
1

Near-Optimal Probing Planning for In-Band Network Telemetry

Ariel G. Castro, Arthur F. Lorenzon, Fábio D. Rossi, Roberto I. T. da Costa Filho,
Fernando M. V. Ramos, Christian E. Rothenberg, Marcelo C. Luizelli

Abstract—In-band Network Telemetry (INT) is gaining trac-
tion as an advanced network monitoring approach. Despite a few
recent initiatives to orchestrate the collection of in-band network
statistics, state-of-the-art approaches fall short when it comes to
efficiently collect telemetry items while subjected to real-world
constraints. In this letter, we propose Probe Planning for In-Band
Network Telemetry (P2INT) to coordinate how probing packets
are generated and routed to ensure that all links are covered so
that the required in-band network telemetry data is collected.
We theoretically formalize the problem as a Integer Linear
Programming model and propose an efficient mathematical
programming-based heuristic to solve it. Our results show that
P2INT outperforms the closest contender by a factor of up to 6x
concerning the number of probing cycles generated.

Index Terms—In-band Network Telemetry; INT; Math-
heuristic; MILP; data plane programability; P4.

I. INTRODUCTION

In-band Network Telemetry (INT) has recently emerged as
a promising near real-time network monitoring to improve
network visibility [1], [2], [3]. Due to the rich spectrum
of benefits behind INT, there is increasing attention from
the networking ecosystem fostered by the rapid adoption of
programmable data planes and domain-specific networking
description languages (e.g., P4 [4]). In short, INT consists
of instrumenting the collection of low-level network statistics
directly from the data plane. In the classic hop-by-hop INT
(a.k.a INT-MD (eMbed Data)1), an INT source node embeds
instructions into production network packets. Then, INT transit
nodes embed metadata while an INT sink node strips the
instruction out of the packet and sends the accumulated
telemetry data to an INT collector.

In this work, we consider using probe packets to instruct
network devices to collect telemetry data. Figure 1 illustrates
the entire INT process. In the first step, probing packets are
generated aiming at instrumenting the collection of telemetry
data along a given path. For example, the red flow (i.e. f1) –
that is routed through the devices A, E, F , G, H , and I –
carries instructions to collect telemetry data from devices A to

This research was partially supported by National Council for Scientific
and Technological Development (CNPq) (grant 427814/2018-9), São Paulo
Research Foundation (FAPESP) (grant 2018/23092-1), Rio Grande do Sul Re-
search Foundation (FAPERGS) (grants 19/2551-0001266-7,20/2551-000483-
0, 19/2551-0001224-1) and by the Portuguese national funds through FCT
via UIDB/50021/2020 and PTDC/CCI-INF/30340/2017 (uPVN) projects.

Ariel G. Castro, Arthur F. Lorenzon, and Marcelo C. Luizelli are with the
Federal University of Pampa, Brazil.

Fabio D. Rossi is with the Federal Institute Farroupilha, Brazil.
Roberto I. T. da Costa Filho is with Instituto Federal de Educação, Ciência

e Tecnologia Sul-Rio-Grandense, Brazil.
Fernando M. V. Ramos is with the University of Lisbon, Portugal.
Christian E. Rothenberg is with the University of Campinas, Brazil.
1INT specification: https://github.com/p4lang/p4-applications/blob/master/

docs/INT v2 1.pdf

Probes flows

AE
B

C
F

G
H

DI

INT Collector

Telemetry data Probe packet

(1)

(2)

(3) (4)

f1
f2

f3

(5)

Fig. 1. Example of a solution for the probing planning problem, illustrating
a snapshot where probing packets (f1, f2, f3) collect telemetry data from
selected network devices.

H . In the second step, the collected telemetry data is extracted
and reported to an INT collector.

Recently, investigations have made the first efforts towards
the orchestration of INT data collection to improve network-
wide visibility. Liu et al. [2], Pan et al. [3], Bhamare et al.[5],
and Geng et al. [6] have focused on performing network
telemetry through active INT-based probing packets. These
strategies have relied either on Euler Circuits [2], [3] or on
actual routing paths [5], [6] to instrument the forwarding of
probes. In turn, Marques et al. [7] and Hohemberger et al. [8]
have focused on the embedding of INT data into produc-
tion network packets. Marques et al. [7] designed heuristic
approaches to orchestrate how network flow packets collect
network telemetry data, while Hohemberger et al. [8] designed
a machine learning-based model to wisely choose and collect
INT data based on its importance. Further, others studies [9]
have focused on the design of operational INT mechanisms
and on reducing the amount of INT messages being reported.

