
2017 Fourth International Conference on Software Defined Systems (SDS)

Software Defined Storage for Cooperative Mobile

Edge Computing Systems

Jafar AI-Badarneh,* Yaser Jararweh,* Mahmoud AI-Ayyoub,*

Mohammad Al-Smadi* and Ramon Fontest

* Jordan University of Science and Technology, Irbid, Jordan
jafar92.jaa@gmail.com, {yijararweh, maalshbool, maalsmadi9}@just.edu.jo

t University of Campinas, Campinas, Brazil
ramonrf@dca.fee.unicamp.br

Abstract-In this paper, we explore the use of both Software
Defined Systems (SDS) and Network Function Virtualization
(NFV) to deliver a wireless-based Software Defined Mobile
Edge Computing (SDMEC) support for storage applications.
The proposed approach aims to provide a MEC level service
controlled by the software defined paradigm to enhance the
provisioning and management of storage services over wireless
connected spectrum. The proposed SDMEC has been imple
mented as an extension of the well-known Wireless Software
Defined Networking (WSDN) emulator, Mininet-WiFi, to support
wireless topologies that mimic real world environment setups. The
framework includes a software defined cooperative MEC strategy
for managing storage operation. It also provides the support
for auto-scaling network storage resource based on the network
demand. The findings of the experiments show the potential of
our proposed approach and provide a great starting point for
researchers to start considering such approach.

I. INTRODUCTION

Network Function Virtualization (NFV) is under the spot
light as it delivers very promising outcome for telecommu
nication carriers [1]. NFV basically enables the decoupling
of the hardware from the running software modules which
provides support for running software modules on commodity
hardware. This saves a lot of money, in addition to the
advancements in the utilizing orphaned legacy hardware. NFV
also reduces the risk in services deployment, as there is no
longer a need to have dozens of configurations that should be
made on site by the service vendor. With NFV, the process of
deploying a service takes no longer that a couple of minutes for
the service to be configured and be ready to operate properly.

NFV can be utilized to provide support for Mobile Edge
Computing (MEC). One example is the application proposed
by Nguyen et al. [2]. The authors proposed to utilize NFV
in order to provide MEC level services, where MEC nodes
are virtualized to deliver more services than those assigned
to them. With this, MEC nodes are capable of serving DHCP
services for the closest consumers as a way to maintain the best
quality of Service (QoS). Of course, there exist some trade
oft's as the service needs a fine-grained control as proposed by
the authors.

Along with what NFV has enabled for networking advance
ments, Software Defined Networking (SDN) comes as another
revolution in today's networking paradigms. SDN provides
network architects with the simplest and most efficient way

978-1-5386-2855-3/171$31.00 ©2017 IEEE

to manage and prOVISIOn network resources. As stated by
Costanzo et al. [3], SDN introduced nothing but networking
simplification and evolvability. SDN basically delivers these
properties by separating the data plane from the control plane,
where the controller tends to propagate forwarding tables from
the control plane to the data plane devices (routers/switches)
[4]. Usually, network traffic is generated by the forwarding
devices in the data plane. Network centralized/decentralized
management represented by the controller(s) is/are responsible
for finding the best routes to deliver network traffic for their
intended destinations, in addition to maintaining a global
information sightedness of the whole network resources as
they're going to be provisioned by the controller (cf. SDN
architecture and models [5]).

Recently, the Internet has been moving toward cloud-based
services, as hosting and managing your own servers require
a lot of time to be constructed in addition to the overhead
being imposed by the administration and management of such
systems. Cloud computing solves such issues by eliminating
the aforementioned complexities and focusing more on the
flexibility of delivering the service. The concept of Software
Defined Systems (SDS) has emerged to deliver such manage
ment ease. SDS inherits the properties of network softwariza
tion (SDN) and generalizes them to other systems. In the past
few years, researchers have been experimenting with software
defined systems such as Software Defined Storage [6] and
Software Defined Security [7]. With its promised capabilities,
SDS can be viewed as the future of Cloud computing [8] and
Internet of Things [9].

