
Towards Semantic Network Models via
Graph Databases for SDN Applications

Talita de Paula Cypriano de Souza
and Christian Esteve Rothenberg

University of Campinas (UNICAMP)
{cypriano,chesteve}@dca.fee.unicamp.br

Mateus Augusto Silva Santos
Ericsson Research

Indaiatuba, SP, Brazil
mateus.santos@ericsson.com

Luciano Bernardes de Paula
Federal Institute of Sao Paulo (IFSP)

Braganca Paulista, SP, Brazil
lbernardes@ifsp.edu.br

Abstract—At the core of any network control and manage-
ment system is the representation and maintenance of network
topology information. Software-Defined Networking (SDN) treats
topology abstractions as one of the cornerstones towards re-
thinking network architectures and the way they are operated.
Recently, motivated by the scalability and performance needs
of cloud applications, Graph Databases are being adopted as
appealing alternatives to traditional relational models when data
is highly interconnected and extensible schemas are called for. In
addition, the use of metadata to describe how data is intercon-
nected by means of Web Semantic standards is increasingly gain-
ing ground. At the crossroads of these trends, this paper presents
an approach to augment SDN network state with a semantic
model leveraging graph database technologies. In particular, our
proposal imports the Network Markup Language (NML) model
into a scalable graph database (Neo4j). For validation purposes,
we evaluate our proof of concept implementation against a
representative set of SDN application primitives.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] has entered the
networking scene as an innovative approach to build and
operate networks by introducing new abstractions and pro-
grammatic interfaces to the control and forwarding planes.

So far, much of the efforts have been devoted to the packet
flow abstraction and its implementation via open protocol be-
tween controllers and forwarding devices (e.g. OpenFlow [2]).
Despite recent efforts at standards development organizations,
network topology is another abstraction of SDN that has
arguably received less attention. Regardless of the networking
paradigm (e.g. traditional vs. SDN) or the control plane
method (e.g. centralized vs. distributed) graphs and topologies
are –and will continue to be– a main pillar of any networking
approach. Graphs, in which network nodes are represented
by vertices and their connectivity (logical or physical) by
edges, and data structures for their implementation become
fundamental aspects of control plane applications providing
logical functions such as minimum spanning tree, shortest
paths, recovery paths, and so on.

Recently, Semantic Web standards have met the field of
networking (e.g. NML - Network Markup Language [3]) to
describe multi-layer, inter-domain networks in a semantically
meaningful way to benefit from a comprehensive, technology-
agnostic view along the companion software tools to leverage
a rich network model.

Our work aims at combining these recent networking ad-
vancements with modern graph databases in order to augment
SDN with semantic network models providing rich network
abstractions efficiently implemented through a scalable graph
database technology (Neo4j). We first transform the semantic
network model (NML) into a graph that can be imported into
the Neo4j graph database, which in turn becomes the active
network state to be maintained by the SDN controller and its
applications. Having a semantically rich network information
base (cf. NIB as per Onix [4]) in a database that natively
provides graph-oriented primitives facilitates the development
of SDN control applications that can also use the common
semantic model to interoperate and share state through the
graph database repository. Adding semantic annotation mod-
eling to SDN opens opportunities to leverage related software
engineering work, including logical reasoning and formal
verification techniques [5].

As a first step towards validating the proposed technological
confluence in practice, we implemented a proof of concept and
carried a series of experimental evaluation works. First, we
investigated from a functional perspective the ability to support
SDN application primitives from the literature (NetGraph [6])
looking for any limitations in the semantic model and adequate
queries/APIs in the chosen graph database. Second, to get
some sense on the resulting performance, we run experiments
with varying network topologies (up to 10,000 nodes) and
analyzed the observed primitive execution times. Summing up,
the contributions presented in this paper are:

1) Providing semantic modeling language (NML) support
in a graph database (Neo4j);

2) Mapping SDN application primitives [6] to graph
database queries;

3) Identifying limitations of NML for SDN applications;
4) Prototype implementation and performance evaluation –

with datasets shared for code re-use and reproducibility.

