
Policy Controlled Multi-domain cloud-network
Slice Orchestration Strategy

based on Reinforcement Learning
Asma Islam Swapna∗, Raphael Vicente Rosa∗, Christian Esteve Rothenberg∗, Rafael Pasquini†, Javier Baliosian‡

∗University of Campinas (UNICAMP), Sao Paulo, Brazil
†Federal University of Uberlândia (UFU), Brazil

‡University of the Republic, Uruguay

Abstract—The concept of network slicing plays a thriving
role as 5G rolls out business models vouched by different
stakeholders. The dynamic and variable characterization of end-
to-end cloud-network slices encompasses the composition of
different slice parts laying at different administrative domains.
Following a profit-maximizing Slice-as-a-Service (SaaS) model,
such a multi-domain facet offers promising business opportunities
in support of diverse vertical industries, rendering to network
slicing marketplace members the roles of Infrastructure Provider,
Slice Provider, and Tenants. The effective realization of SaaS
approaches introduces a dynamic resource allocation problem,
manifested as challenging run-time decisions upon on-demand
slice part requests. The Orchestrator is hence responsible to
perform an optimized decision on-the-fly on which elasticity
requests to address based on an orchestration policy defined
within the context of Network Slice architecture for the followed
revenue model. This paper presents a slice management strategy
for such an orchestrator can follow, based on reinforcement
learning, able to efficiently orchestrate slice elasticity requests to
comprehend the maximum revenue for the stakeholders of end-
to-end network slice lifecycle. The proposed strategy orients a
Slice Orchestrator to learn which slice requests to address as per
availability of the required resources at the different participating
Infrastructure Providers. The experimental results show the
Reinforcement Learning based Orchestrator outperforms several
benchmark heuristics focused on revenue maximization.

I. INTRODUCTION

The telecommunications and the cloud businesses are evolv-
ing towards offering a richer set of services beyond basic
connectivity and machine virtualization, taking advantage of
network programmability and service virtualization as core
tenets behind 5G network slicing [1]. In this context, a
versatile execution environment is required, capable of run-
ning different workloads at different times and scales, while
minimizing resource over-provisioning. This adaptability is
known as elasticity, and many approaches to perform it has
been proposed, for example deep-neural networks (DNN) and
reinforcement learning (RL) [2] [3]. Those are especially
useful to control systems that are heterogeneously complex to
identify and model, in particular cloud-network systems where
elasticity needs to follow over-the-top service dynamics.

Virtualized cloud-network environments are embracing the
slicing concept [4] to define an arbitrary amount of logically
independent network partitions, each comprising different re-
sources and functions, which are interconnected and involved
in the delivery and the operation of a specific service. By
instantiating these so-called cloud-network slices, an operator

is able to dynamically provide and operate different services
over shared infrastructures. Each slice behaves and appears as
a fully-functional and isolated instance, despite actually run-
ning over the same physical infrastructure. When it comes to
slice creation spanning shared infrastructures, the on-demand
allocation and scaling of resources becomes a critical decision.

With the architectural vision to realize cloud-network slic-
ing, the NECOS project [5], [6] upholds such slice elasticity
concept as one of the critical success factors. This work
references NECOS as a candidate platform to exercise a
Reinforcement Learning-based solution for the management
of resources in an end-to-end (E2E) cloud-network slicing
environment. As well as for other authors [7], in the NECOS
project, elasticity comprises the degree to which a system
is able to adapt to workload changes by provisioning and
de-provisioning physical and virtual resources (computing,
networking and storage) in an autonomic manner, such that
at each point in time the available resources match the current
demand as closely as possible. Furthermore, the proposed
elasticity features consider that the slice is provisioned in a
multi-domain and multi-technological environment, and the
run-time change of resources as such requires a sophisticated
mechanism of orchestration.

