Mini-CCNx: Fast Prototyping for Named Data Networking
Carlos M. S. Cabral , Christian E. Rothenberg (Co-advisor) , Mauricio F. Magalhaes (Advisor)

Department of Computer Engineering and Industrial Automation (DCA)
Faculty of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP), Sao Paulo, Brazil

{cabral, chesteve,mauricio}@dca.fee.unicamp.br

Abstract -

Experimental research in Information-Centric Networking (ICN) is crucial to the evaluation of new

architectural proposals that bring named pieces of content as the main element of networks. This paper presents
a new fast prototyping tool for the NDN (Named Data Networking) model, Mini-CCNx, that aims at filling an
existing gap in generally available experimental platforms. Using container-based emulation and resource isolation
techniques, Mini-CCNx appears as a flexible, scalable, high-fidelity, and low-cost tool that enables experiments
on emulated networks with hundreds of NDN nodes in a commodity laptop. All those characteristics are highly
desirable for the evaluation of open research issues in ICN, such as routing protocols, forwarding strategies, caching
techniques, content-oriented application development, and so on.

Keywords —

1. Introduction

With the motivation of shifting the networking
paradigm to a model that fits better the current us-
age of the Internet, a number of Information-Centric
Networking (ICN) proposals have appeared with the
goal of putting named content as the main element
of networks. Proposals like DONA[7], NetInf [4]
and CCN [6], among others, introduce several new
concepts and strategies towards an ICN architecture.
Like in every new design proposal, experimentally-
driven research is crucial to the evaluation of new
ideas. Especially in the computer networking area,
requirements such as scalability and experimental
fidelity are highly desirable and a matter of concern
when attempting to move ideas to real field trials.

During our research journey on new for-
warding strategies and probabilistic state reduction
techniques for CCN core nodes, we faced an exist-
ing gap in feature-rich, generally available experi-
mental tools. We could not find a low-cost, scalable,
high-fidelity, and sufficiently flexible experimental
platform to carry in-depth evaluation of diverse and
customizable CCN scenarios.

This experimental issue motivated the de-
velopment of Mini-CCNx presented on this paper.
Inspired by well-succeeded practices in fast proto-
typing for Software-Defined Networks (SDN) [8],
Mini-CCNx is able to specify and run a complete
content-centric network of hundreds of nodes in
a simple laptop, with high flexibility, agility, and
configurability. Furthermore, Mini-CCNx provides
a high-fidelity and experimenter-friendly prototyp-

CCN, NDN, emulation, prototyping, Internet, ICN

ing environment, enabling applications and network
configuration being tested before moving to real
testbed environments.

Mini-CCNx is based on the Named Data
Networking (NDN) [10] model and uses the official
implementation, CCNx [2], what brings greater rel-
evance for the user and developer communities. In
this paper, we describe the platform from an archi-
tectural and experimenter point of view. We vali-
date the capabilities of Mini-CCNx through exten-
sive experimentation.

The remainder of the paper is organized as
follows. Section 2 analyses existent tools for NDN
experimentation and outlines the goals of our plat-
form. Section 3 describes the architectural details
of Mini-CCNx. Section 4 presents an evaluation
of Mini-CCNx in terms of scalability, performance,
and fidelity. Finally, Section 5 concludes the paper
final remarks.

2. Motivation and Goals

Any networking experimentation environment
would ideally combine (at least) the following
characteristics:

Flexibility. It should be possible to rapidly create
several scenarios using different configuration pa-
rameters.

Scalability. It should be possible to create topolo-
gies with a sufficiently high number of nodes.

Low-Cost. The tool can be run in a commodity lap-
top/desktop or in a single Amazon EC2 instance.