This paper is organized as follows. Section 2 presents
background and related work. The proposed architecture as
well as the adopted primitives are presented in Section 3. In
Section 4, we describe the experimental scenario and result
analyses. Finally, in Section 5, we present final remarks and
avenues for future work.



II. BACKGROUND AND RELATED WORK

A. Network Markup Language - NML

Web Semantic standards have experienced recent advance-
ments including OWL (Web Ontology Language) and RDF
(Resource Description Language) providing appealing advan-
tages in terms of metadata when compared to XML schema or
UML. RDF/OWL metadata introduces semantically meaning-
ful triples divided by subject, predicate and object, in which an
object of a triple may be a subject of another, so that metadata
can be recursively related.

One recent example of a markup language based on
RDF/OWL to describe computer networks is NML (Network
Markup Language) [3] – an outgrowth of NDL (Network
Description Language), which was created around the year
2000. NML allows describing network elements and their in-
terconnection, including multi-layer and multi-domain models
as well as virtualized environments. NML supports modeling
network topologies along their capabilities in terms of services
(e.g., circuit/packet switching) and the configuration parame-
ters.

The NML model [5], [7] start by an anchor class Network
Object from which further abstractions inherit, including core
network entities such as Node, Port, and Link. The con-
figurable part of a Network Object can be modeled as a
Service, e.g., the forwarding service between device ports
or the adaptation service to an IP packet into a Ethernet frame.

One key feature of NML is its extensibility, allowing the
model to evolve and adapt as required by the application
domain. For example, CineGrid [8] defines CDL (CineGrid
Description Language) [9] by inheriting NML classes and
defining a set of extensions to describe their distributed digital
cinema testbed infrastructure. The NOVI [10] project uses
a generic ontology derived from NML referred to as INDL
(Infrastructure and Network Description Language) in order
to ease the federation of platforms for future Internet research
(e.g., requests and monitoring services leverage different re-
sources described from a common semantic model). Another
recent EU research project extends the INDL/NML model
is GEYSERS [11], which added a number of extensions to
support virtualized optical infrastructures. All these examples
of NML extensions and application domains confirm the
versatility of the modeling language along the main character-
istics and benefits that motivated our work on NML meeting
SDN. To this end, our first step is modeling simple network
topologies and exploring its embodiment in modern graph
database technologies,

B. Graph Databases - GDB

In database systems in which graph/topological informa-
tion and data connectivity are important, traditional relational
databases present limitations that have lead to the development
of so-called NoSQL (Not Only SQL) alternatives. Some of
the well-known advantages include scalability and flexible
schema [12]. In particular, graph databases (GDB) stores data
as graphs composed by vertices and edges that represent their

relations [13]. This graph-oriented approach allows a natural
modeling of several types of scenarios like Semantic Web,
recommendation engines, and computer networks, among oth-
ers [14]. Robinson et al. [13] highlight two characteristics
of GDB models, namely: native graph storage and native
graph processing. Usually, property graphs are used as a graph
model where directional edges are augmented with labels and
attributes [14], and nodes have properties (key-values pairs)
along oriented relations.

A recent comparison among GDB implementations [14]
points to Neo4j as an attractive technology due to its native
support of property graphs, ACID transactions, high availabil-
ity, and high speed query processing.

Whereas traditional relational databases retrieve highly in-
terconnected data through complex join operations, GDBs
naturally solve this problem through native graph traversal
operations at high speed. Basically, queries travel the graph
through nodes and edges. There are a few available query
languages for Neo4j with varying properties [15]. In our work
we opt for the Cypher language, which is similar to SQL and
was designed to be developer-friendly. Cypher queries can be
written to retrieve GDB data matches some defined patterns,
allowing different approaches to implement SDN application
primitives. For example, consider a procedure to count all
connections of node A:

1. MATCH (n:Node)-[:hasOutboundPort]->(p:Port)-
[:isSource]->(l:Link)
2. WHERE n.name="A"
3. RETURN COUNT(l) AS CountOutDegree

In the above-presented query, Cypher travels through the
graph nodes and relations searching data matching the defined
node-outport-link pattern (around node A), retrieving
the amount of Links found.

