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Abstract—Recent advances in virtual reality (VR) technology
have created new user experiences (e.g., online events, gaming).
However, ensuring the user experience is still a challenge. Mostly
because Quality of Experience (QoE) measurement is limited to
the user or control plane, causing high latencies for different sce-
narios (e.g., 5G networks and beyond). To address this challenge,
we present QoEyes, an in-network QoE estimation technique
based on Inter-Packet-Gap (IPG) measured in programmable
devices. Our results show that a strong estimate of the user’s
QoE can be provided by measuring the IPG on the data plane.
Additionally, in this demonstration, we show this QoE estimate
and other related metrics in real time, using a Grafana dashboard
running in our monitoring server.

I. INTRODUCTION

Virtual Reality (VR) video streaming applications are no
longer a futuristic concept but a present reality. By the end
of 2023, the number of VR applications is projected to reach
almost 34 million, resulting in at least a 12-fold [1] increase
in associated network traffic. This significant growth poses a
significant challenge for network operators since VR video
streaming applications require high network performance to
maintain a reasonable Quality of Experience (QoE). Recent
research studies [2] have revealed that VR video applications
require a network delay of less than 9ms and can have
bandwidth requirements that go beyond 500 Mbps.

To lower the bandwidth requirements of VR video stream-
ing, spherical-to-plane projection is used by VR video stream-
ing players, with the tile-based scheme [3] being a typical
example. In this approach, VR videos are encoded at varying
resolutions (e.g., 720p, 1080p, or 4K) and then broken into
spatial segments, commonly referred to as tiles and temporal
segments. While streaming, the VR player will request only
those segments and tiles corresponding to the visible area of
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the complete 360-degree panoramic view, also known as the
viewport. Additionally, the VR player utilizes other strategies,
such as Adaptive Bitrate and Buffer Management heuristics.
This approach allows the player to request higher-quality
segments that are predicted to belong to the viewport, while
lower resolutions are used for the other tiles.

Recent research efforts have focused on evaluating and
estimating the QoE of VR video streaming. However, these
studies are usually conducted in the user plane (VR player)
or the control plane. Filho et al. [2] proposed a two-stage
Machine Learning (ML) assisted approach to infer how users
perceive the streamed VR video’s performance at the user
plane. Despite a few recent initiatives, little has been done
to infer QoE in the data plane directly. Analyzing the QoE
of each VR video session in the data plane would provide the
benefit of reacting to different network conditions in real time.

This demo demonstrates QoEyes [4], an in-network QoE
estimation approach that utilizes Inter-Packet-Gap (IPG) in
programmable network devices. Generally, IPG refers to the
difference in arrival time between two consecutive packets of
the same network flow. However, it can also be utilized in
constructing more robust metrics. By measuring the IPG of
each VR video session, QoEyes can infer QoE directly on the
data plane and make decisions to improve it. We implemented
QoEyes in P4 using Tofino hardware and evaluated its per-
formance using publicly available VR video traces. Also, we
leveraged Grafana [5] visualization tool to provide end-user-
oriented demo (see Fig. 1). The results indicate that QoEyes
can strongly correlate the calculated IPG with the achieved
Mean Opinion Score (MOS) and report this in real-time. The
demo’s main contributions can be summarized as follows:

• demonstration of an in-network VR video streaming QoE
estimation directly in the data plane;

• a prototype implementation using Barefoot Tofino HW;
• an open-source software artifact for reproducibil-

ity, which can be accessed at https://github.com/
intrig-unicamp/QoEyes;

• integration with a Grafana dashboard for real-time visu-
alization;



II. BACKGROUND AND RELATED WORK

A. QoE and VR Video Streaming

QoE measurement can be classified into subjective and
objective methods. Subjective methods provide accurate QoE
measurements as they measure video quality perceived by
the Human Visual System (HVS) [6]. Objective methods are
based on quantifiable data, such as bandwidth and latency.
To better capture the user’s experience, it is best to use both
subjective and objective metrics. For VR video streaming, the
immersive experience it provides requires high bandwidth,
low image quality, and limited interactivity. Therefore, VR
video streaming requires decomposing the video into tiles for
transmission.