In the scope of our resource allocation policy, the slice
elasticity control is extended to cloud providers along with
a proposition for new elasticity flavor conceptualized through
the efficient allocation of unused resources from other
slices [8]. To satisfy the slice resource requests, the Slice
Provider has an Orchestrator module that allocates compute,
bandwidth, and storage resources to the slice simultaneously.
Implementing the resource allocation policies of a NECOS-
like environment is a challenging task for the Orchestrator for
reasons such as:

i Unknown request arrival process and resource require-
ments from users or the triggering monitoring abstractions.

ii Heterogeneity in slice resource capabilities (i.e., CPU,
memory, bandwidth, etc.) and notoriously hard to optimize
performance metrics, i.e., service level agreements (SLAs).

iii Dynamic and slice run-time decisions of triggered elas-
tic slice part requests on finite resource capacities (e.g.,
horizontal and/or vertical scaling).

In this work, we try to answer the following question:
can an orchestrator benefit from Reinforcement Learning to



control the elasticity of a cloud-network slice?
Application of machine learning in decision-making do-

mains is being increasingly explored in [9], [10], and [11].
In most cases, RL has been stretched for further studies in
addressing the decision-making problems of complex network
systems [12], [13], [14], [15]. Reinforced learning emphasis on
agents learning to make better decisions by interacting directly
with the environment through a goal-oriented approach. The
agent stays on-line with the environment knowing nothing
about the task and learns by reinforcement of rewards it gets
upon each performed task.

Our research hypothesis states that, behaving as an RL
agent, a cloud-network Slicing Orchestrator can learn to ad-
dress elasticity requests to take slice provisioning decisions by,
first, learning over simulated and synthetic workload data and,
then, applying those learned policies in real-time deployments.
As the functional challenges mentioned earlier prevails, as a
first step, this work designs and evaluates a Orchestrator to
perform efficient scheduling of Slice Resource Requests. The
proposed RL-Orchestrator operates on a simulated on-line en-
vironment where the resource requests, or jobs, arrive dynam-
ically and therefore are cleared/scheduled by the orchestrator
to achieve certain desired objectives. In this case, the RL-
Orchestrator focused on learning to optimize the completion
time for each job and minimize the slowdown rate.

We advocate that an RL-Orchestrator approach must operate
under the umbrella of a policy-based decision-making engine.
The sole trust in RL-based decisions can potentially harm
cloud-network slice SLAs. DNN and RL approaches, in spite
of detaining high accuracy and efficiency still lack behind on
transparency. A critical component such a cloud-network slice
orchestrator indeed must determine clear mechanisms to de-
bug, trace, and explain its decisions. When adopting a solution
based on RL or DNN, such concerns are still open research
issues within the machine learning community. Therefore, we
determine a policy-based decision-making engine that must
be responsible for taking the RL-Orchestrator scheduling as a
recommendation source, set proper adjustments on them, and
transparently decide upon stable SLAs.

Section II presents the background about cloud-network
slicing and RL Policy parameters, while Section III describes
the model design and learning algorithms. We designed a
simulation environment, described in Section IV, to perform
the experiments on RL learning performance over time and
the comparison with standards heuristics to achieve maximum
revenues depending on prioritized stakeholders. Section V
discusses the main limitations of this proposal and Section VI
concludes this paper with some future work directions.

II. BACKGROUND

This section provides a primer on the reference architecture
of NECOS and presents the adopted Cloud-Network Slice
(CNS) concept along with the reference cloud environment
and Reinforcement Learning (RL) techniques.

Fig. 1. NECOS platform architecture for multi-domain cloud-network slicing.

A. NECOS

1) Architecture: The NECOS architecture depicted in Fig-
ure 1 has four subsystems: Tenant’s Domain, Slice Provider
(SP), Marketplace, and Infrastructure Providers (InPs). All
these subsystems support the proposed Slice-as-a-Service
paradigm of NECOS, offering on-demand slices to tenants.
Figure 1 depicts a subset of the NECOS Architecture, in which
the four subsystems along with the modules for slice creation
are highlighted. The full architectural description, with all
modules can be found in [16]. In this architecture, in order
to have a slice, the tenant provides a description of a slice
request, which, among other aspects, may include QoS goals
to an SP, the entrance domain (cloud or network operator).
The Marketplace is a subsystem in which all domains, part
of a NECOS federation, can advertise the resources they can
provide. The Slice Provider consults the marketplace to find
the options available in the federation to create the requested
slices. The InPs, participating domains in a given NECOS
federation, offer resources, called slice parts, to compose slices
under the slice-as-a-service paradigm proposed in the NECOS
project. Examples of Infrastructure Providers include network
operators, cloud and edge providers.

