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Abstract—In-band Network Telemetry (INT) is a novel network
monitoring approach mainly fostered by programmable network
devices. Despite existing efforts toward the orchestration of INT,
little has yet been done to provide fault-tolerant mechanisms in
the data plane (e.g., to address hardware failure). In this paper,
we introduce InPatching – an in-network approach to fast recover
INT-based monitoring from network link failures. InPatching is
implemented in the data plane and allows the application of
detours in an autonomous and coordinated manner without the
control plane intervention. To provide efficient detours to INT
solutions, we formalize the fault-tolerant probing planning for
INT by means of a MILP (Mixed-Integer Linear Programming)
model. We prototype InPatching in P4 and we show that it can
recover from fault conditions much faster than control plane
solutions (up to 18X), while not imposing substantial overhead.

I. INTRODUCTION

In-band Network Telemetry (INT) is an emerging network
monitoring approach in programmable networks [1] that allows
increasing network visibility of fine-grained network events
(e.g., micro-bursts [2], load imbalance [3])). In short, INT
works by continuously collecting low-level data plane statistics
(a.k.a. telemetry data) from the infrastructure in a per-packet
manner. These telemetry data include internal data plane statis-
tics such as queue occupancy, per-packet processing time, and
aggregated/computed statistics such as inter-packet gap [4].

In the classical INT operation (also known as INT-MD: eM-
bed Data), network packets are instructed to properly collect
telemetry data as they are routed through the network. The
instructions are added into an INT header, which can be em-
bedded into either active network flows [5] or specially-crafted
probing packets [6]. These packets are then interpreted by
INT-enabled forwarding devices, which collect the requested
telemetry data. Figure 1 illustrates the whole INT procedure
using probing packets. Observe there are three probing cycles
collecting data from the network, i.e., probing cycle f1 collects
telemetry data from nodes A, E, F , G, H , and I , returning to
origin A (i.e., steps (1) – (5)), and then to an INT collector.

Recent research [1], [5], [7], [8] have made consistent
efforts regarding the INT orchestration. The problem consists
of efficiently using available resources (in this case, spare space
on network packets) to collect data plane network statistics. In
this context, Liu et al. [7] and Pan et al. [1] have focused
on optimizing the usage of probing packets to collect INT
data, while Marques et al. [8] and Hohemberger et al. [5] have
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Fig. 1. Overview of INT planning.

focused on the embedding of telemetry data into production
network packets. Castro et al. [9], in turn, leverages a shortest-
path algorithm to reconstruct probe paths from link failures in
the control plane. Despite the efforts toward INT orchestration,
little has been done to provide fault-tolerant mechanisms for
INT in the data plane. In case a network link fails, all of
the INT monitoring mechanism that relies on that device is
compromised. In Figure 1, for example, the failure of network
link G–H directly affects probing cycles f1 and f2 (step 6).

A naive solution to provide fault-tolerance to this problem
consists of computing a novel solution or adapting existing
ones upon a failure (e.g., [1] [9]). In this case, a control plane
application (step (7)) would be triggered to compute a new
telemetry solution. In Figure 1, for instance, the new solution
comprises a detour of probing cycles f1 and f2 through an
alternative/updated path (step (8)). Despite this solution, the
recovery of the INT monitoring approach would take, in the
best case, a few hundred milliseconds. This is mainly due to
the time required to identify the fault, the time spent to react
(i.e., compute a new solution), and recovery (i.e., update the
data plane). Consequently, the network-wide visibility required
by monitoring applications might degrade in terms of coverage
and freshness [8] during the faulty period.

To fill this gap, in this paper, we propose InPatching:
an in-network approach to fast recovery INT-based monitoring
approaches. In the event of faulty devices, InPatching
autonomously (and without the control plane intervention) fix
monitoring cycles by identifying the faulty device and applying
detours in affected probing cycles to ensure the required INT
data is collected correctly. InPatching is mainly offloaded
to the data plane and, therefore, the recovery time of INT-
based monitoring mechanisms can be made faster than ex-



isting control plane strategies. To provide efficient detours to
existing probing cycles, we formalize the fault-tolerant probing
planning for INT by extending the existing orchestration
model [6]. Results show that InPatching outperforms control
plane solutions by a factor of 18X. The main contributions of
this paper can be summarized as follows:
• Proposal of an in-network strategy to quickly react to

faulty network conditions;
• Formalization of the fault-tolerant INT probing planning;
• Open-source software artifacts for reproducibility.
The remainder of this paper is organized as follows. In Sec-

tion 2, we discuss related work in the area of in-band network
telemetry. In Section 3, we introduce the InPatching design
in programmable data planes. In Section 4, we present and
discuss the results of an evaluation of the proposed approach.
Last, in Section 6, we conclude the paper with final remarks
and perspectives for future work.

