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Abstract—In optical transport networks, failure localization is
usually triggered as a response to alarms and significant anoma-
lous behaviors. However, the recent evolution of network control
and management leveraging software-defined networking (SDN)
and streaming-based telemetry opens up new possibilities for
automated methods that can localize even subtle anomalies,
the so-called soft failures. This paper reports the experimental
demonstration of a machine-learning-based soft-failure localiza-
tion framework in a small-scale laboratory setup. The SDN
telemetry setup includes ONOS-controlled transponders using
NETCONF and an optical line system (OLS) providing telemetry
via an OLS domain controller. A shallow artificial neural network
(ANN) accomplishes ML-based failure localization with principal
component analysis to reduce non-essential information. The
ANN is trained by combining field data and synthetic data
generated in a digital network twin. The field data trains the
ANN to tolerate statistical variations in the network telemetry
without failures, while the synthetic data generates artificial
single-failure scenarios. We show that the soft-failure localization
scheme successfully pinpoints the faulty element in all single
failures generated in transponders, fibers, and amplifiers. We
also demonstrate the system’s ability to deal with double-failure
scenarios.

Index Terms—Software-defined optical networks, soft-failure,
failure localization, machine learning, neural networks.

I. INTRODUCTION

EFFECTIVE failure localization in optical transport net-
works is essential for proper network operation and

service downtime mitigation [1]. Typically, alarm correlation
techniques isolate the failure and set off maintenance ac-
tions [2], [3]. However, recent advances in software-defined
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networking (SDN) [4] and intent-based networking (IBN) [5],
[6] have contributed to novel control and management capa-
bilities [7]–[9], including soft-failure management [10]–[19].

Unlike hard failures, which disrupt the service, soft failures
are not severe enough to activate alarms. Eventually, the early
repair of a soft failure can avoid the progressive degradation
to a hard failure. Soft-failure management can be divided into
the processes of detection, localization, and identification. The
detection process notices anomalous behaviors without pin-
pointing the faulty element. The localization process pinpoints
the faulty device. Finally, the identification process finds the
cause of the failure. As failures in certain network elements
affect network parameters distributed all over the network,
soft-failure localization is a network-wide process. If-else rules
can implement failure localization based on dependence trees
applied to the network telemetry dataset. Nonetheless, teleme-
try parameters may be unavailable or not implemented in some
components, particularly in disaggregated scenarios, requiring
more sophisticated if-else rules. On the other hand, by re-
fitting hyperparameters, machine learning (ML) techniques can
automatically learn complex rules and even interpolate missing
telemetry data [16], [20].

In recent years, several approaches have been proposed for
soft-failure management in optical networks [20], [22]–[24].
Zhang et al. [25] use the extreme gradient boosting (XGBoost)
algorithm and the Shapley additive explanations (SHAP) to
find high-relevance features related to equipment failures for
soft-failure detection. Tanaka et al. [26] detect fiber bends
with a deep-neural-network-based diagnoses workflow. Liu
et al. [27] detect failures via an autoencoder-based anomaly
detection scheme. Aiming at failure identification, Vela et
al. [12] use spectrum analyzers and optical test channels
during commissioning testing and operation, and Shahkarami
et al. [10] monitor the bit error rate (BER) in an experimental
setup. Lun et al. [13], [28], Varughese et al. [29], and Sun
et al. [30] identify failures using machine learning algorithms
applied to receiver digital signal processing (DSP) features.
In Shu et al. [31], soft-failure detection and identification
are carried out by analyzing the digital spectrum of received
signals. Musumeci et al. [32] use domain adaptation and
transfer learning for failure detection and cause identification.

