
dh-aes-p4: On-premise encryption and in-band
key-exchange in P4 fully programmable data planes

Isaac Oliveira†, Emı́dio Neto∗, Roger Immich∗,
Ramon Fontes∗ and Augusto Neto‡

DIMAp‡/IMD∗, UFRN and UERN†

Natal, Rio Grande do Norte, Brazil

Fabrı́cio Rodriguez
and Christian Esteve Rothenberg

FEEC, UNICAMP
Campinas, Sao Paulo, Brazil

Abstract—Software-Defined Networking (SDN) fostered un-
precedented advances over legacy networks by employing a
central-logic control plane to coordinate data-plane nodes in
a net-programmable manner. From the security view, control
applications that run atop the SDN controller are in charge of
establishing secure data-plane connections between pairs of data-
plane forwarding nodes. The Diffie–Hellman (DH) is a widely
used solution for cryptographic key exchange between endpoints.
However, traditional DH implementations impose high computa-
tional costs and key management hazards, leading to issues in
the SDN central-logic control plane. This paper introduces the
dh-aes-p4, which tackles the penalties of legacy SDN security
solutions by turning the data plane into fully programmable
P4 nodes. The proposed solution allows P4-enabled data plane
nodes to establish secure channels between each other. In doing
that, it is possible to harness in-band DH key exchange with
AES encryption, enclosing on-site features to generate keys
dynamically and enforcing them autonomously and high-agile
without SDN controller central-logic intervention. A prototype
was designed to validate the feasibility and estimate performance
impacts of dh-aes-p4 concerning regular SDN central logic.

I. INTRODUCTION

Cryptography is essential to delivering secure communi-
cation service between networked endpoints. However, most
existing mechanisms operate on Layer 3 or above the network
architecture (e.g., IPSec, TLS, and VPN), requiring operating
system and/or application support. Lack of such support and
faulty application designs or system administration errors
eventually jeopardize the data protection and cause privacy
issues, among other hazards.

The secure exchange of cryptographic keys, so as two
networked endpoints can communicate securely over a public
channel, stands to a well-known challenge in symmetric cryp-
tography systems. In this context, Diffie-Hellman (DH) [1]
is one of the most prominent, widely-used, and consolidated
method to settle secure communications. Incidentally, the
advent of Software-Defined Networking (SDN) [2] revolu-
tionized the traditional networking scenario by opening up
a plethora of new possibilities to implement and exercise
new protocols and services flexibly. In legacy SDN, data
plane nodes are introduced with a well-known southbound
interface along with a fixed set of open functions, whereby a
software-programmable SDN controller central-logic enforces
new settings in data-plane devices. From the security point of
view, the SDN controller allows atop-running control plane

applications to (re)program the data-plane nodes to cater
to secure communication paths. Unlikely, traditional security
solutions rely on a network administrator to configure a set
of running tools (e.g., firewall and Detection and Prevention
Systems - IDS/IPS) statically, which is time-consuming.

However, the traditional DH cryptography key management
approach is computational-costly (in terms of CPU and mem-
ory consumption), whereby the central-logic coordination of
legacy SDN limits the system concerning time-response and
complexity. We claim that decoupling DH facilities from the
SDN controller central-logic is a viable strategy to achieve
a performance-enriched and secure approach. The proposed
idea is to introduce security control plane facilities for running
at data plane node on-site premise. Furthermore, including
security functions at fully programmable data-path nodes will
fundamentally reduce the attack surface since private keys
are kept in the embedding system memory, and they can be
generated on a flow basis for a limited duration. To achieve
this, the Programming Protocol-independent Packet Processors
(P4) [3] paradigm is explored, which enables a non-centralized
key management control plane. Notably, the biggest driver
for P4 is possibly disaggregation. While currently, devices
from different vendors can be orchestrated by a customized
controller, P4 may have the potential to extend disaggre-
gation towards specialized appliances based on off-the-shelf
programmable hardware.

Inspired by the innovative power and rapid data plane
prototyping possibilities that P4 technology offers we propose
dh-aes-p4, the first DH key-exchange implementation with
Advanced Encryption Standard (AES) encryption tailored to
P4 targets. To demonstrate the feasibility of dh-aes-p4, a
prototype was designed based on the Behavioral Model version
2 (BMv2)1 P4 software target where cryptographic parameters
(e.g., private key) can be generated through invoking native P4
functions. As a proof of concept, a simple to understand net-
work topology was built, and the dh-aes-p4 proposal was
assessed through practical and fully reproducible experiments.