Mobile Edge Computing (MEC) has evolved to deliver a
major shift in Mobile Cloud Computing (MCC) [10]. The idea
of MEC lies in mitigating network's end-to-end latency by
delivering network services - Storage Service for instance- via
Edge computing servers, thus, enhancing the quality of the
user experience.

In this paper, we introduce wireless-based software defined
storage simulation framework for MEC, where storage ser
vices are served collaboratively and provided by the closest
MEC node to the end users. The framework is developed and
validated as an extension to the Mininet -WiFi [11] software
defined wireless networking emulator.

The rest of the paper is organized as follows. In Section II,

174

2017 Fourth International Conference on Software Defined Systems (SDS)

we explore the current software defined storage solutions. In
Section III, the technical details about the presented framework
are presented. Section IV shows the experiments we conduct to
evaluate our framework and their results. Finally, in Section V,
we conclude our work and discuss the future improvements
and prospects for the SDMEC Storage framework.

II. SOFTWARE DEFINED STORAGE FOR MOBILE CLOUD

COMPUTING

According to IBM, I 2.5 quintillion bytes of data are being
generated every day by users (social media posts, images,
videos, etc.) as well as sensors. To keep pace with the
exponential growth of data generated by our smart devices
and loT sensors, a new storage architecture has been intro
duced delivering storage services with lower management and
maintenance costs [12].

The world has realized that traditional legacy storage ser
vices and architectures are no longer fit with the current
demand. A long list of challenges faced by current traditional
storage systems have been addressed in [l3]. The need for a
new storage architecture has been emerged as today's current
legacy storage systems have failed to run with the current
demand (such as cloud systems and VM-centric storage ser
vices). Another interesting challenge that contributed to such
transition is that corporates are now demanding a scale-out
storage support. Although there exist legacy storage architec
tures that were build to support scaling up the hardware for
increasing storage capacities, they are hard to be provisioned
and maintained, as the demand for extra storage requires new
storage mediums - racks or storage shelves for instance - to be
added to the customer's data centers, which is inefficient [14].
Due to these challenges and the current industry needs, the
world is now moving towards more flexible storage solutions,
with the ability to consider commodity hardware support,
scale-out architectures and self-provisioning systems. This is
where software defined storage (SDStorage) emerges as one
of the appealing solutions.

SDStorage inherits its core concept from SDN with the
separation between the data plane (data storage) and the
storage control plane delivering more sophisticated ways for
storage provisioning and management, and most importantly,
coping up with today's storage demands. Moreover, it also
supports: Abstraction, Resource pooling and Automation.

Currently, SDStorage is being tapped more by people from
the industry rather than the academic world. Big corpo
rates/vendors, like IBM, DELL and many others, have realized
the importance of having SDStorage systems deployed by
their data centers, in order to sustain in the market and, at
the same time, enhance their QoS. According to a market
survey published in 2015 by DataCore [15], 53% of the
business who are willing to implement SDStorage in the
industry were driven by the need for extending the life of
their existing storage assets, thus, leading to a reduced Capital
expenditures (CAPEX). The provisioning and management

I hups:llwww-O l.ibm.comlsoftware/datalbigdatalwhat -is-big-data.html

ease provided by SDStorage systems makes it also appealing
to the corporates in the industry as it consequently increases
the savings in the operating expenses (aPEX).

One example of SDStorage solutions from the industry
is EMC ViPR provided by Dell EMC [16], which delivers
SDStorage support with the ability to merge the controls
of multi-vendor storage platforms into one platform, serving
automatic provisioning, resource pooling and policy-driven
storage services. Another example is Hwelett Packet (HP),
which provides SDStorage solution as an integral part of their
software defined data center (SDDC) solution [17]. It uses a
Virtual Storage Alliance (VSA) for storage services and data
deduplication. VSA basically provides the ability to exploit
any unused storage capacity and turns it into a Storage Area
Network (SAN). Similar systems has been introduced by other
vendors such as IBM Spectrum storage [18], VMware software
defined Storage [19], and DataCore [20].