II. RELATED WORK

Existing In-Band Network Telemetry Orchestration (INTO)
approaches rely either on using (i) active flows [10], [8], [11],
[12] or (ii) probe flows [13], [14], [1], [15], [16], [17] to
collect telemetry demands across the network topology. Mar-
ques et al. [8] propose two heuristic strategies for collecting
telemetry data, namely, concentrate and balance. The first
strategy strives to aggregate telemetry data on a restricted
number of flows, while the second tries to distribute equally
the telemetry data over available network flows. Hohem-
berger et al. [10] is the first attempt to collect telemetry items in
real-time coordinately. They design a machine-learning-based
model and formalize the problem of collection to satisfy both
spatial and temporal requirements, i.e., consider items must be
collected from specific devices and at a certain rate to properly
feed machine-learning applications on top of the network
to detect anomalies (e.g., DDoS). Similarly, SDProber [13]
performs a random decision for embedding INT data into
probe packets, while Pan et at. [1] utilizes Euler Circuits and
DFS-like strategies to orchestrate probing packets across the
network. However, these works construct a static solution and
do not consider devices may fail.

Scano et al. [12] extend P4 INT to 5G. Packet flows carrying
selected latency-sensitive services are proposed to encompass
the INT header already from the user equipment, allowing
for rerouting packets when soft failures are detected (e.g.,
increased bit errors, occasional packet loss, link congestion).
Patcher [9] is a fault-tolerant mechanism that leverages the
shortest path algorithm [18] performing “patches” on affected
probe flows where device faults occurred - e.g., due to energy
failure, misconfiguration. Still, the failures must be commu-
nicated to a control plane where the “patches” are performed
and informed to data plane devices, incurring high latency -
intolerable for low-latency applications (e.g., VoIP).

More recently, Fast Rerouting (FRR) mechanisms have been
used to implement fault-tolerant routing schemes directly on
the fast path in the data plane. This approach aims to reduce
path recovery time by requiring minimal or no control plane

intervention. PURR [19] is an FRR primitive that supports
multiple failures and avoids re-circulations. First, the switches
send the packet on the first active port in a sequence. In
case of failure, multiple mechanisms may be used to re-
establish the connection. Blink [20] passively monitors non-
negligible TCP re-transmissions to detect remote link failures
that disrupt end-to-end connectivity. Basically, it probes all
the next hops for availability and chooses a new working
one. Subramanian et al. [21] present D2R, which provides
policy-compliant paths. They logically split the topology into
domains to reduce the memory overhead of alternative path
computation. Nevertheless, if a domain becomes internally
disconnected due to multiple failures, D2R may not find a
route to the destination - even if it exists.

Despite recent efforts [9], [20], [19], [21] on providing
routing fail-over mechanisms in the data plane, none of these
solutions properly work to recover INT data collection. In
particular, these solutions are likely to fail to keep an unin-
terrupted collection of INT data as the fail-over mechanisms
are not designed for that. It turns out that the INT downtime is
dominated by the time needed to compute path updates in the
controller, which can take several hundreds of milliseconds
depending on the size of the network. Even employing pre-
computed paths, the delay in receiving the failure notification
at the controller, as well as in propagating and installing
the new forward entries in the data plane devices is still
significant, leading to loss of network visibility. To the best of
our knowledge, InPatching is the first approach to offload
recovery decisions to the data plane entirely. Our approach can
react quickly to faulty network conditions in an autonomous
and coordinated manner, outperforming state-of-the-art control
plane solutions by a factor of 18X.