Despite current efforts towards near real-time in-band net-
work telemetry, the coordination of INT probing packets to
collect network information efficiently is still full of gaps
and challenges. The first attempts [2], [3], [5] to tackle this
problem contributed with initial steps but suffer from (i)
uncoordinated probing packet generation, and (ii) neglected
capacity constraints. By using uncoordinated probes, there is
an increasing transmission overhead from active probes to the
INT collectors (as discussed later on). Furthermore, relaxing
capacity constraints of probing packets simplifies the problem
– but unrealistic from an operational point of view2. In this
letter, we introduce P2INT – Probe Planning for In-Band
Network Telemetry – to coordinate how probing packets are
generated and routed in order to ensure that all links are visited
and all required INT data is collected. Although existing
solutions have either focused on INT probes to monitor link

2For instance, in the Netronome SmartNIC architecture, the ingress times-
tamp has 64 bits, while the ingress port 16 bits.

2

connectivity (e.g. [2], [3]) or focused on the collection itself of
INT data (e.g. [7], [8]), they still miss how to jointly optimize
the way to collect telemetry data and cover network links.
To tackle this problem, we theoretically formalize P2INT as
a Integer Linear Programming model. The model consists of
a generalization of two well-known optimization problems –
namely, Capacitated Arc Routing problem and Bin Packing
problem [10] and, therefore, it is an NP-hard problem. We
introduce a novel mathematical programming-based heuristic
that wisely guides the MILP model to find a high-quality
solution. Results show that P2INT outperforms the state-of-
the-art solution [3] by a factor of 6x related to the number of
probes, at the same time that makes better usage of available
resources (up to 3x) and decreases the transmission overhead
to INT collectors (up to 2x).

II. P2INT: PROBING PLANNING FOR IN-BAND NETWORK
TELEMETRY

A. Problem Overview

The P2INT problem consists of defining optimized probing
cycles to cover a given network infrastructure, i.e., in terms
of telemetry data and network connectivity. It is noteworthy
that the complete network coverage, both in terms of links and
nodes, enables the assessment of end-to-end metrics based on
different composition rules (e.g., multiplicative, additive, and
concave) [11]. This approach is crucial for operating in large-
scale networks such as the 5G device-to-device ecosystem,
where path-based measurements are prohibitive due to the
massive number of available paths. The P2INT problem is not
trivially solved. First, probing packets are space-bounded (i.e.,
w.r.t. bytes), and therefore it is infeasible (in most cases) to
collect all network telemetry data with a single packet. Second,
routing a probing packet is challenging. Probes need to be
routed in such a manner that telemetry data requirements are
met, while avoiding extra overheads on production network
traffic (e.g., excessive generation of probing cycles). Figure 1
illustrates a network infrastructure with nine programmable
forwarding devices (ranging from A to I), each having exactly
one equal-sized telemetry data (represented by colored rect-
angles). These telemetry data represent data planes’ internal
states (e.g., queue occupancy or processing time), which are
used by specialized monitoring applications [8] (e.g., DDoS
detection). In the example, probing packets are limited to
collect at most five telemetry data. There exists a set of active
probing cycles (i.e., f1, f2, and f3) which are responsible for
continuously (i) collecting telemetry data and (ii) checking
network connectivity. Probing cycles f1, f2, and f3 are routed
and instrumented to collect a given subset of telemetry data.
For instance, probing cycle f1 collect telemetry data from
forwarding devices A to H , while probing cycle f3 from
devices D and I . Observe that all network links are covered
by at least one probing cycle.