One example of recent related work [16] used graph
database with Cypher for auditing tasks in cloud computing
to perform (1) risk analysis (determining affected VMs after
network outages), (2) simple report (verifying VM storage
systems), and (3) inventory (comparing different hierarchies
equivalence), among others.

C. Graphs & SDN Control Applications

The Onix controller [4] can be considered the seminal work
in applying graphs to (distributed) SDN control applications.
Developed by pioneers of OpenFlow, Onix handles SDN
control as a distributed system problem, leveraging well-
known tools and techniques, including two types of data stores
(SQL vs. DHT) to hold the logically centralized Network
Information Base (NIB) according to the state consistency
requirements. Onix uses graphs to aggregate low level in-
formation and share the state among multiple controllers,
altogether contributing to the NIB centralized network view
which simplifies and abstracts physical infrastructure details,
easing the concerns of application developers.

One recent open-source SDN controller that follows design
principles from Onix is ONOS (Open Network Operation
System) [17]. ONOS developed a first prototype using a



distributed graph database (Titan) to store the network state,
and have since moved to a second prototype using a simplified
model with optimized data structures and in-memory data grid
for performance reasons.

Graphs applied to SDNs are the central topic considered by
Pantuza et al. [18], where graph-oriented controller modules
obtain and use network topology information. The experi-
mental work investigates the support of dynamic network
representation, e.g., maintaining minimum spanning trees in
real-time over the network graph.

The aforementioned paper is similar to NetGraph [6], a
library that supports dynamic updates of network state and
offers data from queries that may be used by the SDN con-
troller. NetGraph anticipates the calculation of some operations
to optimize the time of queries. For example, shortest paths
between nodes are (partially) calculated in advance so that
they can be used by routing algorithms.

Related work so far neither explore semantic annotations to
model a network graph in the context of SDN nor approaches
to load rich network models into persistent GDBs. Next, we
present the proposed framework to achieve these goals.

III. SEMANTICALLY AUGMENTED SDN GRAPHS

With the main goal of allowing SDN applications to sup-
port semantic models of SDN infrastructures we propose to
embody the NML-modelled network state into a scalable
and high performance graph database (GDB). The database
should be easily integrated with the SDN controller of choice,
providing primitives to control applications via northbound
interfaces (e.g. REST) and maintaining SDN network state
via southbound protocols (e.g. OpenFlow, NETCONF). The
reference architecture used in this paper is presented in Fig-
ure 1. Applications external or internal to the SDN controller
perform queries to the GDB after importing the NML model
and the related SDN state. Applications use GDB interfaces to
read and write the network state in a centralized way instead
of performing individual queries to devices.

Primitives exposed by the GDB include any relations
between the NML objects such as shortest path between
nodes, connectivity degrees, node neighbors and their prop-
erties, among others. Since NML is based on Semantic Web
standards, it is flexible and extensible. Native support of
NML (and application-domain extensions) in the GDB al-
lows defining SDN primitives by exploring the rich semantic
model and combining existing ones (e.g. retrieve all multi-
layer paths between virtual machines in DPDK-enabled x86
hosts with 10 G interfaces). Having a semantic network-wide
view along the supporting software standard interfaces enables
control/management SDN applications to take decisions based
on the operational state of the network while simplifying not
only the initial application logic development but also the
maintenance and any technology-specific modification upfront.

As already anticipated, we opted for Neo4j as the graph
database back-end due to its features and proven performance
when compared to alternative GDBs [14].

Fig. 1. Reference SDN architecture featuring a graph database supporting a
semantic model based on NML (Network Markup Language).

A. Mapping SDN Primitives to Graph Queries

When adding NML model support to SDN applications, two
related GDB problems need to be solved: (1) parsing NML to
be imported into Neo4j property graphs, and (2) providing
data access to SDN applications via adequate APIs.

Out of scope of this paper remain implementation details
to feed the GDB with the required data, such as using LLDP
(Link Layer Discovery Protocol) or similar methods by SDN
controller implementations (OpenDaylight) to discover the
topology or to define the edge weights based on observed
latencies or available bandwidth/link capacities. Any south-
bound protocol could be used to obtain such metrics (e.g.
OpenFlow, SNMP, sFlow) and additional ones to be inserted
into the GDB.