Soft failures eventually trigger anomalies in several network
parameters, and localizing the original failure is a network-
wide [33] process. Barzegar et al. [14], [17] accomplish
soft-failure localization by monitoring the end-to-end per-
formance of active lightpaths and looking for correlations.
Date et al. [34] localize soft failures in wavelength-selective
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Fig. 1. Machine learning-based soft-failure localization framework. In contrast to the original framework proposed in [16], [21], the testbed demonstration
requires the new arrow indicating “baseline field training data.” Telemetry data is retrieved by the streaming telemetry collector and fed into the SDN
information base. An ANN localizes the failure based on training carried out by synthetic training data generated in a network digital twin. Training is also
carried out by baseline field data to prepare the ANN for statistical variations and avoid false positives.

switches (WSSs) using correlations of DSP anomalies found
in transponders. In [21], we develop a framework to localize
soft failures using an artificial neural network (ANN) applied
to network-wide parameters, following an SDN streaming
telemetry service architecture. Unlike [14], [17], [34], which
use explicitly programmed correlation rules to localize fail-
ures, our approach uses ML to automatically learn the relation-
ship between failures and telemetry. The training of an ANN is
carried out using synthetic telemetry data generated in a digital
twin and actual readings from a live network. The ANN learns
complex interdependencies and enables interesting features,
such as missing data interpolation [16] and double-failure
localization. The proposed technique was evaluated through
simulations and experiments in an emulated scenario. In [16],
we extend the solution proposed in [21] for scenarios of
partial telemetry, improving the ANN results with principal
component analysis (PCA). Furthermore, in [1], we validate
our solution in a small-scale laboratory testbed.

In this paper, we extend [1] by providing an extensive
analysis of all single-failure results. We also present a case
study demonstrating that, although the failure localization
algorithm was conceived for single-failure localization, it also
successfully localizes a double-failure scenario, leveraging the
extrapolation ability provided by ML algorithms.

The remainder of this paper is organized as follows. Sec-
tion II presents the soft-failure localization framework and
adaptations required for testbed operation. Section III de-
scribes the experimental setup. Section IV presents the failure
localization results for all single failures and investigates the
case study of double-failure localization. Lastly, Section V
concludes the paper.

II. SOFT-FAILURE LOCALIZATION FRAMEWORK

The framework used for soft-failure localization is shown
in Fig. 1. The original method was proposed in [21] and
refined in [16]. Compared with the original method, the testbed
demonstration [1] requires the new “baseline field training
data” arrow shown in Fig. 1.

The telemetry collector [35] retrieves telemetry data from
amplifiers and transponders. An SDN information base stores

the telemetry data consumed by the failure localization ML
pipeline. The ML algorithm is composed of a shallow
ANN [21]. The ANN input layer corresponds to the input
telemetry data. Eventually, PCA can be applied to the teleme-
try inputs to speed up the training process and reduce the ANN
computational complexity [16]. The output layer corresponds
to all amplifiers, fiber links1, and transponders that may fail. Its
neurons use a Softmax activation function [13], [36], providing
a probabilistic indication that an element has failed. The ANN
hidden layer uses linear neurons, and its size is empirically
adjusted according to the network dimensions. A training
pipeline creates an ML training dataset through a network
digital twin (NDT) [37], [38], where topology, lightpaths,
spectrum allocation, and telemetry data (using analytic models
of power propagation) are replicated.

In optical networks, failures are relatively infrequent, mak-
ing it difficult to train supervised ML techniques using his-
torical data. Alternatively, we generate an exhaustive training
dataset using synthetic telemetry produced in the NDT. The
training pipeline indicated in Fig. 1 generates artificial hard
and soft failures in all amplifiers (boosters, in-line ampli-
fiers, and preamplifiers), fiber links, and transponders. In our
framework, soft and hard failures encompass amplifier gain
degradation, additional fiber losses, and transponder power
degradation. In practical optical networks, other components
may fail (e.g., WSSs, splitters, or multiplexers and demulti-
plexers [39], [40]) but with lower failure rates [41], mainly the
passive ones. Nevertheless, even if unmodeled failures occur
in WSSs, splitters, multiplexers, and demultiplexers, we still
expect a failure to be localized in the vicinity of the faulty
device, similarly to the case of partial telemetry discussed
in [16].