As of academia, several researchers have investigated SD
Storage. Huang et al. [21] proposed a SDStorage architecture
based on the following properties:

1) It should facilitate the decoupling of the data plane
(where the data is generated) from the storage control
plane.

2) It should facilitate auto-scaling and self-provisioning via
Adaptive Quick-Response (AQR) storage controller.

3) It has to be equipped with RESTful APls as integration
interfaces for the application layer's extensions.

The goals behind AQR-storage proposed by the authors is to
serve a hybrid self-configured storage systems that can adapt
and chose the storage mechanism (NAS (Network Attached
Storage), DAS (Directed-Attached Storage) or SAN) accord
ing to a Service Level Agreement (SLA). The matching is
performed utilizing an analysis module that is operating neural
network to learn the best storage configuration and act upon
that if any performance inconsistencies take place.

Another work is by Yang et al. [22], where the authors
proposed an architecture that uses OpenStack to deliver a
storage system. The proposed architecture supports heteroge
neous storage systems such as Hadoop file system HDFS,
SWIFT, and CETH.

Finally, due to the infeasibility of experimenting with soft
ware defined storage within a real working environment, a
recent work done by Darabseh et al. [6] proposed an emulated
SDStorage experimental framework that was developed as an
extension to the well known SDN emulator Mininet [23]. The
emulated architecture consists of mainly the same components
agreed upon in the literature, where the storage plane is
isolated from the storage control plane enabling a policy
driven storage service.

III. SDMEC STORAGE: A SOFTWARE DEFINED STORAGE

FOR MEC SYSTEMS

MEC forms a paradigm shift in MCC. MEC enables ser
vices to be delivered at the edge of the network, mitigating
the number of subscribers requests offloaded to cloud servers,
hence, reducing the requests' end-to-end latency [24]. The

175

2017 Fourth International Conference on Software Defined Systems (SDS)

motives behind incorporating MEC support as an integral part
of cloud and telecommunication systems are expressed as
follows:

• Reduce resource consumption of smartphones - as they
have limited capabilities (storage capacity, battery capac
ity, and the processing power)- by offloading computa
tions and storage operations to MEC nodes.

• Deliver a better Quality of Experience (QoE) by reducing
latency for user-centric and context-aware applications,
and enable more instantaneous cloud services.

• Mitigate traffic offload imposed over cloud servers by
applications that require network intensive tasks.

As an evolution of MEC and decentralized cloud services, the
concept of cloudlets has been introduced. Cloudlets tends to
serve cloud services to mobile users within a limited range
bounded by the WiFi coverage [25]. Although cloudlets can
serve the objective of having cloud services provided at the
edge of the network, but with the current demand for high
computing applications and more storage capacities in addition
to users mobility that cannot be served by the limited coverage
of cloudlets, cloudlets become paralyzed.

The process of constructing and provisioning MEC is not
an easy task. A lot of complexities and configurations should
be made in order to serve the purpose of their existence. Also,
one of the motives behind MEC is to deliver services corre
sponding to user-centric applications. Today's applications are
more connected to each. So, in order for those applications
to deliver a complete application experience, they have to
communicate a lot of entities via RESTfull APIs for examples
and such communication may consult other services that are
not localized to user's MEC nodes. So, in order to have a
cooperative MEC consultation strategy instead of offloading
requests -other than those that exist in Local MEC- to cloud
server, neighboring MEC nodes should be consulted. Such
needs add more complexities to the system. Therefor, it is
better to have a decent way of management of such services,
which aims to hide all of these complexities in addition to
offering a more reliable way of managing and provisioning
network resources. This is where the role of software defined
Systems comes into play.

A recent work proposed by laraweh et al. [26] introduced a
software defined ubiquitous MEC platform for Cloud systems.
The authors showed how MEC can be incorporated into
software defined Cloud to overcome the challenges faced
by MCC. The proposed work focuses on incorporating ME
servers along side with mobile network base stations. An
illustration of the proposed vision is depicted below in Figure
l.