The reminder of this paper is organized as follows. Section 2
reviews the technical background in support of this work.
Section 3, describes the related work on P4-based network
security applications. A detailed description of dh-aes-p4

1https://github.com/p4lang/behavioral-model

IEEE NFV-SDN 2021 – 4th Workshop on Mobility Support in Slice-based Network Control for Heterogeneous Environments

978-1-6654-3983-1/21/$31.00 ©2021 IEEE 148

20
21

 IE
EE

 C
on

fe
re

nc
e 

on
 N

et
w

or
k 

Fu
nc

tio
n 

V
irt

ua
liz

at
io

n 
an

d 
So

ftw
ar

e 
D

ef
in

ed
 N

et
w

or
ks

 (N
FV

-S
D

N
) |

 9
78

-1
-6

65
4-

39
83

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
N

FV
-S

D
N

53
03

1.
20

21
.9

66
50

12

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 



is given in Section 4. Section 5, shows the validation settings
of the prototype and reports the lessons learned. Finally, the
conclusions can be found in Section 6.

II. BACKGROUND

This section overviews the fundamentals of both AES and
DH algorithms approach to protect data communications.

A. Advanced Encryption Standard

Advanced Encryption Standard (AES) constitutes a crypto-
graphic system specified by the National Institute of Standards
and Technology (NIST) in 2001 to protect sensitive data [4].
AES is widely used for information security by corporations,
governments, and government agencies worldwide to secure
and transmit data without fear of it being compromised. A set
of research endeavors even indicate that the 256-bit version
has been suggested to be quantum-safe [5], [6].

The AES algorithm is a symmetric block cipher that can
process data blocks of 128 bits using three different cipher
key lengths 128, 192, or 256 bits. AES algorithm is a typical
substitution-permutation network encryption primitive based
on symmetric block cipher structure. Depending on the key
size, AES performs 10 to 14 encryption/decryption rounds
where each round has your respective subkey. This subkey
composed of 4-word (128-bits) is generated by Key Expan-
sion where each round key is generated as a product of the
previous round key. Each word is calculated by a constant that
changes at each round and an S-Box, which will compose one
of the 4-word (128-bits) set for each round. Encryption and
decryption rounds of the AES (except the last round) consist
of four steps:
(a) SubBytes. The first step where data in the plain text is

substituted by pre-defined values from a substitution box
(S-box) that is invertible;

(b) ShiftRows. Responsible for creating a simple permuta-
tion by cyclically shifting the table rows;

(c) MixColumns. Is the primary source of diffusion based
on a matrix multiplication in Galois field using prime
polynomial;

(d) AddRoundKey. Applies a simple bitwise XOR of the
current block with a respective expanded key part in each
round.

B. Diffie–Hellman

The DH key exchange protocol establishes a shared secret
that can be used for secret communications by exchanging
data over a public network. This key exchange can be used to
support the subsequent encryption process required for com-
munication between two hosts (e.g., with AES). According
to [7], the DH algorithm uses two numbers that are publicly
known: (i) a prime number q and (ii) an integer α, which is
a primitive root of q. Thus, if Alice (A) and Bob (B) want to
create a shared key, Alice selects a random integer XA < q and
calculates YA = αXA mod q. Similarly, Bob selects a random
integer independently XB < q and calculates YB = αXB

mod q. In this way, each user turns X into a private value

and makes Y the public value. Thus, XA is Alice’s private
key, and YA is Alice’s corresponding public key - the same
for Bob. In this case, Alice needs to calculate the shared key as
KA = Y XA

B mod q, and Bob calculates the same shared key-
value through KB = Y XB

A mod q. This procedure produces
identical results, allowing Alice and Bob to use their secret
keys KA and KB for data encryption.

Although considered secure, some network devices such as
optical devices may suffer from performance issues during the
execution of the DH key exchange algorithm [8]. Hence, dh-
aes-p4 relies on a modified version of DH proposed by [8]
that uses XOR operations instead of the arithmetic module
used in the traditional DH algorithm. This modified version
guarantees the same levels of security since operations are
carried out with random numbers and never reused.