B. Inter-Packet Gap (IPG)

IPG is a network metric that has proven to be efficient in
solving several network problems such as microbursts [7] and
heavy-hitter [8] detection. The IPG refers to the arrival time
difference between two consecutive network packets. This
difference can be calculated according to Equation 1, where
TSl and TSp are the arrival time of the last and penultimate
packets, respectively. However, some works explore variations
of this metric, for example, calculating the IPG as a Cumula-
tive Sum (CUSUM), Exponentially Weighted Moving Average
(EWMA), or Double Exponentially Weighted Moving Average
(DEMA) [9]. In this work, we use the IPG calculation as an
EWMA in a programmable network device to estimate QoE
in real time, enabling a quick response time to a possible loss
of QoE.

IPG = TSl − TSp (1)

C. Related Work

The VR-EXP [3] platform enables adaptive tile-based
schemes for various network conditions. Meanwhile, PREDIC-
TIVE [2] is a two-stage ML-assisted approach that predicts
how users perceive VR video play-out performance based
on network Quality of Service (QoS) and tiling schemes.
Vidhya et al. [10] use a fuzzy logic mechanism within the
Network Data and Application Function (NWDAF) entity in
5G to evaluate QoE and propose an anticipatory scheduling
technique to address network delay and congestion. Similarly,
Schwarzmann et al. [11] leverages NWDAF standardized
interface capabilities in 5G networks to estimate the accuracy
of different state-of-the-art regression techniques. Chen et al.
[12] offer an Structural Similarity (SSIM)-based approach
for assessing the quality of 360-degree videos, which mea-
sures structural and textural similarities, while FastInter360
[13] reduces the encoding time of 360-degree videos with
EquiRectangular Projection (ERP) by clustering texture blocks
into several texture types. Upenik et al. [14] benchmark
Peak Signal-to-Noise Ratio (PSNR)-based approaches against
ground-truth subjective quality data. Iurian et al. [15] analyze
the impact of priority queues in 360-degree video streaming
scenarios, evaluating several objective quality metrics and their
correlation with subjective quality scores, but do not provide

QoE inference. Finally, Bhat et al. [16] infer objective QoE
metrics and model QoE value score for VR streaming sessions
by leveraging Q-in-Q (IEEE 802.1ad) tunneling and translating
the application- into link-layer header information at the edge.
Despite previous research efforts to achieve QoE through the
data plane, QoEye represents the first approach to design an
in-network VR video streaming QoE estimation directly.

III. INFERRING QOE IN THE DATA PLANE

QoE estimation is typically performed using either measure-
ment or prediction methods on either the user plane or the
control plane. While these methods provide accurate results,
they may not always be as quick as needed due to the com-
plexity of obtaining certain network metrics and the efficiency
of the algorithms. This can limit the prompt implementation
of network policies to address potential problems or quality
degradation, thus negatively affecting the user QoE.

To address this limitation, the authors propose a novel
approach to QoE estimation entirely in the data plane. By
assessing QoE in the data plane, decisions can be made
at a nanosecond level, thus improving the reaction time to
problems and enhancing user QoE. However, QoE inference
in the data plane presents a set of challenges, including
hardware resource limitations, operational constraints, and
limited information about data flow.

In this work, we present QoEyes, a QoE estimation tech-
nique that uses IPG calculation to carry out QoE estimation
entirely in the data plane. Our approach is based on calculating
the IPG as an EWMA (see Equation 2) and exploring the direct
correlation between IPG and QoE [9].

IPGw = α · IPGw−1 + (1− α) · IPGc (2)

Our technique is implemented in P4 and calculates the IPGw
in the ingress process pipeline. We compute the IPGw per
flow and store the result in registers indexed by flow IDs (a
hash of src and destination IPs and ports). Note that with this,
we can already make decisions and apply network policies
based on the calculated IPGw (e.g., use priority queues when
detecting a low QoE). However, in this work, we only report
the calculated IPGw (QoE estimate) using In-Band Network
Telemetry (INT). In the monitoring server, we store the data
received in a database using Influxdb and plot it using a
dashboard in Grafana. Figure 1 shows an example of this
process. More details about our strategy can be obtained in
the complete paper [4].
During the demo. In our demonstration, we will present
different experiments to attendees, including varied network
scenarios. We will run QoEyes remotely in physical Tofino
hardware connected with different physical servers (Clients,
server, and monitoring server). The main topics that we will
present are:

• Experiments as performed in the complete paper, explor-
ing different network scenarios, being able to vary the
number of active sessions, network metrics (bandwidth,
latency), and background traffic.
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Fig. 1. Illustrating QoEyes architecture in a P4 based network

Fig. 2. QoEyes dashboard.