2) Cloud-Network Slice (CNS): A CNS is defined as an
independent E2E logical network running on a shared infras-
tructure (i.e., compute, storage, connectivity resources) capable
of providing a negotiable service quality agreed among its
consumers and providers [1]. Slices can be composed of virtual
components (e.g., Virtualized Network Functions (VNFs),
Virtual Machines (VM), containers, and virtual links) and/or
infrastructure resources (e.g., CPUs, routers, tunnels), and con-
nectivity services spanning multiple administrative domains
at the same time and deployed across different networking
settings (i.e., access, transport, core). The concept of cloud-
network slicing conveys the approach to provide isolated slice
parts offered by diverse InPs based on specific E2E service
requirements. To feed the E2E flow with slice requirements,
the Orchestrator performs elastic resource allocation to the
creation of the new slices or the running slice. The design of
efficient elasticity control mechanisms for dynamic resource
allocation is crucial to increase the efficiency of cloud-based



slice-defined networked systems.

3) Slice Resource Orchestrator (SRO): The NECOS SRO
component [17] is responsible for combining the slice parts
that make up an E2E cloud-network slice, orchestrating slices
and service elements over slices parts. Slice builder takes part
in slice creation and tear-down process while the monitoring
entity audits the resource usage and confirms the final tear-
down of the slice or deactivation of slice parts. Hence, apart
from provisioning and decommissioning the E2E slices, the
main functions of the SRO are: (a) instantiating virtual re-
sources for the services, which refers to the allocation of the
virtual resources of each selected slice, and (b) performing the
slice Elasticity. In a real-time multi-domain CNS environment,
the orchestrator directly deals with the decision of which
request to address and when, from a vast pool of requests,
mostly dependent on resource availability at InPs.

4) Elasticity: The elasticity architecture proposed in [8]
guarantees the performance of the cloud-network slices as
much as possible through reactive decision-triggering while
maintaining committed levels of SLA and application per-
formance. Nonetheless, the proposed distributed architecture
simultaneously acts in different cloud and network providers,
in order to apply elasticity control functions for readjusting
(scale up and down) resources at CPU, RAM, and network
levels to each of the activated cloud-network slices. Therefore,
the orchestrator faces another decision-making problem –
scheduling the slice part requests, which we classify as a slice
management problem and the scope of this research as well.

5) Slice-as-a-Service (SaaS) Profit Maximization: The
NECOS system enables resource trading among different
actors for the dynamic provision of slices following a Slice-as-
a-Service (SaaS) model, where the primary stakeholders are
(i) Tenants – slice users; (ii) Slice Provider – cloud-network
operators and service providers; (iii) Marketplace Providers –
service providers with cloud-network asset trading platforms;
and (iv) Resource Providers – mainly the InPs. A consolidated
business model following a cost-based analysis for E2E slice
provisioning is required to maximize all profits.

Figure 2 presents a generic view of the cost model to better
portrait the revenue architecture of cloud-network slicing in
NECOS. If analyzed, the depicted figure conveys the more
resource requests the Slice Provider can handle, the higher
the profits. Alongside this, faster E2E provisioning adds up
to the profit surplus for a SP. In this scenario, the profit of
an InP can be maximized by: (i) accepting as many slice
requests as possible, and (ii) matching the elastic dynamic
request of the slice requirements as closely as possible, for
instance avoiding penalties of performance degradation caused
when slice elasticity requests are not satisfied up due to
resource constraints. Since the SP is dependent on the SRO’s
performance of processing tenants’ new slice requests, InPs
profit can be controlled by processing the elasticity triggers
from slice monitoring VIM/WIM residing at InPs. Therefore,
the SRO falls in the heuristic dilemma of processing two ways
inward slice part requests containing consolidated workload.

