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Abstract—We propose a DNN-based QoT estimation technique
that operates on a network-wide scale. The DNN training data
is composed of connection paths, frequency slots, and OSNR
transponder telemetry, collected from both synthetic and phys-
ical connections. Simulation results indicate effective and low-
complexity QoT estimation.
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I. INTRODUCTION

Estimating the quality of transmission (QoT) of unestab-
lished lightpaths has been an active field of research in recent
years [1]. Contrasting with the common practice of estimating
QoT based on analytical formulas and applying margins,
new approaches leverage advances in network operation to
improve QoT estimates based on the telemetry of installed
devices. Most recent QoT estimation algorithms based on
machine learning (ML) rely on techniques such as artificial
neural networks (ANNs), support vector machines (SVMs),
and extreme gradient Boosting (XGBoost). Although these
algorithms have black-box characteristics, they can straightfor-
wardly incorporate practical discrepancies into the QoT model.

Kruse et al. [2] implement spectral data-driven long short-
term memory (LSTM) neural networks for QoT estima-
tion, obtaining 1.1 dB improvement in established lightpaths.
Amirabadi et al. [3] compare deep neural network (DNN) re-
gressors with other well-known ML algorithms for generalized
signal-to-noise ratio (GSNR) estimation with transmission and
topology features, such as channel index, modulation format
of the channel under test and neighbor channels, number of
empty neighbor channels, number of occupied channels, traffic
volume, and number of spans and their length. Usmani et
al. [4] evaluate QoT estimation using ML models trained
with the number of spans, distance, signal power, nonlinear
distortion, and amplified spontaneous emission (ASE) noise.
Morais et al. [5] adopt a topology feature space to train ML
algorithms to estimate residual margins.

This paper proposes a QoT estimation algorithm based
on a DNN fed with only topological data. For a specific
lightpath, the DNN inference inputs are simply the traversed
links and the selected frequency slots. Differently from [2]-[4],
the training phase only relies on topological data and simple
optical signal-to-noise ratio (OSNR) transponder telemetry.
Unlike [5], the proposed work adopts fewer input topology
features, increasing its applicability. The smaller input dataset

is compensated by extensive training using physical telemetry
and synthetic telemetry generated by the GN model. Having
the synthetic telemetry ensures reasonable QoT estimation,
approximating the GN model when the network is only lightly
populated. The role of the synthetic data is then diminished
as more physical connections are installed in the network. We
show that the DNN trained with mixed synthetic-physical data
is able to track the OSNR with non-biased error, even when
only a few physical samples are available.

II. PROPOSED FRAMEWORK

The proposed framework considers an optical network
with 2L unidirectional links, each supporting Ny, frequency
slots. The QoT estimation scheme is based on the DNN
shown in Fig. 1. Its 2L + N,,. inputs correspond to all 2L
unidirectional network links and N,,. wavelength clusters,
and its output corresponds to a link OSNR (or GSNR). We
denote a wavelength cluster as a set of contiguous neighboring
frequency slots. Clustering frequency slots into a lower number
of inputs helps to reduce sparsity and improve performance.
The inputs are binary variables set to one if the corresponding
link or wavelength cluster is used by the connection whose
QoT (OSNR) is being evaluated. The remaining inputs are
set to zero. The proposed framework works with a training
dataset composed of a mixture of synthetic data, whose OSNR
is generated by the GN model, and a physical dataset, whose
OSNR is collected by telemetry. This approach enables the
algorithm to yield relatively accurate estimates even in a
lightly loaded network. In this paper, the physical dataset is
also computationally emulated by incorporating imperfections.
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Fig. 1. Example of the proposed OSNR estimation architecture for an optical
network with 8 nodes, 8 links (bidirectional), and N, wavelength clusters.

SRR Le a8 924 BOGRiVEK ade Estadual de Campinas. Downloaded on January 02,2024 at 02:28:03 UTC from IEEE Xplore. Restrictions apply.