In summary, the modified DH workflow is as follows:
1) Alice and Bob make public two numbers G and P , where

G and P are randomly generated;
2) Alice chooses a random number A and first calculates

G.A and P.A by logical boolean AND operation;
3) Alice calculates a public key KA by the XOR operation

G.A⊕ P.A and sends it to Bob;
4) Bob also chooses another random B and calculates G.B

and P.B by logical boolean AND operation;
5) next, Bob calculates a public key KB by the logical

operation XOR G.B ⊕ P.B and sends it to Alice;
6) Alice first calculates KB .A by logical AND operation

and calculates a secret key SA by XOR operation with
P by SA = KB .A⊕ P = {(G.B ⊕ P.B).A} ⊕ P ;

7) Finally, Bob calculates KA.B by logical AND operation
and calculates a secret key SB by XOR operation with P
in SB = KA.B ⊕ P = {(G.A⊕ P.A)B} ⊕ P .

In the end, Alice and Bob have the same shared secret key,
where S = SA = SB . Both Alice and Bob store this shared
secret key as a private key used in the cryptographic system.

The combined use of DH and AES bring to our proposal the
ability to settle an insecure channel into a secure channel be-
tween a pair of communicating nodes with no prior knowledge
of each other.

III. RELATED WORK

It is notorious that programmable network nodes have
sparked a lot of interest in academia and industry [9], [10]. In
particular, the P4 language allows implementing network secu-
rity applications that were not so accessible before, and a set of
related works have been devoted to deploying programmable
nodes to perform numerous security-related functions in the
data plane (cf. Section XIII on network security in [10] and
Section XI on cybersecurity in [9]). Noteworthy, most of the
related works discussed next were recently published about
a year ago, which shows the recent interest by the research
community in using P4 for the data plane security-oriented
implementations.

For example, [11] proposed a solution that allows a packet-
header obfuscation system running entirely in the data plane
of a programmable network node for clients sending and

149

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 



receiving DNS packets securely. In [12], the authors proposed
the first implementation of IPsec for P4-based nodes. However,
these works feature layers above the data link layer, and they
do not bring solutions for the automatic configuration of P4
switches, delegating the management of keys to an SDN con-
troller. IPsec, in particular, still requires tunnel configuration;
the encrypted traffic works with authentication, and it requires
a central authority to introduce the configuration.

A technique for implementing AES through Scrambled
Lookup Table [13] aiming to reduce the number of sequential
arithmetic operations required for AES encryption. This was
done by utilizing the table matching capability available on
programmable switches. The author implemented AES on the
Barefoot Tofino programmable switch and showed an exper-
imental prototype evaluation. However, the code provided by
the author does not include all the AES rounds for encryption,
the rounds were not used in the decryption process, and there
is no key agreement.

In P4-MACsec [14], the authors include AES-GCM en-
cryption and decryption directly on P4 switches. However,
the proposal requires an SDN controller, which is respon-
sible for the MACsec setup. Another set of related work
relates to the hardware implementations of DH and hardware-
acceleration of security functions, an active research topic
due to the high-performance and improved security compared
to traditional software-only approaches. For example, [15]
discusses scalable implementations of elliptic curve scalar
multiplication and presents an implementation targeted to an
FPGA device. In [16], the authors focused on facilitating the
process of DH elliptic curve cryptography implementation
in hardware. Modern SmartNICs commonly feature public
key cryptographic engines2 for hardware offloading of all
asymmetric cryptographic operations. In contrast to related
works, our proposal is based on the high-level P4 language
and does not depend on target architecture-specific P4 extern
functions.

IV. DH-AES-P4 PROPOSAL OUTLOOK

The dh-aes-p4 proposal follows the [13] approach.
However, dh-aes-p4 differentiates itself among all elicited
related works by the dynamic and in-band DH key-exchange
approach. Hence, the data plane nodes themselves become
capable of generating random private cryptographic keys. In
contrast, the SDN Controller generates the cryptographic key
to enforce targeting data-plane nodes afterward in legacy SDN
systems. With dh-aes-p4, P4 functions themselves generate
cryptographic parameters, such as the private key, according to
the programmed behavior. Being data plane functions executed
directly in the data plane hardware-premises pipeline reduces
the computational cost of the cryptographic key generation
methods and reduces the attack surface of the solutions. The
reason is that the private cryptographic keys do not leave the
system memory, and thus they can be generated on a traffic
flow basis for a limited duration. Lowering the attack vectors

2https://www.xilinx.com/products/intellectual-property/1-174jgch.html

is in alignment with the recommendation provided by the
NIST [17] regarding the number of participating entities being
proportionally related to an increased probability to expose the
cryptographic key to non-authorized entities.