Tenant Entry Cloud
Provider

Federated
Cloud

Provider

Demand Supply

Cost based
Analysis

Resources Resources

Producer 
surplus profit

Fig. 2. NECOS cost based business model.

B. Reinforcement Learning

In a generic setup, an RL agent interacts with the environ-
ment and learns from the observation. Consider an RL model,
where at each time step t, the agent observes an environment
state st. For an unforeseen scenario, the agent (e.g., inside an
Orchestrator embodiment) chooses an action at and in the next
state st+1 receives a reward rt for such action, assuming the
state transition and rewards have stochastic Markov property.
Without prior knowledge of the current state, the agent learns
to make a decision by interacting with the environment,
unaware of the rewarding actions. During the training of this
learning process, the goal consists in maximizing the expected
cumulative discounted reward:

Rt = E[
∑

γt, rt], forγ ∈ [0, 1] (1)

where, γ weighs the possible immediate future reward with
possibilities of better rewarding actions for the agent.

In the preliminary proposition of RL [18] , an agent decides
an action based on a learned policy, defined in the literature
as a probabilistic distribution over the plausible actions for
the occurring state. π : π(s,a) −→ [0,1], where π(s,a) denotes
the probability of taking action a in state s. For the deci-
sion problem in consideration of this work, the action, state
pairs are exponential as described in Section III. Appropriate
function approximators are applied to store scalable non-
tabular pairs [19]. In the learning process, typically, policy
approximators learn to cluster the behavior of similar states
such that at encountering a new state the approximator can
find the action for the closest state experienced so far. In
the literature, the exponential use of DNN combined with RL
as a function approximator [20] has influenced this work to
incorporate a similar policy.

Our focused policy learning algorithms fall in the RL
class that learns by performing gradient-descent on policy
parameters, the reward. The key idea of the policy gradient-
descent method is to estimate the gradient of the method
by observing the trajectory of the agent-following policy
execution. The objective lies in maximizing the cumulative
rewards in equation (1), which presents:

∇θ[
∞∑
t=0

γtrt] = Eπθ[∇θlogπθ(s, a)Qπθ(s, a)], (2)

Here, Qπθ is the expected cumulative discounted reward
for choosing a deterministic action a in a state s. If followed



Address Slice Request 
Send to Slice Builder

Schedule Slice Request 
Send to Request BufferSlice Part Requests

For Compute, Storage, 
and Connectivity

Input Layer Hidden Layer Output

Fig. 3. Stochastic Policy-based Deep Neural Network architecture feeding
the orchestrator.

a simple form of Monte Carlo Method [21], agent samples
multiple trajectories to get an unbiased estimate of Qπθ, vt
and updates the policy parameters:

θ ← θ + α
∑
t

∇θlogπθ(s, a)vt, (3)

Here, α is the gradient ascent step size. This is the positioned
Reinforce algorithm in the literature [19] and thus used in
this work, which is later expressed in pseudo-code learning
algorithms, such as Q-learning, temporal difference learning,
etc., can solve general Markov Decision Problems to converge
to optimal policies. However, the decision to choose each of
them vastly depends on the action space over the environment.

We provide Table I with accompanying discourse factor for
heuristics behind preferring policy-gradient over Q-learning
given the slice management environment in consideration.

III. MODEL DESIGN

Our reinforcement learning-based stochastic policy network
for the designed orchestration model is represented in Figure 3
with the formation of deep neural networks. The agent is em-
bedded into a slice management loop running at the orchestra-
tor and composed of two parts illustrated in Figure 4. The inner
loop includes request, slice provisioning, and reward compu-
tation, whereas the outer loop contains elasticity triggering
space to feed the orchestrator with elastic slice part requests,
and merges with inner loop until a reward computation takes
place again. To design a learning model following appropriate
policies for the scheduling of multi-domain slice part requests
with RL, we formulate our problem in the section below and
present an RL model in the subsections.