Table 1. Summary of tools and its characteris-
tics

Simulators Testbeds Emulators

Ex: ndnSIM/ccnSim Testbed NDN Mini-CCNx
Flexibility High Low High
Scalability High Low High
Cost Low High Low
Realism No Yes Yes

Ease of . .
Config, Medium Low High
Link Yes Wlt}.l Yes
config. restrictions

Realism. As described in [5], three realism dimen-
sions can be defined for an experimentation tool: (i)
functional realism (the system behavior must be the
same as the one of a real deployment and the code
executed within the tool must be the same code run
on the real hardware), (ii) timing realism (the per-
formance must be close or indistinguishable from
the real behavior), and (iii) traffic realism (the sys-
tem must be able to generate and receive real traffic,
coming either from the Internet or from the local
network).

2.1. Existing ICN experimentation tools

We can group existing ICN research platforms at
least in three main categories: simulators, testbeds,
and emulators, each with its pros and cons.

Simulators. They are flexible, scalable, and, in gen-
eral, have a low cost. ndnSIM [11] is a ns-3 module
that implements the NDN model. ccnSim [1] ex-
tends OMNeT++ with the required structures and
protocols to implement the CCN model. Both tools
have the disadvantages of any simulator: (i) they are
not realistic (the code used in the simulator is dif-
ferent from the one that will be executed in a real
deployment), and (ii) the hardware, protocol stack,
and traffic models used by simulators may not yield
the best fidelity.

Testbeds. They are experimental infrastructures
that provide real resources for realistic test scenar-
ios. They can be shared among researchers (e.g.,
GENI, Planetlab)or specifically created for a local
deployment. Testbeds are realistic by nature but,
in general, they have (i) high creation and mainte-
nance costs, and (if) reduced flexibility and scala-
bility when it comes to custom topologies creation.
Furthermore, the largest international testbeds are
beyond the reach of most researchers.

Emulators. In general, they may be not as scalable
as simulators, but arguably they are equally flexible
and have low hardware costs. Like testbeds, they are
realistic because they run real code (applications,
OS kernel, etc). The work on Mini-CCNx presented
in this paper aims at filling the gap of being an emu-
lator specifically tailored for NDN experimentation.

Table 1 summarizes the analysed character-
istics and adds two more factors: ease of configura-
tion, and the possibility of configuring link param-
eters, such as packet delay and loss. The lack of
a tool combining all desired factors and the lessons
learned with SDN prototyping motivated our invest-
ment on developing Mini-CCNXx.

3. Mini-CCNx Architecture

Mini-CCNx is a Mininet-HiFi fork [5] (originally
proposed for OpenFlow networks) augmented with
several classes and mechanisms to build NDN en-
vironments based on the project’s official code
base [9].

3.1. Overview

Mini-CCNx uses container-based emulation
(CBE) !, a lightweight OS-level virtualization tech-
nique. Each container allows groups of processes to
have independent views of system resources, such
as process IDs, file systems and network interfaces
while still using the same kernel. Each container
is a NDN node, with its own network namespace,
virtual network interface(s), NDN-specific data
structures implemented by the ccnd daemon (PIT,
FIB and CS) and repositories, as implemented by
he ccnr daemon. These nodes are connected to
each other using virtual Ethernet links in the kernel
space.

CBE yields higher scalability when com-
pared to full-virtualization by trading the ability to
run multiple OS kernels for lower overall overhead
using a single kernel [12]. The higher scalability
comes however at a price: isolation may be com-
promised. The kernel resources are shared by all
the NDN nodes which may interfere with each other.
For example, if a misbehaving content-oriented ap-
plication in a node begins to indefinitely allocate
memory, the overall experiment results will be com-
promised due to lack of memory available for other

"http://1xc.sourceforge.net/

Isolated NDN nodes

(e.g. 50% CPU and 20% mem each) user space

n1 \I ,l n2 \I {I n3 ‘I
1 (NDN container) ; (NDN container) | i (NDN container) !
i 1

|
1
| ! |
i cend1(FIB,PIT,CS) | I
|
|
i
i

' i '
' |
i 1cend3 (FIB,PIT,CS),
: conrt (repo) icend2 (FIB,PIT,CS) : H
'

: ccnr2 (repo)
1 ! H
i ! i i
'
= — — —
' ' '
: private network : : private network : : private network :
1 namespace ! 1 namespace ! 1 namespace H
' '
: i [meemo]
N R ’

'
I n1-eth0 | 3
,

Ln2~eth0 | n2-eth j

isolated point-to-point link
(e.g. 100Mbps, 10% loss)
Kernel space

isolated point-to-point link
(e.g. 1Mbps, 10ms)

Figure 1. Three NDN nodes connected linearly
using Mini-CCNx containers

nodes. Therefore, Mini-CCNx uses isolation tech-
niques in order to limit the resources available for
each node and link.