B. Model description and notation

The proposed optimization model considers a physical net-
work infrastructure G = (D,L) and a set of telemetry items
V . Set D in network G represents programmable forwarding

devices D = {1, ..., |D|}, while set L consists of unidirec-
tional links interconnecting pair of devices (i, j) ∈ (D ×D).
Similarly to the recent literature [7], [8], we consider that there
exists a set of telemetry items V available. Each forwarding
device i ∈ D is able to embed a subset of items Vi ⊆ V
into a probing packet. Each telemetry item v ∈ V has its size
defined by function S : V → N+.

We consider there is at most |P | probing cycles (i.e.,
P = {1, 2, ..., |P |}) to collect telemetry items from forwarding
devices D. Packets in a probing cycle are encapsulated in a
forwarding protocol, and therefore the amount of available
space to embed telemetry items in packets is bounded by
a constant, defined by function U : P → N+ (e.g., U(p)
lower or equal to the MTU data link). The larger is this
set P , the higher is the amount of decision variables in the
model – and so the search space. A worst-case upper-bound
for |P | can be estimated as |P | = |V | · |D| · |L|. Probing
cycles P are routed within the network infrastructure G – i.e.,
the packet is generated in a given source device, is routed
through a subset of devices, and returns to its origin. We
denote the cycle taken by the probing p ∈ P as function
C : P → {D1 × ... × D|D|}. Probing cycles p ∈ P can
collect telemetry items from forwarding devices i ∈ C(p). The
set of telemetry items collected by probing cycle p ∈ P is
represented by pairs (i, v) : i ∈ D, v ∈ Vi and is given by the
function T : P → {D×V }. A feasible cycle satisfy the upper-
bound U(p), that is

∑
i∈C(p)

∑
v∈Vi:(i,v)∈T (p) S(v) ≤ U(p).

Observe that a given cycle p ∈ P can visit a forwarding
device i ∈ C(p) and not necessarily collect the set of telemetry
items associated. Yet, our model does not restrict a cycle
p ∈ P to collect any telemetry item3. We denote the origin
(starting/ending device) of each cycle p ∈ P as function
O : P → D. Therefore, our model is generic to consider
single- and multi-source probing cycle scenarios (i.e., cycles
might start at different INT sources).

Given the problem input, the optimization problem seeks a
feasible solution that minimizes the number of probing cycles,
while visiting all network links and collecting the required
telemetry data. The model output is denoted by a 3-tuple
χ = {Z,X, Y }. Variables from Z = { zp,v,i , ∀ p ∈ P, v ∈
V, i ∈ D} indicate that a forwarding device i embed telemetry
item v into a probing packet from cycle p. Variables from
X = {xp,i,j , ∀p ∈ P, (i, j) ∈ L} indicates that network link
(i, j) ∈ L is used to route probing cycle p ∈ P . Last, variable
Y = { yp , ∀p ∈ P} is used to keep track of probing cycles
used by the solution. Next, we describe the ILP formulation.

Minimize
P∑

p=1

yp (1)

Subject to:∑
p∈P

zp,v,i = 1 ∀i ∈ D, v ∈ Vi (2)

zp,v,i ≤
∑
j∈D

xp,j,i ∀p ∈ P, i ∈ D, v ∈ Vi (3)

zp,v,i + xp,i,j ≤ 2 · yp ∀p ∈ P, (i, j) ∈ L, v ∈ Vi (4)

3Telemetry items might be only available to specific queues inside the data
plane.

3

∑
j∈D

xp,i,j −
∑
j∈D

xp,j,i = 0 ∀p ∈ P, i ∈ D (5)∑
p∈P

xp,i,j + xp,j,i ≥ 1 ∀(i, j) ∈ L (6)∑
i∈D

∑
v∈Vi

zp,v,i · S(v) +
∑
i∈D

∑
j∈D

xp,i,j ≤ U(p) ∀p ∈ P (7)∑
i∈S

∑
j∈S

xp,i,j ≤ |S| − 1 ∀p ∈ P, S ⊆ {D −Op}, |S| ≥ 2 (8)

zp,v,i ∈ {0, 1} ∀p ∈ P, v ∈ Vi, i ∈ D (9)

yp ∈ {0, 1} ∀p ∈ P (10)

xp,i,j ≥ 0 ∀p ∈ P, v ∈ Vi, i ∈ D (11)