A. Environment Model

We formulate the types of the slice part request with
reference to NECOS resource variations (e.g., CPU, memory,
connectivity-bandwidth). Slice part requests arrive at the or-
chestrator in an online fashion with discrete time steps. The
requests can be created by tenants or triggered by NECOS
monitoring abstractions. Considering the previous studies [22],
we assume that the resource demand for each job is known
upon arrival. We specify the requested profile for each job by
a given vector rj = (rj,1, ..., rj,d), where d is the demanded
resource type for the slice part. Within the scope of NECOS,
the resources are allocated to the representative slice as per
SLAs reflecting the completion time of the job or slice request
to the orchestrator. However, scheduling the slice requests to
allocate the demanded resources upon availability is as we
represent – an optimization problem.

Yes
Scheduling Policy

Delayed Slice Part
Requests

Resource
Monitoring

Elasticity Trigger

Reward for RL

Monitoring Abstraction

Tenants Slice 
Requests

Elasticity
Slice Part 
Request

No

Slice Builder
Receives Requests

Slice Provisioning

Tj

Slice Part
Decomisioing

Releasing 
resource

Ct

Fig. 4. Reinforcement Learning-based slice management loop feeding the
orchestrator.

Objectives: maximize the performance of slice management
by the Orchestrator and use the average job slowdown as a
primary objective calculated as Sj = Cj/Tj , where Cj is the
completion time of the job and Tj is the duration of the job or
lock time for that resource in the scenario under consideration;
within NECOS consists of the time from the request arrival at
orchestrator until the tear-down confirmation.

B. RL Formulation

We solve the above optimization problem with a RL algo-
rithm. Table II presents the state, action, and reward of the RL
formulation.

1) State Space: The state space model, if represented in
blocks of resource requests, can be illustrated as in Figure 5,
where different colors represent different request types, ten-
ants, and elasticity. For the sake of experiments we designed
a fixed state representation. The backlog component defines
any request that is in waiting state to be processed by the
orchestrator for a given number of requests at arrival. The
intelligent orchestrator designed learns to avoid penalties and
to maximize the profit of the stakeholders.

2) Action Space: The scheduler may admit any subset
of requests upon arrival; the designed RL can handle a
large action space, however we keep the action space small
and straightforward, allowing the agent to execute multiple
actions at a given time step. a=’void’ for time-steps when
the orchestrator does not perform scheduling tasks. The agent
either allocates the blocks of resources to the requests and
shifts the current block or stays in a similar block. Decoupling
the decision sequence from time-steps, we allow the agent to
schedule multiple jobs at the same time-step while keeping
the action space linear.

3) Reward: The design moves the reward signal to guide
the agent towards making a better decision over time for the



TABLE I
DISCOURSE FACTORS OF USING POLICY GRADIENT OVER Q-LEARNING TO ADDRESS REQUEST SCHEDULING DECISION PROBLEM OF ORCHESTRATOR IN

CLOUD-NETWORK SLICE MANAGEMENT.

Factor Policy Gradient-descent Q-Learning Discourse
Action Space Policy-based model can solve prob-

lems with continuous action space
Q-learning finds a maximum value
from a discrete set of actions

Orchestrator deals with a large continuous action
space for request scheduling.

Action Selection Learns a stochastic action map
from action space

Learns to take a deterministic ac-
tion from a discrete set of actions

Continuous inward slice requests to Orchestrator ask
for stochastic decision map to avoid future penalties

Policy Optimization Performs stochastic policy opti-
mization in the learning process
through direct policy searching

Learns from value function to max-
imize the reward.

Orchestrator needs a map to refer its next action
on the scheduling which can be performed through
optimized learning policy and speed up through
value-based learning model at the same time.

TABLE II
STATE, ACTION, AND REWARD TO FORMULATE RL FOR ADDRESSING

REQUEST SCHEDULING DECISION PROBLEM OF ORCHESTRATOR IN
CLOUD-NETWORK SLICE MANAGEMENT.