Although the synthetic telemetry dataset produced by the
NDT reproduces the field telemetry data set with reasonable
fidelity, statistical deviations in the field telemetry can trigger a
failure localization process even in the absence of failures. To
avoid false positives, in addition to the synthetic telemetry data

1In this paper, we localize faulty fiber links, without pinpointing the exact
failure coordinates. Eventually, the proposed algorithm could be combined
with optical time-domain reflectometers (OTDRs) for extended capabilities.
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Fig. 2. Experimental setup for soft-failure generation and localization. The 4-node setup includes six bidirectional transponders and corresponding boosters
and pre-amplifiers. The central node is a fully equipped reconfigurable add-drop multiplexed. A comb-generator in N1 generates unmodulated unidirectional
lightpaths, with half of the lightpaths ending in N3 and the other half ending in N4. SDN telemetry data retrieved from the physical testbed is stored in an
InfluxDB time series database. ML-based soft-failure localization is carried out in a public cloud. (a) Logical setup. (b) Physical testbed.

Fig. 3. ONOS screenshot of controlled transponders implementing NETCONF.

sets, we also train the ANN with snapshots of field telemetry
labeled with no failures, serving as a baseline. In this way,
the ANN is forced to accept the baseline data set as a no-
failure scenario, preparing the ANN for statistical variations.
Adding these additional snapshots is essential for proper ANN
operation in a practical scenario.

III. EXPERIMENTAL SETUP

The experimental testbed comprises four nodes (N1, N2,
N3, and N4), as shown in Fig. 2a. Nodes N1, N3, and
N4 are equipped with fixed optical add-drop multiplexers,
while N2 is equipped with a reconfigurable add-drop mul-
tiplexer (ROADM) with broadcast and select (B&S) architec-
ture. Nodes are interconnected by optical links with optical
fibers, variable optical attenuators (VOAs), or both. Fig. 2b
shows the physical setup.

Three bidirectional lightpaths are assigned in the optical
network, linking nodes N1-N2, N1-N3, and N1-N4. In ad-
dition, a comb-generator in N1 generates unmodulated uni-

directional lightpaths, with half of the lightpaths ending in
N3 and the other half ending in N4. The transponders are
Padtec boards at 100 Gb/s and 200 Gb/s modulated with
QPSK, 8-QAM, and 16-QAM formats. Transponders are
connected to the ONOS SDN controller by means of NET-
CONF/YANG interfaces realized by an ONOS NETCONF
driver developed to interact with the Padtec devices based on
the openconfig-terminal-device YANG model with
extensions. ONOS ODTN retrieves telemetry data from ter-
minals using NETCONF get calls through a modified version
of the ONOS App Roadm-GUI. Amplifier and wavelength-
selective switch (WSS) streaming telemetry is carried out
via an optical line system (OLS) domain controller using a
proprietary protocol. All telemetry data collected by the OLS
Domain Controller and the ONOS SDN controller are stored in
an InfluxDB time series database. The setup can be considered
as a partially disaggregated scenario, which is a natural step
towards full disaggregation. Fig. 3 shows an ONOS screenshot
for the six controlled transponders.
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Fig. 4. Probability bar graph of the ANN outputs displayed with Grafana. In this example, we add an artificial 2-dB gain degradation to PreAmp_4_2
(preamplifier in the link interconnecting nodes N2 and N4). (a) ANN output before the failure (b) ANN output after the failure (67.1% empirical probability).

In order to keep a per-channel launch power of 0 dBm,
the transponders output powers of nodes N1, N3, and N4
are adjusted in such a way to compensate for the insertion
loss of add-drop multiplexers. As node N2 is a fully equipped
ROADM, the target launch power of 0 dBm is obtained by
activating the WSS equalization loop.