A. Software Defined Storage Support for Mobile Edge Com
puting

SDMEC is considered an integral component of Software
Defined Cloud (SDCloud) as stated in [27]. Our proposed
framework represents an attempt to integrate SDStorage into
MEC, as a way to deliver storage services for wirelessly
connected nodes at the edge of the network. In [26], SDstorage

Fig. 1. Software Defined Mobile Edge Computing Storage Architecture

is being served via storage servers that co-exist along with
network base stations. What differentiate our approach is
the way we hock-up storage service with MEC. From the
standpoint of the capabilities of the network base stations
in delivering other services than merely managing the traffic
flow of the connected nodes, we see that SDMEC storage
can be incorporated with network base stations themselves
without having any network-connected storage server, which
adds some latency (regardless of how negligible it is). The
proposed framework utilizes network base stations to deliver
storage services. Such incorporation enhances the performance
of MEC level applications, such as video streaming, big
data analytics, edge health care systems, and sensor network
applications.

The proposed SDMEC storage framework focuses on de
livering support for context-aware applications -as those men
tioned above- that require reliable access to highly-available
storage mediums. The framework also aims to serve coopera
tive MEC data aggregation and big data analytics on the edge
of the network. An example of this is analyzing and processing
data generated by sensors and street traffic to be either used to
take actions or forwarded to the cloud server to perform other
centralized decisions.

SDMEC Storage architecture is inherited from Darabseh et
al. [6]. It consists of three layers:

1) Data Layer (storage infrastructure): It consists of various
storage assets that are managed by a Virtual Machine
Manager (VMM).

2) Control Layer: It is responsible for managing and con
trolling storage resources. This layer contains a hy
pervisior to be able to manage storage resources in
addition to two types of controllers; storage controller
to perform storage related tasks), and a network con
troller to perform SDN related functions regarding MEC

176

2017 Fourth International Conference on Software Defined Systems (SDS)

connected nodes, validate storage access policies and
manage storage requests by handing them over to the
storage controller.

3) The application layer which holds different user-centric
applications to interact and use MEC services via north
bound APIs.

B. Cooperative MEC SDStorage support

The proposed SDMEC Storage mechanism works according
to Algorithm 1. The variable set used in the algorithm is
expressed in Table I.

As a use case, assume that a station, that is wirelessly
connected to a MEC node, requests to store some data of a
specific size. The Storage controller should serve the request.
At first, the associated MEC node is set as the Local MEC
to the requesting station. The controller checks if the amount
of data to be stored is feasible to be stored within the Local
MEC The check process is invoked via a southbound API
to the storage data plane. if so, the controller issues a store
request with the data size given along with the access policy
provided by the station as part of the store request. The store
function performs a set of tasks: check the validity of the
access policy provided by the station, issue the storage request
with the appropriate storage setup, update the storage table for
the new data entries, and, finally, disseminate the storage table
to the Local MEC

The previously mentioned flow forms the "sunny day"
scenario, whereas the "rainy day" scenario happens when the
Local MEC node is incapable of handling the storage request
due to a shortage in the size of the available resources. In this
case, the data gets chunked and distributed across neighboring
MEC nodes. Before engaging other MEC nodes, the Local
MEC node is being checked to see how much data it can
handle within its available space (if it is not already full of
course). If it does, the controller decides how many chunks
of the data to be stored according to the amount of available
space left, and, then, performs the storage request.

At this stage, the cooperation among MEC nodes takes
place. The controller sorts MEC nodes according to their
distance from the Local MEC (the closest first). The controller
then loops over MEC nodes, to see who is going to handle the
request either partially or completely. The remaining chunks
are handled that same way they were handled by the Local
MEC If the number of tapped MEC nodes exceeds a pre
defined threshold, the cooperative search strategy is suspended
as it is going to be infeasible in terms of time required to store
the data, thus, preserving the QoS.