We focus our work on supporting 12 SDN primitives
described in the NetGraph library [6]. Basically, two main
functional features are provided: (1) query the network topol-
ogy including nodes and link state to keep the graph updated
and (2) compute graph queries and return the results in a
format allowing to be used by other modules. In NetGraph,
the use case application is network virtualization support to
offer Network as a Service (NaaS).

We analyze the NetGraph primitives presented in Table I
regarding (i) the ability to be supported by the semantic
model (NML) without modifications or extensions, and (ii)
mapping possibilities to GDB (Neo4j) queries. We consider
that a primitive is supported by the semantic model if it can
be implemented using attributes and relations of the graph
modeled using NML. Similarly, we consider a primitive to be
supported by the GDB if it can be mapped to one or more
Cypher queries. Next, we discuss each group of primitives
regarding their NML and GDB implementation.r The setEdgeWeight and getEdgeWeight primitives,
assign a cost to the link between two Nodes and obtain such
cost, respectively. These primitives are not supported by the
semantic model because the NML schema lacks link attributes.
Hence, the model needs to be extended for instance by adding
a cost attribute to the Link class. Regarding the GDB, both
primitives are supported because the Neo4j property graph is



based on attributes for nodes and relations.rThe primitives countInDegree, countOutDegree and
countNeighbors return the amount of input and output
links of a node, and the number of neighbors, respectively.
They are naturally supported through the relations by both the
semantic model and GDB.r Primitives based on shortest path calculations are naturally
supported by the semantic model through its graph representa-
tion and the GDB instance. Similarly, the doesRouteExist
primitive that verifies the existence of a route between any
two nodes is supported by the semantic model and by
the GDB. The computeMST primitive, which generates a
Minimum Spanning Tree from an origin (or root), and the
computeSSSP (Single Source Shortest Path), which returns
the shortest path from a single node, use the same shortestPath
resource from Cypher, also used to find the shortest path
between all pair of nodes in the computeAPSP (All Pair
Shortest Path) primitive. The allShortestPath primitive
from Cypher can be used to compute computeKSSSP (k
Single Source Shortest Path), i.e., returning k shortest paths
between two any two nodes.r The insert and delete primitives are supported by
both the GDB and semantic model. Insertion of a topology
Node in the GDB triggers the insertion of two Ports and
their relations. In the same way, the node deletion operation
removes the Ports and Links along all relations to the
Node.

Primitive Semantic Model GDB Read / Write
setEdgeWeight No Yes W
getEdgeWeight No Yes R
countInDegree Yes Yes R
countOutDegree Yes Yes R
countNeighbors Yes Yes R
doesRouteExist Yes Yes R
computeMST Yes Yes R
computeSSSP Yes Yes R
computeKSSSP Yes Yes R
computeAPSP Yes Yes R

delete Yes Yes W
insert Yes Yes W

TABLE I
ANALYSIS OF SDN PRIMITIVES FROM THE NETGRAPH LIBRARY [6].

IV. EVALUATION AND RESULTS

We now present the experimental methodology to evaluate
our proof of concept implementation in terms of performance
profiling and strawman comparison with a relational DB.

A. Experimental environment
All experiments were executed in a machine with an Intel

i7 processor, 2.4 GHz and 8 Gigabytes of RAM memory. We
used the Neo4j Community Edition 2.0.4 under the GPLv3
license. In order to create the topologies, instead of using
modified versions of the Neo4j Java APIs for database manip-
ulation methods, we opted to comply with the NML schema
by means of Cypher language queries, which do not require
such modifications, as explained in the primitive analyses of
Section III-A.

Fig. 2. The relation between nodes 9 and 0 as displayed by Neo4j.

B. Topologies

In order to evaluate the proof of concept implemen-
tation, four different topologies were created using the
BRITE [19] generator using the Flat Router-Level and the
RouterBarabasiAlbert models. All nodes are generated from
the same seed and after topology creation the link attributes
are uniformly defined by BRITE [19]. For each node, the
generator defines seven attributes, however, for the scope of
our experiments we only use the unique id attribute as NodeId
mapped to the name property in the NML schema.