III. INPATCHING : AN IN-NETWORK FAULT-TOLERANT
STRATEGY FOR INT

A. Overview

InPatching is an in-network fail-over approach to INT-
based monitoring mechanisms. Figure 2 depicts the in-network
approach in a programmable network infrastructure. In the
example, three probing cycles f1, f2, and f3 are responsible
for continuously (i) collecting telemetry data and (ii) checking
network connectivity. For simplicity, we omit the telemetry
data collected at each device in the figure and assume a single
independent failure of network links. In the example, network
link G–H has failed, and therefore affected probing cycles f1

and f3 – that is, INT packets are not returning to the INT
Collector with collected telemetry data.

InPatching aims to offload the fail-over mechanism to
the data plane in order to reestablish the monitoring without the
control plane intervention. For that, it relies (i) on alternative
paths computed in advance, and (ii) on a data plane heuristic
strategy to select the proper alternative path. Upon a link
failure, probing packets start to time out in device A (in the
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examples, probing packets from f1 and f3), indicating to the
data plane that probing packets have not arrived back on time.

In turn, the data plane autonomously reacts to that by
instrumenting the next packet of affected probing flows to take
a detour in the main probing path as a way to circumvent the
connectivity problem. In the Figure 2, the data plane of device
A is in charge of taking that decision. The first attempt is
to perform a detour between nodes A and E. In this case,
the packet sent through this alternative path does not return
(since the failure is on network link G–H). Then, the data
plane attempts to use an alternative detour on nodes E and F ,
which also does not solve the connectivity problem. Eventually,
the data plane uses an alternate path between nodes G and H ,
reestablishing the INT monitoring mechanism. Last, from time
to time, the data plane attempts to utilize back the original
forwarding path. Note that the data plane is taking heuristic
decisions, and in the worst case, the number of attempts is
O(n), where n is the length of the probing path. As we discuss
next, we can optimize these decisions to minimize the number
of attempts, minimizing the overall recovery time.

Two building blocks are required to realize the potential of
InPatching. The first is the data plane itself. As mentioned,
the data plane needs to react to time-out conditions and to
instrument other data planes to take a detour. The second is
the orchestration model (implemented in the control plane) that
is responsible for constructing appropriate probing cycles and
detours for network links.

B. Data plane design

The proposed data plane follows a distributed design similar
to the well-known master-slave approach. One data plane logic
is set as master and takes the main decisions (e.g., whether or
not to take a detour). The others (i.e., the slaves) implement
a simplified data plane logic to forward probing packets. It is
important to mention that all data plane logic has primary and
alternative paths installed in advance by the control plane (we
will discuss how we do that in the following subsection).

Our design works by extending the classical INT-based
header struct. All probing packets have an INT header in-
structing which INT telemetry data must be collected at
each forwarding device. The InPatching header struct is
appended just after the INT header and is 5 Bytes long (i.e.,
0.003% of a regular 1500B MTU frame). These Bytes are used
to monitor time-outs and to instruct the slave data plane on how
to react. Figure 3 depicts the InPatching header struct. The
first 16 bits represent the path id of a probing cycle. Then, the
target id represents the slave data plane id being targeted by
the master data plane. In other words, it represents the data
plane in which the detour decision is made. Last, there is an
8-bit word to represent possible control flags. InPatching
utilizes these flags to notify the slave data plane to attempt to
use the main path or to force them to stay in the alternative
path. Our approach periodically injects a packet trying to return
to the main path.

The master data plane logic needs to (i) keep track of
probing cycle time-outs and (ii) react in case of time out by
instrumenting data plane slaves on possible detours. Figure 4
illustrates the whole procedure. The INT header is processed
(steps 1-2) whenever a packet ingresses the device pipeline.
It interprets INT instructions and collects INT data at a
given device. The master data plane is uniquely identified
by an id and it is responsible for (i) encapsulating packets
in the InPatching header (step 4), (ii) keeping track of
probing packet time-outs (steps 5 and 6), and (iii) choosing a
slave/target data plane to perform a detour (step 7). For each
probing cycle, the master data plane keeps an array of |P |
register (each of 48 bits) to store data plane timestamps, where
P is the set of probing cycles in the network. When a packet
ingress the master data plane, the data plane compares the
packet ingress timestamp with the last seen packet timestamp
of the same probing cycle P . If this difference is greater
than a fixed threshold, the data plane assumes a time-out has
happened. Then the master data plane notifies a slave to follow
an alternative path (step 6). For that, the master stores a list
of device ids in a probing cycle using an array of registers.
The order of this ids in the array defines the order in which
the data plane tries to apply a detour. This order is defined
in advance by the control plane and can be adjusted based on
failure probabilities, for example. When a detour is applied, the
InPatching header is updated with the target data plane id
(step 7). That information in the header field is used by the
slaves in order to either apply alternative paths (steps 8-9) or
not (step 10). Furthermore, whenever a packet returns to the
master data plane (steps 11-12), we update the time-out data
structure for each probing cycle to keep track of the last seen
probing packet. To properly control returning packets to the
master, we use the field flags in the InPatching header.
Last, the packet is sent out to a specific port in step 13.