Like Mininet-HiFi, Mini-CCNx uses Linux
cgroups to limit CPU bandwidth for each node.
Mini-CCNx also extends this concept adding lim-
its to memory utilization, an important subject for
NDN when it comes to caching and content storage.
Finally, using Linux traffic control (t ¢), it is possi-
ble to configure several link properties such as band-
width, delay, and packet loss. Figure 1 illustrates the
CBE and isolation features used within Mini-CCNXx.

4. Performance and Fidelity

We now focus on analysing Mini-CCNx’s fidelity
and performance using a low-cost hardware, largely
available to most researchers and students.”> The
ccnx version used in all cases is 0.7.0. We analyse
the following performance dimensions: (i) scalabil-
ity, (if) coherence and (iii) fidelity

4.1. Scalability

The scalability is analysed with regards to the num-
ber of nodes and links Mini-CCNx is able to instan-
tiate and run. Thus, two representative topologies
were chosen, (1) full mesh, and (2) linear (nodes
connected in a simple linear fashion). These topolo-
gies were chosen because they represent two con-
nectivity limits —any other topology will have a con-
nectivity level within this range.

Tables 2 and 3 show the number of in-
stantiated NDN nodes, the memory used by Mini-
CCNx only, the total memory used by the ccnd

2All the tests were done on a laptop with a typical configu-
ration (Intel Core I5 2410M processor with 4GB RAM).

Table 2. Scalability. Linear topology

of || Mini-CCNx| ccnd Total # of | Set up
nodes|| Mem.(MB) |Mem.(MB) Mem.(MB) |links |time(s)
4 15.0 7.2 22.2 3 <1
64 15.7 113.8 129.5 63 6
512 21.6 918.5 940.1 511 95
1024 27.8 18354 1863.2 |1023| 228
1536 35.3 2754.2 2789.6 |1535| 320

Table 3. Scalability. Full mesh topology
of | Mini-CCNx| ccnd Total # of | Set up
nodes|| Mem.(MB) |Mem.(MB)|Mem.(MB) |links|time(s)
4 15.1 7.2 22.3 6 <1
16 15.7 28.9 44.6 120 | 11
64 26.0 114.5 140.6 [2016| 118
128 62.0 229.8 291.8 |8128] 753

daemon instances running in each node, the total
overall memory (Mini-CCNx + ccnd), the number
of links, and the set up time of each scenario. Note
that the largest part of memory usages comes from
the ccnd daemons and this memory usage grows
linearly with the number of nodes. We note that
the set up time is strongly related to the number
of instantiated links, becoming the limiting factor
(> 10min) for a full mesh topology of 128 nodes.
When looking at the linear topology, memory es-
tablishes the bottleneck after ~1,500 nodes.

4.2. Coherence

We focus now on how coherent are the results with
regards to experiment parameters such as link de-
lay, bandwidth, and number of hops. For this
analysis, we investigate two simple NDN scenar-
ios. In the first one, we measure the RTT using
ccnping [9] for varying hop numbers and link de-
lay values (Fig. 2(a)). As expected, the RTT in-
creases linearly with the number of hops. For dif-
ferent link delay values, the RTT behavior is consis-
tent. For example, under 10 ms link delay and for
2 hops, the ping takes 20 ms upstream, plus 20 ms
downstream, plus some processing time per node.