In order to assess the performance and scalability properties
of the GDB, we investigated the following topology sizes: 10
(tiny), 100 (small), 1,000 (medium) and 10,000 (large). For
each one, the nodes were imported into the GDB following
the proposed model mapping in Section IV-C resulting the
following semantically augmented graphs: 76 nodes (160
relations), 640 nodes (1,760 relations), 4,978 nodes (11,912
relations) and 109,932 nodes (359,728 relations). Note the
increase of the resulting semantic graphs (nodes and relations),
since every network topology vertex expands into a set of inter-
related Node, Port, Link entities in the GDB.

C. Data modeling

In order to index nodes and relations generated by BRITE
in GDB, following NML schema, for each Node a pair of
Ports (defined by NML), one for input traffic and other for
output. These ports were identified, respectively, by idin e
idout. For each connection between both nodes, two Links
were created (one for each direction) which relate ports with
nodes. Figure 2 presents the modeling for the connectivity
between nodes 9 and 0, their Ports, Links and relations.

D. Results

In order to measure the query execution time, a test applica-
tion was developed that first inserts the NML-parsed topology
into Neo4j and then executes, individually and sequentially,
each SDN primitive as Cypher queries using a random test set.
Every primitive was executed 1,000 times for every topology.

Table II presents the average, standard deviation and 99
percentile for each primitive for the large topology, which
corresponds to our worst case scenario.

The primitives countInDegree, countOutDegree
and delete have the highest latency values for all topologies.



When counting input and output connections of a node, long
execution time can be explained due to the number of semantic
graph hops (relations) that need to be traversed, a fact also
noted in [16]. For example, to compute the number of input
connections of Node A, the following pattern must be covered:

NodeA← hasInboundPort← Port← isSink ← Link

The behavior applies to the delete primitive, since the
query deletes the Node, including their Ports and associated
Links. In this case, the number of processed relations (hops)
is even larger compared to counting input and output links.
We observe that the primitive latency is proportional to the
degree of the deleted node.

As expected and previously identified by [14], Neo4j
presents better performance in read-only operations than read-
write tasks - a behavior that can be clearly observed in the
getEdgeWeight primitives.

Figure 3 compares three routing oriented read-
only primitives computeSSSP, computeKSSSP and
doesRouteExist and one write primitive insert for
varying topology sizes. In general, the shortest paths primitives
present good individual performance and scaling properties
(sub-logarithmic regarding amount of nodes/relations).
Interestingly, primitives that calculate all pairs of shortest
paths (computeAPSP) run faster when compared to the k
shortest paths between two nodes (computeKSSSP) and the
shortest paths from a specific node (computeSSSP). This
can be explained by the fact that, in the case of queries for
all pairs of shortest paths, Neo4j is capable of storing partial
path calculations between intermediate nodes, an optimization
that cannot be exploited when considering specific nodes
(e.g. doesRouteExist). According to the observed results,
the computeMST and computeSSSP primitives seem to
share their internal implementation in Neo4j.

Primitive Avg Value Std Dev 99th
setEdgeWeight 162.33 9.46 205.01
getEdgeWeight 1.70 0.74 4.00
countInDegree 854.53 146.77 1399.05
countOutDegree 425.17 68.36 699.02
countNeighbors 4.45 2.27 10.01
doesRouteExist 37.51 29.09 73.06
computeMST 1.44 1.25 3.02
computeSSSP 5.47 4.98 29.00
computeKSSSP 26.21 37.23 81.04
computeAPSP 1.04 0.68 3.01

delete 1053.89 162.55 1637.02
insert 3.57 3.21 16.01

TABLE II
TIME (MS) OF PRIMITIVES EXECUTION - TOPOLOGY large

E. Comparison to a Relational Database Approach

In order to get a sense on the performance results with a
traditional RDBM, we run a set of similar SDN primitives
using a Java application with MySQL (version 5.6.17) [20]
and the SQL query language. Figure 4 shows the Enhanced
Entity Relationship Model diagram (EER). The model follows
the data relations presented in Figure 2 representing the graph