State Number of arrived slice parts request within a spe-
cific time window and resource profiles of the job
requests waiting to be scheduled by Orchestrator

Action Slice part requests sent to the slice builder for
further processing, i.e. contact Marketplace for slice
resources to complete E2E slice composition

Reward Weighted sum of average delays in processing re-
quests (Slowdown)

designed objective – minimize the average slowdown time.
The reward calculation for each time-step is as follows,∑

j∈J

−1
Tj
, (4)

where J is the number of requests currently in the system.
The Orchestrator receives the reward of the action on the
current state upon completion of the request, and no reward
will occur for intermediate decisions within a given time-step.
Minimizing delays or slowdown maximizes the reward.

4) Training Algorithms: Using the REINFORCE algorithm
and policy gradient stated in equation (2), we execute our
training procedure. However, a slight modification is per-
formed in adoption to match the training algorithm with the
cloud-network slice orchestration scenario. To reduce the high
variance policy gradient we introduced a baseline which is
calculated following a popular training algorithm [23] for
resource management problems. In this exercise,we compute
the baseline bt by calculating the average mean of return vt and
subtracting the baseline from policy divergence. This changes
of computation in the algorithm should reduce the gradient-
descent value to a presentable figure for further evaluation.
The RL training stages with such design modification in it’s
computation follow the steps as presented in Algorithm 1.

IV. EVALUATION

The described model evaluation is performed using a ref-
erence environment for DNN-based RL experiments as pro-
posed in [12]. For the purpose of event-driven simulations,
we modified the environment and policy-gradients, and other
comparable agents to use as benchmarking heuristics.

A. Experiments

Mincing the model design described in Section III, the
average request arrival rate is chosen for different workloads

Algorithm 1: REINFORCE training algorithm with
baseline subtraction. [24]
Initialize b;
for each iteration do
∇θ ← 0;
for each requests do

for each episodes do
compute return vt;
for each time-steps do

compute baseline bt;
if resource request > availability then

put requests in buffer;
else
∇θ ←
∇θ + α∇θ log πθ(sit, ait)(vit − bit);

varying between 10-100 percent forming a Poisson distribu-
tion. We prototype the DNN with 20 neurons in it’s hidden
layers with a total of 49,746 parameters performing 1000
iterations with 100 experiments over 25 different requests
sets in parallel during training. The test results are averaged
over 200 seeds. The constant learning rate throughout the
experiments is 0.001. For simulation purposes, we designed
elasticity requests conforming to fewer resource demands than
Tenant’s slice part request profiles.

B. Performance Comparison

The Orchestrator’s performance benchmark scheme is fo-
cused on maximizing the revenues coming from the increasing
order of performing requests. Resource requests from elasticity
triggers, if cleared for resource allocation by slice builder,
give profit to the InPs, while Tenant’s slice requests with less
slowdown ensure higher revenue for the slice providers. The
performance of our RL approach was compared against three
benchmarks: (i) RevInP - in which the Orchestrator chooses
the Elasticity request to maximize the InP revenue; (ii) RevSP
- in which the orchestrator serves tenant’s slice requests over
elasticity triggers; and (iii) Random - in which the orchestrator
randomly serves any of the slice resource requests, regardless
of the arrival time. To observe the the RL policy convergence,
the total reward at each training iteration is shown as well.



C
PU

s

Li
nk

 C
ap

ac
ity

 U
ni

ts

M
em

or
y

C
PU

s

Li
nk

 C
ap

ac
ity

 U
ni

ts

M
em

or
y

Intelligent Policy

On Arrival Policy

Tenant Requests

Elasticty Requests

Penalty
For Rejecting Slice Part Request

Backlogged Requests
Intelligent Policy

ProfitOA = RevenueTenant - PenaltyInP ProfitRL = RevenueInP > ProfitOA 

Time
R

es
ou

rc
e

CPUs Link Capacity Units Memory

Fig. 5. State representation with different requests types and profit heuristics.

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 S
lo

w
do

w
n

Arrival Load (λ)

RL
RevInP
RevSP

Random

Fig. 6. Performance of DNN-based RL orchestrator upon varying workloads.