In the second scenario, the average down-
load time of a 100MB file was measured for dif-
ferent hop distances. Two sub-cases were analysed:
(1) no-caching, where Interest messages go all the
path until the producer, and (2) caching, where a
first download of the file populates node caches
along the path, and then a second request may re-
trieve pieces of content from the caching nodes (de-

fault caching configuration of CCNx was used). As
shown in Fig. 2(b) (with 95% CI), download times
increase for larger distances between client and pro-
ducer. We can also observe the expected effects of
caching, where the download time benefits from the
amount of cached content in the nodes closer to the
client.

300
/ No delay - -+ -
250 oms -

150

RTT (ms)

100

50

1 2 3 4 5 6 7 8 9 10
of Hops

(a) RTT vs # hops for varying link delays
140
Without caching ——
120 With caching xxe=

100

80

60

Download time (s)

40

20

1 2 3 4 5 6
of Hops

(b) Average download time vs # hops

1400 Content Objects - Real ——
Content Objects - Mini-CCNx
1200 Interests - Real
nterests - Mini-CCNx

1000 T

400
200 {
0 -

Bandwidth (Kbps)

15 20 25 30 35
Time (s)

0] 5 10
(c) BW comparison with real testbed

Figure 2. Coherence and fidelity analysis

4.3. Fidelity

As a first assessment on how Mini-CCNx is able
to reproduce real experiments with high-fidelity,
we use a simple topology with two real desk-
tops and native ccnx installations directly con-
nected via FastEthernet interfaces. Using the
ccentraffic [3] generator, the first desktop con-
stantly sends Interest messages asking for differ-
ent contents while the second desktop answers with
1024-bytes Content Objects. The same scenario was
reproduced using Mini-CCNx, with 100Mbps and
a delay of 200 us as link parameters. Figure 2(c)

shows the Interest and Content Objects (Data) traffic
for both cases. Note that the bandwidth consump-
tion in Mini-CCNXx follows very closely the real de-
ployment behavior.

5. Conclusion

Inspired by the well-succeeded experience in fast
prototyping for SDN, Mini-CCNx appears as a in-
novative tool that aims at filling an existing gap
in the currently available NDN experimental plat-
forms. Mini-CCNx is realistic, low-cost and scal-
able: a whole content-centric network, with hun-
dreds of nodes, can be run in a simple laptop, with
easy configuration and high-fidelity results.

References

[1] ccnSim. Scalable chunk-level CCN
http://perso.telecom-paristech.fr/
~drossi/index.php?n=Software.ccnSim.

[2] CCNx. Official implementation of the CCN model.
https://www.ccnx.org/.

[3] CCNx Traffic. CCNx: traffic generation - ARL
ONL Wiki. http://wiki.arl.wustl.edu/onl/
index.php/CCNx:_traffic_generation.

[4] Christian Dannewitz, Dirk Kutscher, Borje Ohlman,
Stephen Farrell, Bengt Ahlgren, and Holger Karl. Net-
work of Information (NetInf) - An Information-Centric
Networking Architecture. Computer Communications,
January 2013.

[5] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, Bob Lantz, and Nick McKeown. Reproducible
network experiments using container-based emulation.
CoNEXT ’12, page 253, 2012.

[6] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, and Rebecca L.
Braynard. Networking named content. In CoNEXT 09,
page 1, New York, New York, USA, December 2009.
ACM Press.

[7] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, An-
drey Ermolinskiy, Kye Hyun Kim, Scott Shenker, and Ion
Stoica. A data-oriented (and beyond) network architec-
ture. ACM SIGCOMM CCR, 37(4):181, October 2007.

[8] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop. In ACM SIGCOMM Workshop - Hot-
nets '10, pages 1-6, New York, New York, USA, October
2010. ACM Press.

[9] Named Data Networking. NDN Github Repository.
https://github.com/named-data, April 2013.

[10] NDN Project. Named Data Networking. http: //www.
named-data.net/.

[11] ndnSIM. NS-3 based NDN simulator.
ndnsim.net/.

[12] Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski,
Andy Bavier, and Larry Peterson. Container-based op-
erating system virtualization. ACM SIGOPS Operating
Systems Review, 41(3):275, June 2007.

simulator.

http://