 0

 2

 4

 6

 8

 10

 12

 14

small medium large

T
im

e
 (

m
s
)

Topology

Insert Primitive

 0

 2

 4

 6

 8

 10

 12

 14

small medium large

T
im

e
 (

m
s
)

Topology

ComputeSSSP Primitive

 0

 10

 20

 30

 40

 50

 60

small medium large

T
im

e
 (

m
s
)

Topology

DoesRouteExist Primitive

 0

 10

 20

 30

 40

 50

 60

small medium large

T
im

e
 (

m
s
)

Topology

ComputeKSSSP Primitive

Fig. 3. Primitive response time presented as candlesticks with average,
quartiles, and max/min values as the 95-/5-percentiles.

as tables using primary and foreign keys. Thus, there are (one-
to-many) relationships between Node and Port, whereas
a Link is a recursive (many-to-many) relationship between
two Ports. During the test application design, one practical
advantage of GDB became clear, namely, modeling tasks are
considerably more natural compared to RDBM –as expected
from such a network-centric data interconnection project.

Table III presents the measured execution times (for 1,000
runs) of a subset of primitives in the case of the large topology.
Results for the delete and countInDegree primitives
are faster with MySQL than with Neo4j, a fact that can be
expected from the accumulative latency (number of hops)
explained in the previous subsection. Interestingly, in the case
of data insertion, the execution time of the insert primitive
was much higher than in Neo4j, probably due to the need
of inserting data in two tables (Node and Port). For the
computeSSSP primitive, results were slightly worse than
with the Neo4j. Noteworthy is the fact that in order to compute
the shortest path primitives a Java implementation (based
on Dijkstra [21]) was necessary due to the lack of built-in
shortest path type of queries in MySQL. Firstly, our Dijkstra’s
algorithm implementation loads in memory all vertices and
their adjacencies using one SELECT query. The average time
of this pre-execution data fetching task is almost 2 seconds.
Again, Neo4j native graph-oriented primitives can be seen as
an advantage of GDB over RDBM from an application devel-
opment perspective. Likewise, the computeAPSP primitive
exhibits comparable performance but does not require any
extra development effort in a GDB approach due to the native
Neo4j function to compute all pairs of shortest paths.

F. Data Availability & Experiment Reproducibility

All data and source code used in this work are available in
a public repository.1 The available datasets include the NML

1https://github.com/intrig-unicamp/NML-Neo4j



Primitive Avg Value Std Dev 99th
countInDegree 1.39 4.57 22.02
computeSSSP 18.13 3.82 26.00
computeAPSP 2.11 1.39 7.00

delete 162.86 79.93 405.00
insert 137.36 43.80 300.00

TABLE III
EXECUTION TIME (MS) IN THE RDBM FOR THE large TOPOLOGY.

Fig. 4. Enhanced Entity Relationship Model (EER Model)

models, BRITE topologies, parsing scripts, Cypher queries for
Neo4j, MySQL application codes, and the gnuplot snippets.

V. CONCLUSION AND FUTURE WORK

We presented a proposal to augment SDN applications
with a semantic model (NML) that can be consumed through
a graph database (Neo4j). We introduced a framework to
embody the model in a GDB as an annotated relational graph,
allowing SDN controllers to offer developer-friendly primi-
tives that simplify the design of SDN control applications.

We found NML to be a compelling modeling language for
the needs of SDN despite some extensions (e.g. link costs)
needed for some routing primitives in addition to further SDN
application domain classes to be added. The property graph
used in Neo4j proved to be amenable to support semantic
network models based on entities, attributes and relations
of NML without requiring any re-work. The Cypher query
language showed to be a flexible approach to implement the
SDN primitives through its native means to search for graph
patterns and write/read data objects. We were able to reproduce
a number of SDN application primitives and the performance
results obtained are promising regarding their potential to be
used in real deployments. We observed appealing advantages
of native graph-oriented data stores versus traditional relational
database models that go beyond performance metrics.