Constraint set (2) ensures that generated probing cycles
collect the required network telemetry data. Constraint set (3)
ensures that if telemetry item v is collected from forwarding
device i, then there should have a probe being routed through
i. Constraint set (4) accounts for the number of probing
cycles in use. In short, it sets a cycle p as active whenever
variables zp,v,i = 1 or xp,i,v = 1. Constraint set (5) ensures
flow conservation on probing cycles. In other words, they
generate probing cycles without ramification or self-loops. In
turn, constraint set (6) guarantees a probing cycle covers at
least one link direction. Constraint set (7) ensures that the
available capacity is not violated either by the telemetry items
collected or by the network links being covered. Observe that∑
i∈D

∑
j∈D xp,i,j limits the probing cycle length. Constraint

set (8) is the well-known sub-tour elimination constraints,
ensuring that generated cycles are strongly connected [12].
Last, constraint sets (9)–(11) define the domains of output
variables. It is worth mentioning that the complexity of the
proposed model comes from (i) capacitated probe packets, (ii)
non-uniform size of telemetry data, and (iii) cycle definition.

III. A MATH-HEURISTIC APPROACH TO P2INT
To tackle the P2INT complexity and come up with

near-optimum solutions, we introduce a mathematical
programming-based heuristic. To minimize the number of
probing cycles in the solution χ, our strategy optimizes a
few probing cycles at once, to merge them by reallocating
telemetry data to other cycles. The idea consists of iteratively
choosing a subset of probing cycles to be optimized (i.e., their
variables Z,X, Y are freely changed), while the others remain
fixed. Algorithm 1 presents the proposed approach. We first
compute a feasible solution χ to the P2INT problem (line 1).
Then, we iteratively select a subset of k probing cycles (lines
5-10), and enumerate the list of variables xp,i,j ∈ D ⊆ X
related to them (line 11); variables listed in D will be subject
to optimization, while others will remain unchanged (line 12).

We take advantage of meta-heuristic VNS (Variable Neigh-
borhood Search) to systematically iterate over subsets of
probing cycles. Further, we prioritize subsets with higher
potential for improvement – i.e., probing cycles that might
be merged (discussed in Subsection III-C). For each subset of
probing cycles, we submit its set of variables D along with χ
to a mathematical programming solver. The goal is to obtain
a set of values to those variables listed in D, so that a better
solution is found. In case there is no improvement, we rollback

Algorithm 1 Overview of the fix-and-optimize heuristic.
Input: Tglobal: global time limit, Tlocal: time limit for each solver run,

Kinit,Kend: initial/final neighborhood size, Kinc: increment for neighborhood
size, NoImprovmax: max. rounds without improvement

Output: χ: best solution found to the optimization model
1: χ← initial feasible solution
2: if a feasible solution does not exist then fail else
3: k ← Kinit
4: while Tglobal is not exceeded and k ≤ Kend do
5: Nk ← current neighborhood, i.e. tuples of k probing cycles
6: Nk,shr ← tuples from Nk , whose cycles share devices
7: Nk,any ← Nk \ Nk,shr

8: NoImprov ← 0
9: while {Nk,shr,Nk,any} 6= ∅ and

NoImprov ≤ NoImprovmax do
10: T ← next unvisited neighbor (w.r.t Equation 16)
11: D ← list of variables xp,i,j from cycles in neighbor T
12: χ′ ← solution χ optimized by the solver, under time

limit Tlocal, and making variables not in D as fixed
13: if χ′ is a better solution than χ then
14: update χ to reflect solution χ′;
15: k ← Kinit;
16: break
17: else
18: NoImprov ← NoImprov + 1
19: end if
20: end while
21: if no improvement was made then k ← k +Ninc end if
22: end while
23: return χ
24: end if

and pick the probing cycle subset that follows. We run this
process iteratively until a better solution is found. Once it
happens, we replace the incumbent solution with χ′ (line 14),
and restart the process (i.e., k ← Kinit). This loop continues
until we have explored the most promising combinations of
available cycles, or Tglobal execution time is exceeded.