The main advantages of dh-aes-p4 can be grouped into
four technical benefits:

1) Flow granularity allows a flexible selection (e.g., using
a rule-based on a pattern of packet header fields or
metadata) of the traffic to be encrypted;

2) Forward Secrecy for each new flow, new private keys
can be generated and held in device memory only during
the duration of this flow;

3) Opportunistic and endpoint transparency based on
edge-to-edge encryption methods to protect any data traf-
fic without requiring specific pre-arrangements between
the end-systems which remain unaware of the encryption
service applied to their traffic;

4) In-band distributed key management between edge
devices programmed to run an in-band security associ-
ation exchange process and directly encrypt traffic edge-
to-edge without additional entities (e.g., centralized key
management servers).

A. Towards dh-aes-p4 Prototype Implementation

We implemented dh-aes-p4 in a prototype, which is
designed into three phases: (i) the DH key-exchange; (ii) AES
encryption; and (iii) data transmission in a secure channel.
Next sections provide details regarding the three phases.

1) Diffie-Hellman cryptographic key-exchange: As a fun-
damental part of our implementation, we initially considered
the key exchange between two nodes (e.g., switches) based
on DH. For this, we consider that a pair of nodes comprises
an independent cryptographic system. Figure 1 illustrates how
DH key-exchange works in our implementation. The proce-
dures of creating the private, public, and secret keys proceed
in a three-way handshake, and the steps are described below:

4

Figure 1: Diffie Hellman key-exchange.

1) the DH key-exchange may be triggered by either the
number of packets or clock time. This makes s1 to
generate a random private key and the corresponding
public key;

2) s1 transmits its public key to s2;
3) s2 receives and stores the s1’s public key in a register.

In addition, s2 creates its private and public keys, and
computes the secret key with the public key received from
s1;

4) s2 transmits its public key back to s1;
5) After receiving the s2’s public key, s1 also computes

the secret key and stores it in a register.
From now on, P4 nodes are ready to exchange packets

securely once they are authenticated by themselves. s1 trans-

150

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 



mits the packet to s2 and when s2 receives the packet from
s1, it can either forward the packet to an intermediate node
or use the decryption module to send the decrypted packet
to the destination host. In case of failures during the key-
exchange process, two situations may occur: (i) the register
is empty, and a new key must be generated before the traffic
data exchanging; and a key is already inserted in the register,
and this key will be used until replaced by a new one.

For dh-aes-p4 setup on the P4 node, we use a simplified
Python script that adds the corresponding entries into the table
of the P4 processing pipeline.

2) AES encryption: The AES encryption starts with the
insertion of the secret key generated by the DH algorithm.
In our implementation, the DH algorithm generates a 256-
bits secret key that can be used for AES 128/192/256. The
transformations carried out by each AES round were combined
in a set of lookup tables [18]. For this, we use eight (8) pre-
computed lookup tables consisting of 256 4-byte word entries
requiring only 8Kbyte of total space and two (2) S-box tables
(one for encryption and another one for decryption).

When using lookup tables, the round transformation can be
expressed as:

ej = T0[a0,j ]⊕ T1[a1,j−c1 ]⊕ T2[a2,j−c2 ]⊕ T3[a3,j−c3 ]⊕ kj
(1)

Where,
• ej is one column of the round e output in terms of bytes

of the round input a.
• ai,j concerns the byte of a in a row i and column j.
• aj means the column j of the state a.
• kj is the round key for encryption.
• Ti refers to the encryption lookup tables.
Implementing AES using lookup tables enables fast pro-

totyping of the algorithm in P4 nodes since we can reduce
all the round operations to a single transformation. However,
when using lookup tables, the round keys for encryption and
decryption are different. For computing the key schedule for
decryption, we use the same S-box table and lookup tables
used for decryption and the previously computed round keys
for encryption. The first and last round keys for decryption
are the same as the round keys used for encryption. Thus, we
perform the decryption key schedule from the second round
to the last but one. The key schedule derivation for decryption
can be described as follows:

wki = Td0[S[w0]]⊕ Td1[S[w1]]⊕ Td2[S[w2]]⊕ Td3[S[w3]]
(2)

ikj = wk0
a wk1

a wk2
a wk3 (3)

Where,
• wki is a 32-bit word of the encryption round key kj .
• ikj is the round key for decryption.
• Tdi is the lookup table for decryption.
• S is the S-box for encryption.