The experimental setup has 42 monitoring parameters, con-
sisting of 24 amplifier input and output power values and 18
transponder parameters of OSNR, output power, and input
power. A total of 24 devices may fail, counting six transpon-
ders, 12 amplifiers, and six unidirectional fiber links (optical
links with fibers, VOAs, or both).

IV. EXPERIMENTAL EVALUATION

A. NDT construction and baseline training

The NDT is constructed using analytical models, compu-
tationally replicating the telemetry data measured with the
system free of failures. The construction of the NDT first
measures the fiber link attenuation by the ratio of input and
output fiber powers of adjacent amplifiers. Likewise, amplifier
gains are calculated from the ratio of output and input powers
at a specific amplifier. The NDT is also fed with the target
per-channel launch power after a power control loop in the
ROADM. The per-channel transponder output power is set
according to the values stored in the SDN controller.

After NDT construction, the training pipeline shown in
Fig. 1 is executed. Based on [16], [21], a synthetic telemetry
data set is generated considering the following soft- and hard-
failure scenarios:

• Amplifier gain degradation of 3 dB, 10 dB (soft failures),
and amplifier gain equal to 0 dB (hard failure).

• Transponder power degradation of 3 dB (soft failure) and
output power of 0 W (hard failure).

• Additional fiber loss of 3 dB, 10 dB (soft failures), and
attenuation that goes to infinity (hard failure).

To prepare the ANN for statistical variations in the no-
failure condition and to avoid false positives, we also train
the ANN with 22 baseline field telemetry snapshots labeled
with no failures.

B. Single-failure localization

We apply the ANN approach with PCA to reduce the non-
essential information from the dataset used for training. PCA
reduced the number of ANN inputs from 42 to 30 parame-
ters (reduction of 28.57%), keeping 99.9% of the input dataset

energy. Failure localization is accomplished by a shallow
ANN with three layers [42], implemented in Python by the
Keras library. The first layer has 30 inputs (corresponding to
all collected telemetry data processed by PCA), the hidden
layer has 100 linear neurons, and the output layer has 24
nonlinear neurons with the Softmax activation function [13],
[36], corresponding to all network devices that may fail. The
ANN output error is calculated by a categorical cross-entropy
loss function [43]. Z-score normalization [44] is used to reduce
the training time and contribute to numerical stability. Back-
propagation is optimized by the infinite order (Adamax) [45]
backpropagation algorithm. Training is performed in less than
one second on Amazon Elastic Compute Cloud, at instance
c5.9xlarge with 2nd generation Intel Xeon processor with a
turbo frequency of 3.6 GHz, 72-GB RAM, and 36 vCPUs.

The training dataset comprises 88 input/output entries,
where the failure generation block creates 66 synthetic entries,
and the other 22 are collected from field baseline teleme-
try (without failures). After 100 training epochs, the combined
ML algorithm reaches an accuracy of 100%. It is important
to report that, as the ANN has a Softmax output layer, the
outputs add to one even when there is no failure, distribut-
ing its failure levels uniformly among all outputs. Thus, in
normal operation, the ANN outputs are approximately 1/24
(approximately 4.1% empirical failure probability). This floor
level tends to zero for large optical networks with thousands
of components (see [16]).

Fig. 4 shows the ANN outputs as a probability bar graph
displayed at Graphana. Fig. 4a shows the ANN outputs when
the network is free of failures. In this condition, the failure
probability is low for all network components. Then, in this
example, an artificial gain degradation of 2 dB is assigned to
PreAmp_4_2 (preamplifier in the link interconnecting nodes
N2 and N4). Fig. 4b shows the ANN output after the ar-
tificial failure. In this situation, the ANN output related to
PreAmp_4_2 exceeds the others, reaching an empirical failure
probability of 67.1%. To avoid incorrect failure localization
caused by anomalous readings in the telemetry data we have
employed a majority voting algorithm with a five-sample
verification window (VW). If an ML output exceeds a certain
failure threshold (e.g., 50% empirical failure probability), the
failure index of the corresponding network component is sent
to the VW. Otherwise, a no-failure index is sent to the VW.
The VW operates as a FIFO (first-in, first-out) queue that
stores the failure index for five consecutive time samples. The
majority voting is computed for every sample entering the VW.
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Fig. 5. Single-failure generation and localization. The orange curve is the output power level of the device being manipulated (right y-axis), while the blue
curve is the faulty component index produced by the ANN (left y-axis). The faulty component index can take 25 levels, being 24 related to components and
level zero corresponding to the no-failure state. (a) Booster-amplifier in the link interconnecting nodes N1 and N2 (Booster_1_2). (b) Fiber link interconnecting
nodes N2 and N3 (Fiber_2_3). (c) Transponder located at node N4 that communicates with node N1 (Xponder_4_1).