Figure 6 presents the average slowdown and total rewards
discounted over all the 1000 iterations. Each data point is an
average of 100 new unseen experiments. As noticed in the
figure, the average slowdown increases with the workload.
When Orchestrator is addressing elasticity triggers during
RevInP aiming to increase InPs revenue results in a smaller
load of slice resource demands for the calculated time pe-
riod. RevSP demonstrates the inverse of RevInP’s behavior.
However, it outperforms random selection of incoming slice
resource requests in the queue, waiting to be processed. RL
based Orchestrator, on the other hand, performs better during
the highest workload decreasing about 59% of slowdown
than the calculated slowdown occurred during random request
selection. Eventually, with increased number of request loads,
RL-based policy controlled Orchestrator learns how to address
the slice elasticity requests to minimize the slowdown.

C. Behaviour Analysis

To understand the learning behaviours of our designed RL
model in the network slice management scenario, this work
refers to one specific data point at Figure 6 and investigates
the learning curve for the agent to achieve that same point.
The output learning curve during the training phase as shown

0 200 400 600 800 1000

Iteration

500

400

300

200

100

Di
sc

ou
nt

ed
 T

ot
al

 R
ew

ar
d

RL
RevInP
Random
RevSP

0 200 400 600 800 1000

Iteration

2

4

6

8

10

12

14

16

Sl
ow

do
wn

RL
RevInP
Random
RevSP

(a) (b)
Fig. 7. Learning curve of DNN-based RL Slice Orchestrator showing
improved request scheduling for incoming slice part requests.

in Figure 7 (a). Other benchmark heuristics for the decision
making schedules, following the revenue model as described
in the earlier section, is compared within one graphic. As
expected, we observe that the RL-based orchestrator learns
to take better decision as the iteration count increases.

Observed the graphics a question emerges: does the iteration
cycles keep improving the performance of the RL approach
ad infinitum? As seen in the Figure 7 (b), the higher iteration
count increases the average reward. The learning algorithm
mainly optimizes the reward over the timeline by achieving
more experience according to the probability distribution. The
performance gap between the RL agent and other agents
narrows over time and tends to the convergence. As seen in
Figure 7 (b), near the 1000th iteration the algorithm converges.

V. DISCUSSION

We briefly discuss the main current limitations that motivate
a set of future work improvements:
Machine Boundaries and Locality. We performed the train-
ing simulation in a local server without accessing the higher
processing units. We also did not take into account the data
locality. The performance analysis is kept generic without
considering the time horizon, inter-task dependencies, and
partial observation issues [12].



Simulation Assumptions. For the sake of simplified experi-
ments to demonstrate the slice management scenario targeting
a larger cloud-network system of NECOS, we programmed
the environment states on previously prototyped Python-based
simulators. However, the real-time or on-line emulation test
bed experiments may provide interesting results for future
analysis of the problem.
Transparency. Any RL approach suffers from the lack of
mechanisms that explain its internal structure, the means to
debug and backtrace its behavior. Stated in the introduction
section, we propose the RL approach presented in this paper
to be utilized jointly with a policy-based decision making
engine, which can enable the guarantees of SLA maintenance,
taking the RL solutions as recommendations. Further studies
will elucidate on the means to realize such composition.

VI. CONCLUSION AND FUTURE WORK

This work revolves around the feasibility of applying deep
RL in decision-making problems in SDN/NFV realms, more
specifically for a cloud-network slice orchestrator. This ex-
perimental excercise as a novel contribution in the research
field of NS, explains and reasonate that the results obtained
with RL approach outperform conventional revenue-focused
slice policy-oriented orchestrators, designed for comparison.
Intrigued by the possibilities of widely applied RL algorithm
in interactive environments, as applied in the context of this
exercise, this work looks ahead to confront other incremental
heuristics to perform complex and large-scale cloud-network
slice management on an emulated environment added to the
NECOS testbed. The discussed limitations present different
challenges as prominent research topics for future work around
ML-assisted cloud-network slicing.

