2018, p. 6.

[22] H. Li et al., “Enabling End-to-End Simulation for Host Networking
Evaluation using SimBricks,” 2020.

[23] J. Cao et al., “TurboNet: Faithfully Emulating Networks with Pro-
grammable Switches,” in IEEE ICNP, Madrid, Spain, 2020, pp. 1–11.

[24] F. Rodriguez et al., “In-Network P4-Based Low Latency Robot Arm
Control,” in Proceedings CoNEXT. NY, USA: ACM, 2019, p. 59–61.

[25] S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, “SDN
Enhanced Multi-Access Edge Computing (MEC) for E2E Mobility and
QoS Management,” IEEE Access, vol. 8, pp. 77 459–77 469, 2020.

[26] S. Das and M. Ruffini, “PON Virtualisation with EAST-WEST Com-
munications for Low-Latency Converged Multi-Access Edge Computing
(MEC),” in 2020 OFC, 2020, pp. 1–3.

[27] S. Vanneste et al., “3DVFH+: Real-Time Three-Dimensional Obstacle
Avoidance Using an Octomap,” in MORSE 2014, 2014, pp. 89–100.

[28] F. Rodriguez et al., “P4 Programmable Patch Panel (P7): An Instant
100G Emulated Network on Your Tofino-based Pizza Box,” in ACM
SIGCOMM’22 Demo and Poster Session, 2022.

[29] ——, “Network Emulation with P7: A P4 Programmable Patch Panel
on Tofino-based Hardware,” in SBRC, may 2023.

[30] ——, “Towards multiple pipelines network emulation with P7,” in
NetSoft, Madrid, Spain, Jun. 2023.