Figure 2: Data transmission.

• wi is the 8-bit rotated word slice from the respective 32-
bit word of the encryption round key.

3) Data transmission: The last but not least phase is about
the secure communication between h1 and h2. Considering
the network topology illustrated in Figure 2 we can see that
there is a secure channel between s1 and s2. When s1
receives the packet sent by h1, it forwards the packet to s2 (1)
and then the packet is delivered to h2 (2). Eventually, h2 will
send the packet back to h1 whether a response is required.
For the sake of simplicity we create a custom header where
h1 sends a packet to h2 in a one-way fashion.

Figure 3 summarizes all the steps we have seen so far
through a detailed diagram of secure communication. Since
our proposal also covers scenarios where SDN controllers can
perform the key agreement, the diagram can be extended to
represent new entities.

h1

h2

s1 s2

1.1
DH.ComputeKeys(a, A)

1.2
DH.SendPubKey(A)

1.3
DH.ComputeKeys(b,B)

1.5
DH.SendPubKey(B)

1.6
DH.ComputeSecKey(B,a)

s1 and s2 compute a
shared secret key K 

1.4
DH.ComputeSecKey(A,b)

1.8
Pkt

1.7a
AES.KeySchedule(K)

1.7b
AES.InvKeySchedule(K)

1.9
AES.Encrypt(Pkt)

1.10
AES.Decrypt(EncryptedPkt)

The shared secret key is
used as AES Key.

Host h1 sends a
packet <Pkt> to

host h2.

s1 and s2 exchange 
their public keys.

s1 encrypts using the
scheduled round keys.

s2 decrypts using the
inverse scheduled round
keys.

Diffie-Hellman Module

AES Module

Host h2 receives
the packet <Pkt>

in Plain text.

Figure 3: A detailed diagram of secure communication.

V. TOWARDS VALIDATION OF THE DH-AES-P4 PROPOSAL

This section assesses, analyzes, and discusses the results
obtained from dh-aes-p4. A set of lessons learned along
with the development of this work is also presented. It is
worth mentioning that this work is fully reproducible. All the
instructions on how to reproduce the results as well as artifacts

151

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 



(e.g., source code, dataset) can be found at the source code
repository.3

A. Evaluation setup

The prototype has been evaluated in an emulated testbed
with a fork of Mininet [19] and the BMv2 P4 software switch
(a P4-enabled data-plane node representation) with the same
network topology that Figure 2 sketches. Evaluations were
carried out on an Intel Xeon Silver 4114 CPU 2.20GHz (16
vCPUs), 32GB RAM, and Ubuntu Server (18.04) with Linux
kernel 5.8. Next, we validate the algorithm implemented in
dh-aes-p4 and we evaluate the algorithm effectiveness in
two metrics: (i) secret-key renewal RTT; and (ii) encryption
time.

B. Algorithm validation

To validate dh-aes-p4, a custom packet was sent from
h1 to h2 and the data traffic in s1 and s2 was captured.
Figure 4 illustrates the payload extracted from the Ethernet
interfaces. It is possible to observe that h1 transmitted a packet
with the “plain text” message in the payload. Additionally,
it is clear that all the communication between s1 and s2
is completely safe, once the message has been encrypted to
a protected message corresponding to the result of the AES
algorithm.

============= Ethernet Frame Payload {s1-eth1.cap} ===========   
                             

0000  70 6C 61 69 6E 20 74 65 78 74 20 20 20 20 20 20  plain text 

     
============= Ethernet Frame Payload {s1-eth2.cap} ===========

0000  44 20 06 1C 00 06 02 14 12 A1 20 DC 02 00 F0 10  D ........ .....
0010  40 82 43 00 0D 28 CC 14 C2 0D 10 02 19 24 00 76  @.C..(.......$.v
0020  00 .
                                               
0000  00 28 04 08 A1 42 00 50 12 41 28 41 00 00 40 44  .(...B.P.A(A..@D
0010  00 02 D3 02 19 88 4C 06 D3 1E 14 02 90 90 04 12  ......L.........
0020  01 .
                                               
0000  5E AC E8 8C E5 1F 84 4C F4 4C A4 A0 52 74 BA F9  ^......L.L..Rt..