C. Control plane design
As previously mentioned, the main decision of the

InPatching approach is taken in the data plane. However,
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the control plane still plays an important role by defining the
probing paths [1], [5], [7], [8], the detours, and the order in
which they are applied by the data plane. In particular, how
the control plane defines the probing paths directly impacts the
efficiency of InPatching.

To understand the impact of probing paths on the efficiency
of InPatching, let’s consider the example given in Figure 2.
In case a failure occurs at a network link covered by only one
probing path (e.g., network links E–F or B–C), the heuristic
strategy taken by the InPatching data plane is in the worst
case O(n) (where n is the probing cycle length). This happens
because affected probing paths f1 and f2 are disjointed, and
independently of the order InPatching applies a detour, the
worst case remains O(n). However, if the failure happens at
a network link shared by multiple probing paths, the decision
can be optimized by cooperatively applying the heuristic by
the data plane.

Let’s suppose the master data plane is aware of the subset of
overlapped probing paths. In the example of Figure 2, probing
cycles Fs = {f1, f3} share network links S = {(A−E), (G−
H)}. In case of a network failure in S, the master data plane
would reduce the search space to O( |S||Fs| ). In that case, network
flows in Fs would time out, and the master data plane could
distribute the decision amongst them cooperatively. Whenever
a probing flow finds a valid detour, it updates the master data
plane accordingly.
Defining Optimized Probing Paths. To implement this unified
solution by the data plane, the control plane runs an INTO
model that is able to generate a valid set of probing cycles
in such a way the network infrastructure links are covered by
multiple probing cycles. Therefore, in the event of a network
link failure, multiple affected INT cycles are promptly noticed
and repair these links.

The optimization problem described next ensures a valid
INTO solution with a minimal number of probing cycles while
ensuring at least a K ∈ N+ cycle coverage per network link.
We adopt a revised and extended version of the model proposed
by [6]. Similar to them, we consider a programmable network
infrastructure G = (D,L) and a set of telemetry items V .
Set D of network G represents P4-enabled forwarding devices
D = {1, ..., |D|}, while set L links interconnecting devices
(d1, d2) ∈ (D×D). There is a set of available telemetry data
V , where each v ∈ V has its size defined by the function
S : V → N+. Each device d ∈ D can embed a subset of

items Vd ⊆ V into a probing cycle packet p ∈ P . Packets in
a probing cycle p ∈ P have limited spare space to embed V
data, defined by the function U : P → N+. The set of probing
cycles P is routed within the network G – that is, the packet is
generated at an INT sink, routed through a subset of devices,
and returns to its origin. A probing packet can visit a device
d ∈ D and not collect any associated telemetry items. We
denote the origin of each cycle p ∈ P as a fixed forwarding
device do ∈ D.

The variable set of the optimization model is defined as
follows. Variable zp,v,i, (∀ p ∈ P, v ∈ V, i ∈ D) indicate that
a device i embeds INT data v into a probing packet from cycle
p. Variable xp,i,j (∀p ∈ P, (i, j) ∈ L) indicate that network
link (i, j) ∈ L is being used to route probing cycle p ∈ P .
Last, variables yp (∀p ∈ P ) and wp,i,j (∀p ∈ P, (i, j) ∈ L) are
used, respectively, to count probing cycles used by the solution
and by network link.