In this case, the controller instead issues an auto-scale
operation in the storage resources among the approached MEC
nodes, by activating extra storage resources. This process
actually tends to cluster MEC nodes into virtual zones, as
each set of MECs in a range within the specified threshold
appears to form groups that will be consulted each time a
storage request is initiated from a station within their ranges.

Algorithm 1 Software Defined MEC Storage

1: LM ec +- station.AssociatedM ecO
2: Size +- station.getDataSizeO
3: Stored = False
4: if DataSize :s: LM ec.AvSpaceO then

5: StoreData(Data,Size,Pol)
6: Stored = True
7: else

8: Chunks [] = Chunk (station.Data)
9: F = LMec.FreeChunckO

10: StoreData(Chunks,F,Pol)
11: Size = Chunk. size - F.size
12: end if

13: NearbyMecs [] = sorted (MECs)
14: while not Stored do

15: C = 0

16: for Each Mec m in NearbyMecs [] do

17: if C :s: T and not Stored then

18: if Size :s: m.AvSpaceO then

19: StoreData(Chunks,Size,m,Pol)
20: Stored = True
21: else

22: StoreData(Chunks,Size,m,Pol)
23: end if

24: C++
25: else

26: ScaleUpStorage(C)
27: end if

28: end for

29: end while

TABLE I
ALGORITHM VARIABLE SET

Variable I Description

LMec Station's Local MEC
AvSpaceO a method to get the amount of

available space
Pol an Access Policy that grantees a

secured access to storage resources
F Available free chunks
C Mec counter
T Threshold for number of Mec

nodes

IV. EXPERIMENTS AND RESULTS

SDMEC storage framework is implemented as an extension
to Mininet-WiFi. We start by briefly discussing Mininet-WiFi.

Mininet-WiFi [11] is a tool that allows researchers to expe
rience with a software defined wireless networking emulation
environment. Mininet-WiFi is built as an extension to the well
known SDN emulator Mininet. It utilizes the Linux wireless
networking driver (mac8021l) to provide support for Wireless
Stations and Access Points.

For the development of this work we have added the support
for more types of nodes in order to run SD Storage functions.
In our approach, SDMEC represents an extended type of Access

177

2017 Fourth International Conference on Software Defined Systems (SDS)

Point that inherits all of its functions and properties, in addition
to SD storage related methods and APIs. The same applies
for SDStation where it extends Station. The framework
also supports customized types of SO Stations, like SO

Sensor for example.
The framework requires a customized set of controllers, like

SDNController and SDStorage Controller, each of
which performs different tasks, with the ability for them to
communicate via EastlWest APIs. SON Controller per
forms basic SDN networking function in addition to those
related to conununicating SDStorage controller for
storage requests by connected SO Stations in addition to
handling Cooperative MEC functions, for example, distribut
ing data among multiple MEC nodes, as they have to go
through the network medium. The controller also validates
storage requests access policies in order to drop any unau
thenticated storage request made to the MEC, Whereas SO

Storage Controller is responsible for handling Storage
requests at the MEC as well as serving resource-scaling
operations in case there is a shortage in MEC storage. The
strategy for handling storage requests was presented earlier in
the algorithm pseudo-code 1.

The cooperation behavior for handling storage request can
be performed by following either one of two methods. The
first method suggests to benefit from the cooperations among
MEC nodes by distributing data sent among multiple MEC
nodes, as the node's Local MEC cannot handle the sent amount
of data. Therefor, the Local MEC will handle as much as
it can, and the storage controller then decides to distribute
the left amount of data to another neighboring MEC node(s).
Such method enables more data distribution among several
MEC nodes which might be vital for mitigating Single Point
of Failure (SPOF) problems. Other than that, the distribution of
data can make the process of recovering missing data easier.
This method keeps the controller searching for MEC nodes
with available space to handle the storage requests, which add
latency to the overall request completion time.