As for future work, we are working on a number of different
issues: (i) evaluate the performance in dynamic workloads with
simultaneous R/W operations and OpenDaylight applications
using REST APIs; (ii) developing new inter-domain SDN
primitives as a means of East-West controller interfaces, allow-
ing multiple controllers to share data about their topologies;
(iii) explore optimizations in latency and system capabilities
via pre-calculation and leveraging properties to enable/disable
nodes in the graph and adding time-series capabilities; (iv)
developing extensions to the semantic model (NML) to add
support of further SDN primitives and entities in addition to
Network Function Virtualization (NFV) semantic services and

YANG data models, altogether contributing to the development
of as-a-service consumption of SDN & NFV services.

VI. ACKNOWLEDGMENTS

This work was supported by the Innovation Center, Er-
icsson, Brazil. At the time this paper was written, Mateus
Augusto Silva Santos was with University of Campinas.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[2] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[3] J. van der Ham, F. Dijkstra, R. Lapacz, and A. Brown, “The Network
Markup Language (NML) A Standardized Network Topology Abstrac-
tion for Inter-domain and Cross-layer Network Applications,” TNC2013,
2013.

[4] T. K. et al., “Onix: A distributed control platform for large-scale
production networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[5] M. Aertsen, “Verifying functional requirements in multi-layer networks:
a case for formal description of computer networks,” March 2014.
[Online]. Available: http://essay.utwente.nl/64707/

[6] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query
primitives for sdn-based cloudnetwork management,” in Proceedings of
Hot Topics in Software Defined Networks, ser. HotSDN ’12, 2012, pp.
97–102.

[7] J. van der Ham, F. Dijkstra, R. Lapacz, and A. Brown, “Network
Markup Language Base Schema version 1,” Technical Report - Open
Grid Forum, 2013.

[8] P. Grosso, L. Herr, N. Ohta, P. Hearty, and C. de Laat, “Cinegrid: Super
high definition media over optical networks,” Future Gener. Comput.
Syst., vol. 27, no. 7, pp. 881–885, Jul. 2011.

[9] J. J. van der Ham, S. J. P. Chrysa, M. Peter, K. Yiannos, P. Grosso, and
L. Lymberopoulos, “Challenges of an information model for federating
virtualized infrastructures,” 5th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management: Standards and
the Cloud, 2011.

[10] NOVI, Networking innovations Over Virtualized Infrastructures, 2010.
[11] Escalona et al., “GEYSERS: A novel architecture for virtualization and

co-provisioning of dynamic optical networks and IT services,” in 2011
Future Network & Mobile Summit, Warsaw, Poland, June 15-17, 2011,
2011, pp. 1–8.

[12] NOSQL. (2015) http://nosql-database.org/.
[13] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly

Media, Inc., 2013.
[14] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph

databases,” in Social Computing (SocialCom), 2013 International Con-
ference on, Sept 2013, pp. 708–715.

[15] F. Holzschuher and R. Peinl, “Performance of graph query languages:
Comparison of cypher, gremlin and native access in neo4j,” in Proceed-
ings of the Joint EDBT-ICDT 2013 Workshops, ser. EDBT ’13. New
York, NY, USA: ACM, 2013, pp. 195–204.

[16] V. Soundararajan and S. Kakaraddi, “Applying graph databases to cloud
management: An exploration,” in Cloud Engineering (IC2E), March
2014, pp. 544–549.

[17] P. Berde and et al., “Onos: Towards an open, distributed sdn os,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
1–6.

[18] G. Pantuza, F. Sampaio, L. F. Vieira, D. Guedes, and M. A. Vieira,
“Network management through graphs in software defined networks,”
in Network and Service Management (CNSM), 2014 10th International
Conference on. IEEE, 2014, pp. 400–405.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Proceedings of MASCOTS 01.
Washington, DC, USA: IEEE Computer Society, 2001, p. 346.

[20] MySQL. (2015) http://www.mysql.com/.
[21] Literateprograms. (2015) Dijkstra’s algorithm (java). [Online]. Available:

http://en.literateprograms.org/Dijkstra’s algorithm (Java)/