Minimize
P∑

p=1

yp (1)

Subject to:
zp,v,i ≤

∑
j∈D

xp,j,i ∀p ∈ P, i ∈ D, v ∈ Vi (2)

zp,v,i + xp,i,j ≤ 2 · yp ∀p ∈ P, (i, j) ∈ L, v ∈ Vi (3)∑
j∈D

xp,i,j −
∑
j∈D

xp,j,i = 0 ∀p ∈ P, i ∈ D (4)∑
i∈S

∑
j∈S

xp,i,j ≤ |S| − 1 ∀p ∈ P, S ⊆ {D − do}, |S| ≥ 2 (5)∑
p∈P

xp,i,j + xp,j,i ≥ 1 ∀(i, j) ∈ L (6)∑
i∈D

∑
v∈Vi

zp,v,i · S(v) +
∑
i∈D

∑
j∈D

xp,i,j ≤ U(p) ∀p ∈ P (7)

xp,i,j ≤ B · wp,i,j ∀p ∈ P, (i, j) ∈ L (8)∑
p∈P

wp,i,j ≥ K ∀(i, j) ∈ L (9)

zp,v,i ∈ {0, 1} ∀p ∈ P, v ∈ Vi, i ∈ D (10)

yp ∈ {0, 1} ∀p ∈ P (11)

xp,i,j ≥ 0 ∀p ∈ P, (i, j) ∈ L (12)

wp,i,j ∈ {0, 1} ∀p ∈ P, (i, j) ∈ L (13)

Constraint set (2) ensures that if telemetry item v is collected
from forwarding device i, then a probe should be routed
through i. Constraint set (3) accounts for the number of
probing cycles in use. In turn, constraint sets (4) and (5)
ensure that cycles are well crafted. That is, constraint set
(4) ensures flow conservation, while constraint set (5) is the
well-known sub-tour elimination constraint. Then, constraint
set (6) guarantees a probing cycle that covers at least one
link direction. Constraint set (7) ensures the available probing
packet capacity is not violated by the telemetry items collected
or the network links being covered. Constraint sets (8) and (9)
ensure a network link is covered by at least K probing cycles,
where B is a big natural number. Last, constraint sets (10)–
(13) define the domains of output variables, while Equation



(1) aims at minimizing the number of probing cycles.
Defining Detours. Another key element of InPatching is
the detours taken by probing cycles in the data plane in case of
network link failure. We define detours as simple paths in G
between two forwarding devices belonging to the same probing
cycle P . We denote by Np = {d1, d2, ..., d|Np|} the ordered
set of forwarding device of a probing path p ∈ P . For each
ordered pair (d1, d2), (d2, d3), ..., (d|Np|−1, d|Np|) we define
a simple alternative path between devices of a pair.

As previously mentioned, in the event of a failure, the
data plane heuristically selects one alternative path in order to
address the faulty condition. The control plane also defines the
order to instruct the master data plane on how to proceed. As
for the experiments shown next, we adopt a simplified round-
robin alternative following the order of nodes in the probing
path P . However, other approaches are easily implemented,
such as prioritizing high-probability faulty nodes first.

IV. EXPERIMENTAL EVALUATION

A. Setup

We implemented our InPatching data plane approach
in P4 using BMv2 virtual switches, and we evaluated it in a
Mininet environment. Probing cycles are defined according to
our optimal model (Section III.C), while probing packets are
generated using a custom-made Scapy code. All experiments
were performed on a machine equipped with an AMD Ryzen
Threadripper 3990X with 64 physical processors, and 32 GB of
memory, running Ubuntu 18.04. Each experiment was repeated
30 times, which was enough to guarantee a confidence level
higher than 95%. Our source code is available on GitHub [22].

B. InPatching Data Plane vs. Control Plane Approach

We first evaluate the effectiveness of InPatching in
recovering the INT-based monitoring mechanism from single-
link failures compared to a control-plane based solution [9].
For that, we deploy a set of disjoint probing cycles in Mininet
and inject link failures to network links in P . For this experi-
ment, we set all network links in Mininet to have a 1ms delay
and we varied the time out in the data plane from 10ms to
100ms. The time out is the reaction time, that is, the time
the data plane waits for an injected probing packet before
reacting to it. Therefore, when time out occurs, InPatching
is applied over the next packet or sent to the control plane.