A. Obtaining an initial solution

The first step of our algorithm (line 1) is generating a
feasible solution χ. The solution is one that satisfies all
constraints, though not necessarily a high-quality one, in terms
of used probing cycles. There are several ways to generate
feasible solutions to P2INT. We propose two approaches.
The first consists of adapting the Edge Randomization
(ER) heuristic – an approach widely applied in Arc Routing
Problems. ER starts a probing cycle from a random unvisited
network link. Then, the algorithm randomly chooses an adja-
cent forwarding device and collect as many network telemetry
items as possible. While the probing capacity is not depleted,
the algorithm keeps repeating this procedure. Once it happens,
the probing cycle returns to its origin using the shortest-
path approach. The procedure is repeated until all network
telemetry items are collected and all network links are visited.

The second approach is based on recent state-of-the-art
work PathPlanning proposed by Pan et al. [3].Their
proposal does not consider probe capacity, nor data plane
telemetry items. We adapt their DFS-like algorithm to consider
both requirements in the best effort approach. Our adaptation
of the proposed DFS-like strategy only moves on to a next
network link iff there is enough capacity on the current probe
to collect telemetry data and to return to its origin.

B. Neighborhood selection and prioritization

We carefully choose the subset of probing cycles D ∈ X
that will be optimized. We explore the search space using

4

VNS. In a nutshell, VNS organizes the search space in k-
neighborhoods. Each neighborhood is determined as a function
of the incumbent solution (χ), and a neighborhood size k.
We build a neighborhood as a combination of any k probing
cycles. Formally, we define a k-neighborhood as a set com-
posed of k-tuples Nk = { p | p ⊆ P ∧ yp = 1 }. The number
of neighbors in a k-neighborhood is given by the binomial
coefficient

(∑P
p=1 yp
k

)
. We focus only on active probing cycles

to build our neighborhood, since other variables in the model
are easily inferred once the probing cycles are defined.

The time required by the solver to optimize a solution χ
and a subset D ⊆ X is often small. However, processing
every candidate subset D from the entire k-neighborhood
is impractical. Therefore, we prioritize those neighbors that
might lead to a better solution. We prioritize tuples in the k-
neighborhood set Nk according to two observations: (i) it is
more probable to merge probing cycles if they are not over-
committed (i.e., the higher the residual capacity, the better);
and (ii) it is easier to merge cycles that are close to each
other. We define a tuple priority, as a function of its residual
capacity. The residual capacity of a tuple T ∈ Nk is given by
r : T → R+, according to Equation 16.

r(T) =
∑
p∈T

U(p)−
(∑

i∈D

∑
v∈Vi

zp,v,i · S(v) +
∑
i∈D

∑
j∈D

xp,i,j

) (16)

We break down a k-neighborhood set into two distinct sets.
The first one is formed by tuples whose probing cycles sharing
forwarding devices (Nk,shr) – i.e., ∩p∈T 6= ∅. The second set
is formed by remaining tuples in Nk (Nk,any = Nk \Nk,shr),
i.e. those tuples whose cycles do not share any forwarding
device. We first process the tuples of Nk,shr. Then, we
process the remainder ones (Nany). Last, our approach takes
as input NoImprovmax. It indicates the maximum number of
iterations without improvement that is allowed over a given
neighborhood. We stop processing the current neighborhood
once NoImprov exceeds NoImprovmax (line 9).

IV. EVALUATION

A. Setup

The proposed model was ran using IBM CPLEX Opti-
mization Studio 12.9 to obtain optimum solutions, while the
proposed heuristic approach was implemented using Java lan-
guage. Experiments were performed on a machine with AMD
Threadripper 2920X processor and 80 GB of RAM, using
the Ubuntu 16.04 operating system. We considered different
physical network instances that were generated with Brite [13],
following the Barabasi-Albert model [14]. We used physical
network infrastructures varying from 10 to 200 forwarding
devices. We vary the amount of available space to embed
telemetry items in probing packets (i.e. U(p)) from 100 to
1500 Bytes. Further, we assume that forwarding devices have
from 2 to 8 possible telemetry items to export, varying its size
S(v) uniformly from 2 to 20 Bytes [3]. P2INT considers the
following parameters Tglobal = 6h, Tlocal = 600s, Kinit = 2,
Kend = 4, Kinc = 1, and NoImprovmax = 15. The fine-tuning
and sensitive analysis of these parameters is out of the scope
of this work. For example, P2INT can trade solution quality

for resolution time by adjusting Tglobal and Tlocal. Using the
t-test method, we found that 30 runs of each experiment is
enough to achieve a confidence level 95% or higher.
Baseline. We compare P2INT against (i) the optimal solution
(OPT), (ii) the Edge Randomization (ER), and (iii) the
recent state-of-the-art work PathPlanning (PP) [3].
Reproducibility. Our implementation is publicly available in
order to encourage full reproducibility of our experiments4 and
foster the design of new solutions.