============= Ethernet Frame Payload {s2-eth2.cap} ===========

0000  44 20 06 1C 00 06 02 14 12 A1 20 DC 02 00 F0 10  D ........ .....
0010  40 82 43 00 0D 28 CC 14 C2 0D 10 02 19 24 00 76  @.C..(.......$.v
0020  00 .
                                               
0000  00 28 04 08 A1 42 00 50 12 41 28 41 00 00 40 44  .(...B.P.A(A..@D
0010  00 02 D3 02 19 88 4C 06 D3 1E 14 02 90 90 04 12  ......L.........
0020  01 .
                                               
0000  5E AC E8 8C E5 1F 84 4C F4 4C A4 A0 52 74 BA F9  ^......L.L..Rt..

============= Ethernet Frame Payload {s2-eth1.cap} ===========

0000  70 6C 61 69 6E 20 74 65 78 74 20 20 20 20 20 20  plain text Plain text

Plain text

PU<s1>

PU<s1>

PU<s2>

PU<s2>

Encrypted

Encrypted

Figure 4: Payloads extracted from switches.

C. Secret-key renewal RTT

The secret-key renewal Round Trip Time (RTT) consists of
verifying the time taken for switches to exchange new public
keys and consequently generate new private and secret keys,

3https://github.com/reginalab/dh-aes-p4

DH-128 DH-192 DH-256
AES key size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Se
cr
et
-k
ey

 r
en

ew
al
 R
TT

 (
m
s)

DH-128
DH-192
DH-256

Figure 5: Secret-key renewal RTT

as a way to estimate how long does the DH algorithm takes to
be fully accomplished. Figure 5 shown that AES-128/192/256
sizes produce similar results when a switch generates secret
keys at random. This is expected for the reason that our
implementation considers a 256 bits secret key size regardless
of the AES-key size. Our experiments also show that pushing a
static private key to switches produces a negligible reduction of
the secret-key renewal RTT. In our implementation, the secret
key generation at random is performed by the P4 random()
function supported by the P4 v1model core library.

D. Encryption time

The encryption time stands for the time that an encryption
algorithm takes to produce a ciphertext from a plain-text along
with the total time taken to produce the plain-text from the
cipher one, respectively. Figure 6 illustrates the encryption
average time a switch takes to receive a data size of 30 bytes
(14 Ethernet + 16 payload) and sends it out to the output port
in two scenarios: (i) controller-based, where the controller
is only responsible for generating the private keys; and (ii)
embedded in-band key-exchange method, where the p4 switch
is responsible for all the cryptographic system. As expected,
results show (a) that the controller-based scenario is more
costly than the embedded scenario, and (b) the time increases
exponentially with the number of AES rounds. These results
are due to the processing being realized out-of-the switch and
the number of rounds computed by the different AES-key
sizes, respectively.

E. Lessons learned

Accelerating computations by leveraging programmable
switches is becoming a trend in data centers and backbone
networks because of the benefits of increased flexibility and
the advantages of customizing the data plane. However, this
work has shown us that improvements are still needed in the
programmability of P4 switches. According to the findings
obtained during the realization of this work, the technical
challenges are highlighted below.

152

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 



AES-128 AES-192 AES-256
AES key size

0

15

30

45

60

75

90

105
Av

er
ag

e 
ti
m
e 
(m

s)
Controller-based encryption
Embedded encryption

Figure 6: Encryption time

• Random secret key: it was noticed that the P4 random()
function supported by the P4 core library does not produce
a random value of 32 bytes since it is limited to 8 bytes.
As a result, they had to concatenate 4 random blocks of 8
bytes to reach 256 bits for the secret key size.

• Packet size: varbit can be used within a packet header
definition to indicate a field that has a length that can
be different from one packet to another. This would be
extremely important to enable the cryptographic module to
modify packets with different sizes. However, according to
the p4spec, it is not allowed to modify the varbit header
nor cast it to the bit type [20].