TABLE I
SINGLE-FAILURE LOCALIZATION RESULTS.

Component 𝐷𝐹𝐿 [dB] 𝑇𝐹𝐿 [s] Component 𝐷𝐹𝐿 [dB] 𝑇𝐹𝐿 [s] Component 𝐷𝐹𝐿 [dB] 𝑇𝐹𝐿 [s]

Booster_1_2 0.98 185 PreAmp_2_3 1.92 80 Fiber_2_4 2.00 4
Booster_2_1 1.95 65 PreAmp_3_2 1.55 17 Fiber_4_2 1.42 5
Booster_2_3 2.13 65 PreAmp_2_4 1.46 107 Xponder_1_2 1.46 8
Booster_3_2 1.72 4 PreAmp_4_2 1.51 272 Xponder_2_1 1.48 5
Booster_2_4 2.54 4 Fiber_1_2 3.73 5 Xponder_1_3 1.97 4
Booster_4_2 1.49 15 Fiber_2_1 1.57 127 Xponder_3_1 1.51 54
PreAmp_1_2 1.49 4 Fiber_2_3 1.89 5 Xponder_1_4 1.48 6
PreAmp_2_1 2.90 5 Fiber_3_2 2.51 4 Xponder_4_1 1.50 122

𝐷𝐹𝐿 and 𝑇𝐹𝐿 are the degradation and time to failure localization, respectively.

A component is declared as faulty whenever its index has the
VW majority (i.e., a component index appears in three or more
positions of the VW).

Fig. 5 presents the single-failure localization results for three
randomly selected components (an amplifier, a fiber link, and
a transponder). The orange curve is the output power level
of the device being manipulated (right y-axis), while the blue
curve is the faulty component index produced by the ANN (the
left y-axis has 25 levels, being 24 for faulty components and
one for no-detection indication). Fig. 5a shows the results
for a gain degradation in the booster amplifier in the link
interconnecting nodes N1 and N2 (Booster_1_2). After 185 s
that the Booster_1_2 gain reduces from 22.48 dB to 22.02 dB
(0.98 dB gain degradation), the ML algorithm localizes the
faulty component. Fig. 5b presents the results of a soft failure
causing extra losses in the fiber link interconnecting nodes
N2 and N3 (Fiber_2_3). The correct component is correctly
localized in five seconds, after the fiber loss transition from
24.59 dB to 25.51 dB, corresponding to 1.89 dB extra fiber
loss. Fig. 5c depicts the results for an output power degradation
in the transponder located at node N4 communicating with
node N1 (Xponder_4_1). Failure localization is accomplished
in 122 s after the output power degradation increases from
1 dB to 1.5 dB.

Table I summarizes the single-failure localization results
for all amplifiers, fibers, and transponders in the evaluated
testbed. The time to failure localization (𝑇𝐹𝐿 [s]) depicts the
time required to pinpoint a failure after reaching 𝐷𝐹𝐿 [dB] in
a given component. The time 𝑇𝐹𝐿 [s] comprises the ML and
majority vote processing times and the telemetry update time.