B. Results

We analyze the quality of the proposed approach by eval-
uating: (i) the number of probing cycles generated; (ii) the
resource usage of probing cycles; (iii) the data transmission
overhead to INT collectors; (iv) the INT collector usage; and
(v) the network link coverage.
Probing cycles. Figure 2(a) illustrates the amount of probing
cycles generated for an increasing size of network infras-
tructures (from 10 to 200). P2INT comes up with quality-
wise solutions compared to the optimal and the state-of-the-
art approach PP. Our solution is able to approach the optimal
value for small network infrastructures (up to 20 nodes)5 At
the same time, the PP produces solutions with up to 2x the
number of probes considering small networks. For medium- to
large-scale networks, P2INT produces (on average) solutions
with 2.2x and 3.70x fewer cycles compared to PP and ER,
respectively. This behavior is explained by the ability of P2INT
to jointly route probing packets and collect items.
Probe scalability. Figure 2(b) depicts the impact of probing
packet capacity with respect to the number of generated cycles.
For the purpose of this evaluation, we show the results of a 50
node network infrastructure6. As the probe capacity increases,
we observe a sharp reduction in the number of probing cycles –
as there is more room to accommodate network telemetry data.
When comparing P2INT to its contenders, we observe that it
is able to generate solutions with up to 5.5x and 4.6x fewer
cycles than PP and ER, respectively – e.g., to U(p) = 1500.
Probe capacity. Figure 2(c) illustrates the average probing
capacity usage by generated cycles. Observe that P2INT
can utilize up to 3x more available capacity than PP (e.g.,
U(p) = 1500). On average, P2INT utilizes 70% of available
resources, while the other strategies (PP and ER) 48% and
50%, respectively. By using available resources efficiently,
P2INT produces solutions with minimum overheads.
Network efficiency. Probing cycles might be computed in a
way that they are not routed through an INT collector. In
this case, at some point in the generated cycle, the collected
INT data needs to be sent to a given monitoring sink. For the
purpose of this evaluation, we consider that there are up to five
INT collectors placed optimally according to the requirements
of each solution. In other words, the INT collectors were
placed connected to a forwarding device in a way that the

4Available implementation of our simulation:
https://anonymous.4open.science/r/de4b2622-2b86-457b-82a0-fe2ad10004d8/

5Optimal solutions for large-scale (|D| > 20) networks are unfeasible due
to NP-hardness. For small instances, the computing time surpasses 24h.

6The results for other network infrastructures follow the same behavior.

5

 1

 10

 100

10 20 30 40 50 100

#
 o

f
p
ro

b
es

Network size

Optimal
Our Approach

PP
ER

(a) Number of probing cycles for an in-
creasing network size.

 0

 50

 100

 150

 200

 250

100 200 400 800 1500

#
 o

f
p
ro

b
es

Probe capacity

Our Approach
PP
ER

(b) Number of probing cycles for differ-
ent probe capacity.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 400 800 1500

P
ro

b
e

u
sa

g
e

(%
)

Probe capacity

Our Approach
PP
ER

(c) Probe capacity usage.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

A
v

g
.
tr

an
sm

is
si

o
n

o
v
er

h
ea

d
 (

in
 h

o
p
s)

of INT collector

Our Approach
PP
ER

(d) Transmission overhead.

 0

 10

 20

 30

 40

1 2 3 4 5

A
v
g
.

#
 o

f
p
ro

b
es

p
er

 I
N

T
 c

o
ll

ec
to

r

of INT collector

Our Approach
PP
ER

(e) Collector load.

 0

 2

 4

 6

 8

100 200 400 800 1500

L
in

k
 o

v
er

h
ea

d

Probe capacity

Our Approach
PP
ER

(f) Link overhead.