ACKNOWEDGEMENTS

This work was supported by the H2020 4th EU-BR Collab-
orative Call, under grant agreement 777067 (NECOS - Novel
Enablers for Cloud Slicing), funded by the European Com-
mission and the Brazilian Ministry of Science, Technology,
Innovation, and Communication through RNP and CTIC.

REFERENCES

[1] NGMN Alliance, “5G White Paper,” NGMN Alliance, Tech. Rep.,
2015. [Online]. Available: https://www.ngmn.org/5g-white-paper.html

[2] Z. Zhang, L. Ma, K. Poularakis, K. K. Leung, J. Tucker, and A. Swami,
“Macs: Deep reinforcement learning based sdn controller synchroniza-
tion policy design,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP), Oct 2019, pp. 1–11.

[3] C. Zhang, X. Wang, F. Li, Q. He, and M. Huang, “Deep learning–based
network application classification for sdn,” Transactions on Emerging
Telecommunications Technologies, vol. 29, 11 2017.

[4] G. Alex, T. Francesco, C. Stuart, R. Christian, and
S. Joan, Slicing 5G Networks: An Architectural Survey.
American Cancer Society, 2020, pp. 1–41. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119471509
.w5GRef095

[5] F. S. D. Silva, M. O. O. Lemos, A. Medeiros, A. V. Neto, R. Pasquini,
D. Moura, C. Rothenberg, L. Mamatas, S. L. Correa, K. V. Cardoso,
C. Marcondes, A. ABelem, M. Nascimento, A. Galis, L. Contreras,
J. Serrat, and P. Papadimitriou, “Necos project: Towards lightweight
slicing of cloud federated infrastructures,” in 2018 4th IEEE Conference
on Network Softwarization and Workshops (NetSoft), June 2018, pp.
406–414.

[6] S. Clayman and A. Galis, “NECOS Deliverable D3.2: NECOS
system architecture and platform specification V2,” NECOS Project
Deliverable, April 2019. [Online]. Available: http://www.h2020-
necos.eu/documents/deliverables/

[7] M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa,
“Introducing elasticity and adaptation into the optical domain toward
more efficient and scalable optical transport networks,” in 2010 ITU-T
Kaleidoscope: Beyond the Internet? - Innovations for Future Networks
and Services, Dec 2010, pp. 1–7.

[8] A. Medeiros, A. Neto, S. Sampaio, R. Pasquini, and J. Baliosian,
“End-to-end elasticity control of cloud-network slices,” Internet
Technology Letters, vol. 2, no. 4, p. e106, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/itl2.106

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[11] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[12] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks. ACM, 2016, pp. 50–56.

[13] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-
based multi-agent system for network traffic signal control,” IET Intel-
ligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[14] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, “Deep
reinforcement learning for network slicing with heterogeneous re-
source requirements and time varying traffic dynamics,” arXiv preprint
arXiv:1908.03242, 2019.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[16] S. Clayman and A. Galis, “NECOS Deliverable D3.1: NECOS
system architecture and platform specification V1,” NECOS Project
Deliverable, October 2018. [Online]. Available: http://www.h2020-
necos.eu/documents/deliverables/

[17] F. L. Verdi, “NECOS Deliverable D5.2: Intelligent Management and
Orchestration,” NECOS Project Deliverable, October 2019. [Online].
Available: http://www.h2020-necos.eu/documents/deliverables/

[18] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
IEEE Transactions on Neural Networks, vol. 16, pp. 285–286, 1988.

[19] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[21] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Proceedings of the 27th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, p.
3320–3328.

[22] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, “Deep
reinforcement learning for network slicing with heterogeneous resource
requirements and time varying traffic dynamics,” in 2019 15th Interna-
tional Conference on Network and Service Management (CNSM), Oct
2019, pp. 1–5.

[23] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceedings of the
15th ACM Workshop on Hot Topics in Networks, ser. HotNets ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
50–56. [Online]. Available: https://doi.org/10.1145/3005745.3005750

[24] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 2, no. 4.