The other method tends to limit the number of hubs a
controller can go through in order to consult MEC nodes
for serving the storage request, if the Local one fails. This
is achieved by thresholding the number of MEC nodes to be
tapped, and in case the controller could not find any MEC
node with free space within the specified threshold, it triggers
an order for the storage controller to scale-up storage resources
for the Local MEC and neighboring ones -below the threshold
in order to be able to handle what ever amount of data left from
the request. By adopting this method, the frequency of scale
up operations will increase as the controller is limited to the
max amount it can get from all accessible MEC nodes around.
On the other hand, it keeps the data close to the requested
node (user). This will actually might enhance content-delivery
services provided by the MEC node, and hence delivering a
better QoE. Both methods were experimented with multiple
data sizes and different number of MEC nodes.

The first experiment focuses on the latency of storage
requests with multiple environment setups. The experiment

Fig. 2. Storage Latency in seconds with Search Thresholding enabled

Fig. 3. Storage Latency in seconds with search Thresholding disabled

is repeated for various numbers of MEC nodes (2-10) and
the resulting latencies are compared for different data sizes
of storage requests (lOOk, SOOk, lOOOk) units of storage. The
experiment is conducted twice, where the first represents the
latency incurred with "Search Thresholding" enabled among
MEC nodes, while the other assumes that the controller can
consult any MEC node that belongs to the same network
asking to store data.

The results of both experiments are depicted in Figure 2
and 3. As can be seen from the figures, the latencies incurred
by having Thresholding enabled is relatively lower than those
incurred by having the controller freely distribute data among
MEC nodes. We can also notice that the big difference in
latencies appear to be more clear with high scale data sizes.

The second experiment considers four MEC nodes com
paring the latency resulting from different file sizes in the
range [lOOk-l000k] storage units with both Thresholding en
abled/disabled. The results are shown in Figure 4. The results
show that having Thresholding enabled can be beneficial with
large data sizes. So, if the environment under study is very

178

2017 Fourth International Conference on Software Defined Systems (SDS)

Fig. 4. Storage Latency in seconds compared when Thresholding en
abled/disabled

dense, or encounters intense storage requests, thresholding
might be the solution for maintaining the service with the
least amount of latencies, whereas, other regular environment
setups with relatively lower data scales can go with the option
of allowing the data to be distributed regardless of how much
hub is it away from the Local MEC node.

ACKNOWLEDGMENT

The authors would like to thank the Deanship of Research
at the Jordan University of Science and Technology for sup
porting this work (Grant #20170007).

V. CONCLUSION

In this paper, we discussed our efforts to build a wireless
based software defined mobile edge computing (SDMEC)
framework for storage applications. The aim of the proposed
framework is to provide a MEC level service controlled by
the software defined paradigm to enhance the provisioning
and management of storage services over wireless connected
spectrum. We implemented our SDMEC framework as an
extension of Mininet -WiFi and evaluated it using a set of
illustrative experiments. The findings of the experiments show
the potential of our proposed approach and provide a great
starting point inducing researchers to start considering such
approach, enhance it, and build other systems upon it, such as
software defined content-delivery systems.

REFERENCES

[I] K. Joshi and T. Benson, "Network function virtualization," IEEE Internet
Computing, vol. 20, no. 6, pp. 7-9, Nov 2016.

[2] K.-K. Nguyen and M. Cheriet, "Virtual edge-based smart community
network management," IEEE IC, vol. 20, no. 6, pp. 32-41, 2016.

[3] S. Costanzo et aI., "Software defined wireless networks: Unbridling
sdns," in EWSDN. IEEE, 2012, pp. 1-6.

[4] Open Networking Foundation, "Software-defined networking: The new
norm for networks," ONF White Paper, Tech. Rep., April 2012,
goo.gl/ AO I Pv8.

[5] W. Xia et al., "A survey on software-defined networking," IEEE Com
munications Surveys Tutorials, vol. 17, no. 1, pp. 27-51, 2015.

[6] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk,
and A. Rindos, "Sdstorage: A software defined storage experimental
framework," in IEEE IC2E, March 2015, pp. 341-346.