III. RESULTS

Table I depicts the simulation parameters. Demands are
uniformly distributed in the network, with a symbol rate k£ x 10
Gbaud, where k is an integer uniformly distributed between 4
and 8. The signal bandwidth considers Nyquist pulse shaping
with 0.15 roll-off factor. Simulated route-and-select (R&S)
reconfigurable add-drop multiplexers (ROADMs) are equipped
with a per-channel power control loop based on optical channel
monitors (OCMs) and wavelength selective switches (WSSs),
ensuring a —6-dBm launch power per slot (equivalent to 0O-
dBm launch power for a 50-GHz channel). We assume 80-
km spans with 0.2-dB/km attenuation, except for the last one,
which ranges between 50 km and 120 km, to achieve the
desired total span length. Synthetic connections are generated
considering flat inline amplifier (ILA) gains and noise fig-
ures (NFs) equal to 16 dB and 5.5 dB, respectively.

The emulated physical dataset is generated considering
inline amplifiers with wavelength-dependent gain. To create
wavelength dependency, the ILA gains on the spectrum left
edge, right edge, and position n, g(Ao), g(An), 9( AN, —1),
are randomly selected following U ~{15,16} dB, in which n
is randomly chosen in the interval (0, Ny, — 1). The in-
between gains are quadratically interpolated, and white Gaus-
sian noise (N{0,0.0001} dB) is added to each gain. The
noise figures (NFs) are also a function of the gains, i.e.,
NF(A,) = [5.5+16 —g(\y)] dB, n € [0,---, Ngs — 1].
The accepted demands are randomly split into training and
inference datasets (50% each). A normalization between O
and 1 is applied at the output to improve numerical stability.

QoT estimation is carried out by a DNN composed of four
layers. The first layer has 202 (GNet) and 194 (NSFNet) inputs
(corresponding to all unidirectional links and N,. = 150
wavelength clusters'), the hidden layers have 200 neurons
each, with hyperbolic tangent activation functions, and the
output layer has 1 nonlinear neuron with rectified linear
unit (ReLU) activation function, corresponding to the esti-
mated OSNR. We use a mean squared error (MSE) loss
function to minimize the DNN output error. The Adamax
optimization is applied to the backpropagation process [6].
The training was performed for 120 epochs with a batch size
equal to 20.

TABLE I
SIMULATION PARAMETERS

Topology GNet and NSFNet [7]
Optical wavelength band C-band (4.8 THz - 384 FSs)
Grid 12.5 GHz

Symbol rate

Accepted demands
Routing

Wavelength assignment
Shaping filter

k x 10 GBaud, k = 4,5,6,7,8
831 (GNet) 810 (NSFNet)
Djkistra
First-fit
Root-raised cosine (a = 0.15)

'Wavelength cluster m is created considering ranges
[(m - 1)Nf5/ch,me5/ch], m = 1,2, ..., Nyc. An FS is assigned
to cluster m if its index matches the range of m.
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Fig. 2 presents the error quartiles for the GNet and NSFNet.
The resulting quartiles represent the error distribution de-
pending on the training strategy: Figs. 2(a) and 2(c) for
physical connections only, and Figs. 2(b) and 2(d) for synthetic
and physical connections. In Figs. 2(a) and 2(c), the lower
and upper whiskers are reduced in modulus when increasing
the number of physical samples for training. However, even
with several physical samples, some outliers reach high error
values. In Figs. 2(b) and 2(d), for O-physical samples (i.e., only
synthetic data), there is an error bias of approximately 5 dB
for both networks. Notwithstanding, with only 50 physical
samples, there is a significant error reduction in all quartiles,
centering Q2 around 0 dB.
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Fig. 2. OSNR estimation error (¢ = OSNRtrue — OSNRestimated [dB])-
(a-b) GNet; (c-d) NSFNet. (a-c) using only physical connections; (b-d) using
mixed synthetic-physical connections.
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