Figure 5(a) and Figure 5(b) illustrate, respectively, the
recovery time for the control and data plane approaches.
Figure 5(b) depicts the proposed InPatching data plane
approach considering an increasing value of time out. For this
experiment, we consider a 5-hop probing cycle (i.e., link #1 to
link #5). As we observe, the data plane increases the recovery
time linearly as we increase the time out. For instance, for a
data plane time out of 10ms, the recovery time of the entire
INT monitoring system is ∼19ms. Further, we also can observe
that the round-robin heuristic approach also affects the data
plane recovery time. The more distant the failure happens
from the probing cycle origin, the more time is required to
InPatching to find a valid detour. However, even in the

more distant link (e.g., link #5), the recovery time is below
60ms for a time out of 10ms. In contrast, Figure 5(a) illustrates
the recovery time in the control plane. In this experiment, we
fixed the time out as 10ms. The control plane recovery time
depends on (i) the control plane processing time (i.e., the time
required to compute a solution), (ii) communication time (i.e.,
the time to send and receive information between infrastructure
and controller), and (iii) reaction time (i.e., the time out). When
a packet is timed out by the data plane, it clones the packet and
sends it to the control plane. In the case of the control plane,
the network link failure order does not affect the reaction time
since we are sending them to the control plane. We varied the
control plane distance from the probing path origin (from 1
to 30ms) in order to observe the communication time. In the
best case (for 1ms control plane latency), InPatching is up
to 18x quicker than the control plane (i.e., ∼ 350ms to the
control plane vs. 19ms of InPatching).

C. The gain of overlapping probing INT cycles

Next, we evaluate the gains attained to InPatching when
probing cycles are constructed by our model considering a
given overlapping (i.e., K > 1). In our P4 implementation, we
allow K = 2 and, therefore, we ensure that at least two probing
paths cover the same network link. Figure 5(c) illustrates the
recovery time for a reaction time (time out) varying from
50ms to 100ms. In case of a failure, two probing paths time
out and the InPatching data plane coordinately attempt to
solve the failure by applying a detour simultaneously. In the
experiment, we consider two probing cycles sharing a network
link. In the event of a network link failure, the two probing
cycles attempt to recover by applying a detour. The first one to
find a valid detour notifies the other in the origin data plane.
The Figure 5(c) illustrates the non-cooperative and cooperative
versions of InPatching. In the cooperative version, the first
probing cycle (probe #1) is the one that finds a valid detour,
notifying the second probing cycle (probe #2). The cooperative
InPatching achieves a recovery time up to 50% and 300%
faster than the non-cooperative version of InPatching for
the first and second probing cycles, respectively.

D. The cost of overlapping

Last, we evaluate how our proposed optimal model impacts
the number of probing cycles generated in an INTO solution
(in particular, Equations 8, 9, and 13). Our model is imple-
mented using IBM CPLEX Optimization Studio 12.9 to obtain
optimum solutions and our results are compared to [1], [6].
We follow a similar approach to them to generate a workload,
setting K = 2 as this is the parameter evaluated in the previous
subsection. Figure 5(d) illustrates the number of probing cycles
for increasing the size of probing capacity (from 100B to
1500B). As we increase the probing capacity, we observe a
decrease in the number of deployed INT probing cycles – as we
do have more space on packets to collect INT data. For small
packets (100B, 200B, 400B), our model requires on average
15% more probing cycles than the solution provided by [6].
To larger packets (800B and 1500B), our solutions require on
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Fig. 5. Control Plane vs. InPatching Data Plane Approach

average two cycles more. Yet, our model produces 40% fewer
cycles than [1]. Due to space constraints, we omitted other
analytical evaluations of our model.

V. FINAL REMARKS

In this paper, we introduced InPatching, an in-network fault-
tolerant approach to INT monitoring solutions. InPatching
offloads the fail-over mechanism to the data plane in order
to reestablish the monitoring without the control plane inter-
vention. For that, it relies on alternative paths computed in
advance and on a data plane heuristic strategy to select the
proper alternative path. As shown, our solution (i) outperforms
control plane solutions by a factor of 18X (ii) finds a valid a
detour solution up to 3X quicker when coordinated with other
probing flow, and (iii) requires no more probing cycles on
average than state-of-the art In-Band Network Telemetry Or-
chestration approaches. As future work, we intend to evaluate
other data plane heuristics and implement our solution on a
programmable hardware.
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