[7] --, "Sdsecurity: A software defined security experimental frame
work," in 2015 IEEE International Conference on Communication
Workshop (ICCW), June 2015, pp. 1871- 1876.

[8] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi,
and P. Narasimhan, "The case for mobile edge-clouds," in 2013 IEEE

UIC/ATC, Dec 20 13, pp. 209-215 .
[9] X. Sun and N. Ansari, "Edgeiot: Mobile edge computing for the internet

of things," IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29,
December 20 16 .

[10] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, "The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing," in 2016 23rd International

Conference on Telecommunications (ICT), May 2016, pp. 1-5.
[11] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E.

Rothenberg, "Mininet-wifi: Emulating software-defined wireless net
works," in 2015 11th International Conference on Network and Service

Management (CNSM), Nov 2015, pp. 384-389.
[l2] M. Hilbert and P. Lopez, "The world's technological capacity to store,

communicate, and compute information," Science, vol. 332, no. 6025,
pp. 60-65, 2011. [Online]. Available: http://science.sciencemag.org/
content/332/6025/60

[13] F. Wu and G. Sun, "Software-defined storage," Report. University of
Minnesota, Minneapolis, 2013.

[14] I. P. C. Edition, "Software defined storage for dummies," New Jersey,
pp. 4-5, 2014.

[l5] "The state of software-defined storage (sds) ,2015 market survey," 2015.
[Online]. Available: https:llwww.datacore.com!sf-docs/default-source/
whitepapers/engJish/the-state-of- sds-20 15-survey.pdf

[l6] "Dell emc vipr controller," 2014. [Online].
Available: https:llwww.emc.com!collateralldata-sheetl
h 11750-emc-vipr-software-defined-storage-ds.pdf

[17] "Storage for the software-defined data center," 2014.
[Online]. Available: http://www8.hp.com!us/en/products/data-storage/
data-storage-products.html?compURI=1410844

[18] IBM, "Ibm storage," 2016. [Online]. Available: https:llwww-03.ibm.
com!systems/storage/spectrum!

[l9] VMWare, "The vmware perspective on software-defined
storage," 2014. [Online]. Available: http://www.vmware.com!
content/dam!digitalmarketing/vmware/en/pdf/whitepaper/solutions/
vmware-perspecti ve-on -so ftware-defi ned-storage-whi te-paper. pd f

[20] DataCore, "Software-defined storage features and benefits summary,"
2016. [Online]. Available: https:llwww.datacore.com/products/features

[21] M. J. Huang, C. F. Huang, and W. S. E. Chen, "Architecting a software
defined storage platform for cloud storage service," in 2015 IEEE

International Conference on Services Computing, June 2015, pp. 379-
386.

[22] C. T. Yang, W. H. Lien, Y. C. Shen, and F. Y. Leu, "Implementation
of a software-defined storage service with heterogeneous storage tech
nologies," in 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications Workshops, March 2015, pp.
102-107.

[23] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: Rapid
prototyping for software-defined networks," in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19: 1- 19:6. [Online]. Available:
http://doi.acm.org/10. 1145/ 1868447 . 1868466

[24] A. Ahmed and E. Ahmed, "A survey on mobile edge computing," in
2016 10th International Conference on Intelligent Systems and Control

(lSCO), Jan 2016, pp. 1-8.
[25] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pil

lai, "Cloudlets: at the leading edge of mobile-cloud convergence," in
6th International Conference on Mobile Computing, Applications and
Services, Nov 2014, pp. 1-9.

[26] Y. Jararweh, M. Alsmirat, M. Al-Ayyoub, E. Benkhelifa, A. Darabseh,
B. Gupta, and A. Doulat, "Software-defined system support for enabling
ubiquitous mobile edge computing," The Computer Journal, pp. 1-15,
feb 2017.

[27] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and
E. Benkhelifa, "Sdmec: Software defined system for mobile edge com
puting," in 2016 IEEE International Conference on Cloud Engineering
Workshop (IC2EW), April 2016, pp. 88-93.

179