Failure localization is accomplished between 4 s and 272 s,
with an average of 44 s. Also, a degradation between 0.98 dB
and 3.73 dB (1.85 dB average degradation) was required to
localize the faulty device. No incorrect failure localization
events have been observed. Note that if a similar test were
performed with longer intervals between degradation changes,
the outcome would be similar. The ML approach relies on
instantaneous input/output powers and OSNR values without
addressing time-series properties. Different values of 𝑇𝐹𝐿 [s]
are mainly dependent on heterogeneous telemetry update times
for different components.

C. Double-failure localization case study

Although the proposed ML technique is trained to localize
single failures, we also verified the system behavior under
a double-failure case study. Different from the single-failure
localization case, we analyze the ANN output directly, without
a failure threshold and the majority vote algorithm.

Fig. 6 shows the ANN outputs as a probability bar graph.
In this example, an output power degradation of 2 dB is
assigned to Xponder_1_3 (transponder located at node N1
communicating with node N3) and Xponder_1_4 (transponder
located at node N1 communicating with node N4). Fig. 6a
shows the ANN outputs for the network with no failure.
As in Fig. 4a, the probability of failure is low for each
network component. In Fig. 6b, after assigning the output
power degradation to Xponder_1_3 and Xponder_1_4, the
ANN outputs related to these components exceed the others,
reaching an empirical failure probability of 30.0% and 54.2%,
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Fig. 6. Probability bar graph of the ANN output displayed with Grafana. In this example, we introduce a 2-dB output power degradation at
Xponder_1_3 (transponder located at node N1 that communicates with node N3) and Xponder_1_4 (transponder located at node N1 that communicates
with node N4). (a) ANN output before the failure. (b) ANN output after the failure, indicating an empirical probability of 30.0% (Xponder_1_3) and
54.2% (Xponder_1_4).
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Fig. 7. Double-failure localization of Xponder_1_3 (Transponder located at node N1 that communicates with node N3) and Xponder_1_4 (Transponder
located at node N1 that communicates with node N4). ML outputs displayed with Grafana in real time.

respectively. As the lightpaths originating in transponders
Xponder_1_4 and Xponder_1_3 traverse different network
segments with heterogeneous properties, including an extra
50-km fiber segment, the ANN produces different results.
However, given the low interpretability of ANNs, it is difficult
to assert the exact reason for having one value more prominent
than the other.

Fig. 7 presents the ANN outputs for the double failure
localization case, also displayed with Grafana. The exper-
imental testbed starts from a no-failure state at 13:54:00.
After 18 s, 2 dB degradations are assigned to transponders
Xponder_1_3 and Xponder_1_4. Six seconds after creating
the anomalies, the ANN outputs regarding Xponder_1_3 and
Xponder_1_4 reach approximately 30% and 60%. This be-
havior is maintained until 13:56:54, where the Xponder_1_3
and Xponder_1_4 failure probabilities, respectively, go to
almost 100% and 0%. This temporary anomalous condition
is maintained for five seconds. Finally, the ANN outputs
return to their previous states. At 13:57:44, the transponders
power degradation is turned off, and at 13:57:59, the ANN
outputs return to the initial no-failure state. Although double
failures can occur in the network, usually one device fails
first, triggering maintenance actions. Further work can attempt
to improve double-failure localization conditioned to a pre-
existing single-failure.

V. CONCLUSIONS

We present a testbed experimental demonstration of an
ANN-based failure localization method using state-of-the-art
SDN telemetry. While in previous theoretical and simulation

works ANN training was purely performed by synthetic data
generated in a DNT, the practical demonstration reveals the
need for training using a combination of synthetic and field
data. Using field data for the no-failure network state accounts
for statistical variations in the telemetry data, avoiding false
positives in normal operation. The experimental setup also
required a majority voting algorithm to filter out anomalous
variations in telemetry. The results indicate a successful failure
localization process for all single failures in the network.
We also investigated the algorithm robustness in a double-
failure case study. The results demonstrate the ANN ability to
recognize double failures.
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