Fig. 2. In-band probing cycles performance metrics.

distance (in hops) to probing cycles is minimized. Figure 2(d)
illustrates the transmission cost (in hops) to the closest INT
collector. We opt to illustrate this cost in hops as the volume
of transmitted data depends on the probe capacity/usage and
the frequency that probe packets are generated. Observe that
the more INT sinks are available in the infrastructure, the
lower is the transmission overhead. Also, note that P2INT
keeps this transmission cost as low as possible even when
there exists just one INT collector. On average, PP and ER
generate solutions with 1.38x and 2.26x higher transmissions
overheads than P2INT, respectively.
Collector load. Figure 2(e) shows the collector load as the
number of probing cycles assigned to each INT collector.
Considering two INT collectors, solutions can cover 83% (our
approach), 82% (PP) and 78% (ER) of all probing cycles. Note
that the observed controller load can be substantially reduced
if a data plane filtering mechanism is considered (e.g., [9]).
Network coverage. Figure 2(f) depicts the network link cov-
erage as the average probing cycles per network link. Higher
values indicate that network links are being over-covered (i.e.,
multiple times), representing a waste of resources. P2INT, on
average, keeps this value close to one, while the other strate-
gies produce solutions with network links begin covered by
up to seven probing cycles (i.e., 7x more than the necessary).

V. FINAL REMARKS

In this letter, we formalized the Probing Planning for In-
band Network Telemetry (P2INT) employing a MILP model
and introduced a scalable mathematical-based heuristic to
solve it. While our approach outperforms state-of-the-art
heuristics (e.g., factor 6 w.r.t probing cycles), it is still limited
to (i) static solutions over time (i.e., probing cycles do not
change); (ii) fixed-throughput of probing packets (i.e., all
probing cycles operates at the same packet rate); and (iii)
agnostic to network services (i.e., probing cycles are not aware
of running functions or services). Addressing these limitations
from the theoretical and operational point of view (e.g., control
and data plane integration) is part of our future work.

REFERENCES

[1] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network
programming and visibility,” ACM SIGCOMM CCR, vol. 44, no. 4, pp.
3–14, 2014.

[2] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards network
telemetry as a service,” in IEEE ICNP, Sep. 2018, pp. 247–248.

[3] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for in-
band network-wide telemetry,” in IEEE INFOCOM, Apr 2019, pp. 1–9.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM 14, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[5] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, and J. Taheri,
“Intopt: In-band network telemetry optimization for nfv service chain
monitoring,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–7.

[6] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat, “SIMON: A simple and scalable method for sensing,
inference and measurement in data center networks,” in USENIX NSDI
19. Boston, MA: USENIX Association, Feb. 2019, pp. 549–564.

[7] J. Marques, M. Luizelli, R. Da Costa, and P. Gaspary, “An optimization-
based approach for efficient network monitoring using in-band network
telemetry,” Journal of Internet Services and Applications, no. 1, p. 16,
Jun 2019.

[8] R. Hohemberger, A. G. Castro, F. G. Vogt, R. B. Mansilha, A. F.
Lorenzon, F. D. Rossi, and M. C. Luizelli, “Orchestrating in-band data
plane telemetry with machine learning,” IEEE Communications Letters,
vol. 23, no. 12, pp. 2247–2251, 2019.

[9] J. Vestin, A. Kassler, D. Bhamare, K. Grinnemo, J. Andersson, and
G. Pongracz, “Programmable event detection for in-band network
telemetry,” in 2019 IEEE 8th International Conference on Cloud Net-
working (CloudNet), 2019, pp. 1–6.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. NY, USA: W. H. Freeman & Co.,
1979.

[11] R. C. Filho, W. Lautenschläger, N. Kagami, M. Luizelli, V. Roesler,
and L. Gaspary, “Scalable qoe-aware path selection in sdn-based mobile
networks,” in IEEE INFOCOM, April 2018, pp. 989–997.

[12] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Journal of the Operations Research Soci-
ety of America, vol. 2, no. 4, pp. 393–410, 1954.

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to
universal topology generation,” in IEEE MASCOTS 2001, 2001.

[14] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234 –
5237, Dec 2000.