• Compilation time: If all the necessary table entries were
added (i.e., S-box and Lookup) as constants in the P4 file,
the compilation time exceeds 30 hours. For this reason, a
simple Python script was used to add all the corresponding
P4 table entries (used as constants by the pipeline functions).
Thus, the total time taken for compiling and adding table
entries does not exceed 3 minutes.
Proposing improvements to the P4 programming language

is not trivial, mainly because the P4 reference implementation
is a complex system. Fortunately, proposals such as [21] can
bring new possibilities, and in the future, we will possibly
be discussing solutions to the challenges we encounter when
developing this work.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes dh-aes-p4, the first DH implemen-
tation tailored to a P4-based programmable data plane. The
dh-aes-p4 enables pairs of P4 nodes, each enclosing on-site
features for dynamic keys generation and local enforcement, to
establish secure channels among each other autonomously and
high-agile harnessing to this end in-band DH key exchange
with AES encryption strategy. We prototype and validate
AES-128/192/256 encryption for the BMv2 software switch in
terms of secret-key renewal RTT and encryption time. Results
suggest advantages when the cryptographic system is entirely

implemented in a programmable data plane. We also report
the lessons learned and experiences obtained from the features
currently supported by the P4 programming language.

As future work, the findings from the validation outcomes
indicate the need for optimizing and refining the dh-aes-p4
prototype to draw new metrics for performance assessment.
Regarding network security, we still envision adding authen-
tication mechanisms in order to prevent man-in-the-middle
attacks.

REFERENCES

[1] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, p. 87–95, July 2014.

[4] N.-F. Standard, “Announcing the advanced encryption standard (aes),”
Federal Information Processing Standards Publication, vol. 197, no. 1-
51, pp. 3–3, 2001.

[5] X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher, “Quantum
security analysis of aes,” IACR Transactions on Symmetric Cryptology,
no. 2, pp. 55–93, 2019.

[6] NIST, “Report on post-quantum cryptography.”
https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf, April 2016.
(Accessed on 04/25/2021).

[7] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice. USA: Prentice Hall Press, 6th ed., 2013.

[8] Jeon, Seok Hee and Gil, Sang-Keun, “Optical Secret Key Sharing
Method Based on Diffie-Hellman Key Exchange Algorithm,” Journal
of the Optical Society of Korea, vol. 18, pp. 477–484, Oct. 2014.

[9] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” 2021.

[10] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” arXiv preprint
arXiv:2101.10632, 2021.

[11] L. Wang, H. Kim, P. Mittal, and J. Rexford, “Programmable in-network
obfuscation of dns traffic,” in NDSS: DNS Privacy Workshop, 2021.

[12] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-ipsec: Site-
to-site and host-to-site vpn with ipsec in p4-based sdn,” IEEE Access,
vol. 8, pp. 139567–139586, 2020.

[13] X. Chen, “Implementing aes encryption on programmable switches via
scrambled lookup tables,” in Proceedings of the Workshop on Secure
Programmable Network Infrastructure, pp. 8–14, 2020.

[14] F. Hauser, M. Schmidt, M. Häberle, and M. Menth, “P4-macsec:
Dynamic topology monitoring and data layer protection with macsec
in p4-based sdn,” IEEE Access, vol. 8, pp. 58845–58858, 2020.

[15] Z. Sangma, “Hardware implementation of elliptic curve diffie-hellman
key agreement scheme in gf (p),” 2008.

[16] D. Ionita and E. Simion, “Fpga offloading for diffie-hellman key
exchange using elliptic curves,” 01 2021.

[17] N. I. of Standards and Technology, “Recommendation for key estab-
lishment using symmetric block ciphers,” Tech. Rep. National Institute
of Standards and Technology, NIST Special Publication 800-71, U.S.
Department of Commerce, 2018.

[18] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[19] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg,

“Mininet-wifi: Emulating software-defined wireless networks,” in 11th
CNSM, pp. 384–389, IEEE, 2015.

[20] T. P. L. Consortium, “P416 language specification.” https://p4.org/p4-
spec/docs/P4-16-v1.2.1.html, June 2020. (Accessed on 04/25/2021).

[21] R. Doenges, M. T. Arashloo, S. Bautista, A. Chang, N. Ni, S. Parkinson,
R. Peterson, A. Solko-Breslin, A. Xu, and N. Foster, “Petr4: formal foun-
dations for p4 data planes,” Proceedings of the ACM on Programming
Languages, vol. 5, no. POPL, pp. 1–32, 2021.

153

Authorized licensed use limited to: Universidade Estadual de Campinas. Downloaded on January 12,2022 at 22:30:32 UTC from IEEE Xplore.  Restrictions apply. 