• Attendees will be asked to choose the network conditions
(metrics and active traffic) and analyze the real-time
impact of these changes on the measured metrics.

• a real-time visualization of our QoE estimation method
that will contribute to validating on-the-fly accuracy and
show its potential and current limitations.

With these variations in network scenarios (bandwidth,
latency, etc.) we will be able to observe how the QoE estimated
in the data plane and the QoE measured by the VREXP player
behave, demonstrating their correlation. For example, we can
see the measured QoE in a congested network scenario, with
a low available bandwidth and a high number of active video
sections. Figure 2 presents the dashboard that will be used
to demonstrate the metrics in real-time. On the dashboard, we
can monitor metrics such as the IPGw measured on the switch,
and the calculation of the estimated MOS (calculated on the
client), demonstrating their correlation. In addition, we can see
the advancement of more specific metrics, such as the number
of tiles received at 4k, 1080p, and 720p qualities in each zone.
For more details about these tiles and their qualities, read the
complete paper [4].

IV. CONCLUSIONS AND FUTURE WORK

In this work, we present a demo of QoEyes, a complete
data plane technique of QoE estimation for 360-degree (VR)
videos. We present a dashboard where we can see the operation
of QoEyes in real-time, visualizing the QoE estimate calcu-
lated in the data plane and the metrics of the video received
by the user. With this, we can compare the effectiveness of our
QoE estimation method in real time, modifying the network
landscape and visualizing the impact of this on the measured
metrics. In future work, we plan to improve our dashboard

and data collection, increasing monitoring metrics (e.g., packet
size, TCP used sessions) and improving our analysis methods
(e.g., thresholds, alerts).
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network monitoring techniques through in-band inter packet gap teleme-
try (ipgnet),” in Proceedings of the 5th International Workshop on P4
in Europe, 2022, pp. 53–56.

[8] S. K. Singh et al., “Hh-ipg: Leveraging inter-packet gap metrics in p4
hardware for heavy hitter detection,” IEEE Transactions on Network and
Service Management, 2022.

[9] R. U. Mustafa and C. E. Rothenberg, “Machine learning assisted real-
time dash video qoe estimation technique for encrypted traffic,” in
Proceedings of the 1st Mile-High Video Conference, 2022, pp. 123–123.

[10] R. Vidhya, P. Karthik, and S. Jamadagni, “Anticipatory qoe mechanisms
for 5g data analytics,” in COMSNETS. IEEE, 2020, pp. 523–526.

[11] S. Schwarzmann et al., “Ml-based qoe estimation in 5g networks using
different regression techniques,” IEEE Transactions on Network and
Service Management, vol. 19, no. 3, pp. 3516–3532, 2022.

[12] S. Chen, Y. Zhang, Y. Li, Z. Chen, and Z. Wang, “Spherical structural
similarity index for objective omnidirectional video quality assessment,”
in IEEE ICME. IEEE, 2018, pp. 1–6.

[13] I. Storch et al., “Fastinter360: A fast inter mode decision for hevc 360
video coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 32, no. 5, pp. 3235–3249, 2021.

[14] E. Upenik, M. Rerabek, and T. Ebrahimi, “On the performance of
objective metrics for omnidirectional visual content,” in 2017 ninth
international conference on quality of multimedia experience (QoMEX).
IEEE, 2017, pp. 1–6.

[15] C.-M. Iurian et al., “Video streaming evaluation using priority queuing
in p4 programmable networks,” in RoEduNet. IEEE, 2022, pp. 1–5.

[16] D. Bhat et al., “Application-based qoe support with p4 and openflow,”
in IEEE INFOCOM. IEEE, 2019, pp. 817–823.


